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Abstract: Two triazine-based dendrimers with peripheral 1,3,5-triamidobenzene (1-3-5-TAB) func-
tionality were prepared, and their void spaces in the bulk solid were investigated. We examined
dendrimers of three core lengths and determined the one with the longest core exhibits the largest
void space because the peripheral amides were not imbedded in the internal space of each dendritic
molecule. The new dendrimers as solids were observed to adsorb volatile organic chemicals effi-
ciently. Importantly, because the dendrimers are soluble in organic solvents, the adsorbed VOCs
can be quantified by 1H-NMR spectroscopy by choosing a chemical shift (δ) of dendrimers as the
internal standard to exclude interfering impurity signals, a much simpler and more efficient protocol
than the traditional GC technique for the VOC quantification. One dendrimer was found to adsorb
24 equivalents of pyridine, so its adsorption capacity is equivalent to 946.2 mg/g. This is a more than
2-fold increase than the reported values by other porous materials.

Keywords: dendrimer; porous material; volatile organic chemical; pyridine

1. Introduction

Volatile organic chemicals (VOCs) are harmful to human health and the natural
environment [1–3]. VOCs, including aromatics, alkanes, amines, and oxygenated or halo-
genated hydrocarbons [4–6], are often produced by chemical and pharmaceutical indus-
tries [7–9]. Porous materials currently used for adsorbing VOCs are zeolites (Zs) [10–12],
activated carbons (ACs) [13–16], polymeric resins (PRs) [17–20], and metal-organic frame-
works (MOFs) [21–24]. In these systems, a pre-drying column to remove the moisture of
absorbed chemicals is generally required to maintain the adsorbing efficiency [24], which
is an additional cost for VOC adsorption. For example, pyridine easily adsorbs moisture
from its surroundings, which has been ascribed to the rarely reported works of pyridine-
capturing by porous materials [20,24]. However, pyridine, widely used in the production
of pharmaceuticals and pesticides, is known to cause serious neurological injury under
chronic exposure [25]. Therefore, porous materials showing easy and efficient pyridine-
adsorption are highly desired. On the other hand, dendrimers, generally with significant
internal void spaces, are reported to adsorb metal ions or small molecules in solution for the
purpose of catalyzing [26,27] and drug delivery [28–30]. As solids, dendrimers have also
been demonstrated to contain dendritic void spaces and adsorb gases [31,32]. However,
dendrimers have not yet been used as porous materials to adsorb VOCs. In particular,
dendrimers with amide groups at their periphery may have good pyridine adsorbing
ability [32]. Dendrimers constructed by covalent bonding between light atoms, such as
carbon, oxygen, and nitrogen, showed low density and high thermal stability comparable
to those of ACs and PRs. More importantly, dendrimers are generally soluble in organic
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solvents, and therefore are easy to be reprocessed and purified; these characteristics are not
usually shown by Zs, ACs, PRs, and MOFs.

Previously, we prepared dendrimer 1, with piperazine in the central core and 1,3,5-
triamidobenzene (1-3-5-TAB) moiety as a peripheral functionality (Figure 1) [32], showing
the BET value of CO2 was coming mostly from the distribution of interstitial void space
i of the molecules (Figure 1). The peripheral amides were not imbedded in the internal
space of each dendritic molecule in the bulk solid, and the void space ii is much less
accessible to gases [32]. In this report, to further increase the void spaces for adsorbing
gases or VOCs, we have further designed and prepared dendrimer 2, with 4,4′-biperidine
in the central core and 1-3-5-TAB as the peripheral functionality. The corresponding i
void space in dendrimer 2 is larger than that in dendrimer 1 and, as expected, 2 showed
better BET values than 1. However, 2 had a lower VOC adsorption capacity than 1. To
increase the VOC adsorption capacity, dendrimer 3, with a longer chain length and polar
functional groups in the central core, was prepared, and the corresponding VOC adsorption
capacities were found to be better than those of dendrimers 1 and 2. As the host dendrimers
are soluble in organic solvents, 1H-NMR spectroscopic investigations were possible to
quantify the VOC adsorptions. This is a much simpler and more efficient protocol than the
traditional GC [21,22] and gravimetric gas analysis [24] techniques for VOC quantification.
By properly choosing a chemical shift (δ) of dendrimers as the internal standard, the peak
interferences from the H2O and impurity in the spectra can be easily avoided, and the
accuracy of the adsorbed amount of VOCs can thus be ascertained. In particular, the
adsorption capacity of pyridine for 3 is about 946.2 mg/g, a more than 2-fold increase from
the reported values in the literature [20].

Figure 1. The molecular structures of dendrimers 1–3.

2. Experimental Section
2.1. General

Reagents were used as received without further purification. Elemental analyses were
performed using an Unicube analyzer EA000600 (Elementar, Langenselbold, Germany).
The spectra of 1H and 13C NMR were recorded on a AMX-300 spectrometer of National Chi
Nan University (Bruker, Billerica, MA, USA). Thermogravimetric analyses were completed
under N2 with a TGA-7 TG analyzer (Perkin Elmer, Waltham, MA, USA). The mass spectra
were obtained from Microflex MALDI-TOF MS (Bruker, Billerica, MA, USA). The FT-IR
spectra were recorded by a Perkin Elmer Frontier spectrometer (Perkin Elmer, Waltham,
MA, USA). Brunauer-Emmett-Teller (BET) analyses were performed by a TriStar II Plus
system (Micromeritics Instrument Corporation, Norcross, GA, USA) using CO2 as the
adsorbate at 195, 273, and 298 K, respectively, and N2 as the adsorbate at 77 K. All gases for
experiments were pure up to 99.9995%.

2.2. Preparation of Dendrimer 2

4,4′-Bipiperidine (0.085 g, 0.5 mmol) was dissolved in THF (50 mL) and added to
dendron 4 (0.890 g, 1.0 mmol) and K2CO3 (0.380 g, 2.5 mmol) in THF (50 mL), and the
resulting mixture was heated at 70 ◦C for 48 h. After reaction, solvent was removed at
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reduced pressure, and water (50 mL) was then added. The mixture was added to water to
produce a solid, which was filtered off and then washed with THF (5 mL × 2). Dendrimer
2 thus obtained a 70.2% yield (0.657 g). 1H-NMR (300 MHz, CDCl3, 25 ◦C, TMS): δ = 8.00 (s,
4H, 4 × Ar-H), 7.94 (br. s, 8H, 8 × NH), 7.41 (s, 8H, 8 × Ar-H), 4.68–4.64 (m, 4H, 2 × CH2),
3.73–3.48 (m, 34H, 16× CH2, 2× CH), 2.65–2.62 (m, 4H, 2× CH2), 1.70 (br. s, 4H, 2× CH2),
1.27 (s, 72H, 24 × CH3), 1.12 (br. s, 4H, 2 × CH2) ppm; 13C-NMR (75 MHz, CDCl3, 25 ◦C,
TMS): δ = 177.49, 169.99, 165.46, 165.02, 139.28, 136.67, 114.06, 112.55, 48.03, 43.77, 43.04,
42.43, 19.90, 29.42, 27.66 ppm; FT-IR: 3453 and 3328 cm−1 (s. N-H), 3078 cm−1 (w. Ar-H),
2968, 2935, 2910 and 2871 cm−1 (m. C-H), 1662, 1630 and 1610 cm−1 (s. C=O), 1590 cm−1 (s.
C=N); MS: m/z: calcd for C100H142N24O12 (M)+: 1871.4; found: 1870.9; elemental analysis:
calcd (%) for (C100H142N24O12 + 6H2O) C 60.65, H 7.84, N 16.97; found: C 60.51, H 7.78, N
17.00; m.p.: 317.6–319.5 ◦C.

2.3. Preparation of Dendrimer 3

Terephaloyl chloride (0.052 g, 0.25 mmol) in dried THF (25 mL) was added to dendron
5 (0.493 g, 0.5 mmol) in dried THF (25 mL), then stirred in an ice-bath for 30 min. Triethy-
lamine (0.210 mL, 1.5 mmol) was added, and the resulting solution was stirred at room
temperature for another 2 h. Solvent was then removed at reduced pressure, and water
(50 mL) was then added to yield a solid, which was further purified by chromatography
(column 10 × 2.1 cm; eluent, THF-CH2Cl2: 1:2). Dendrimer 3 obtained a 47.2% yield
(0.474 g). 1H-NMR (300 MHz, CDCl3, 25 ◦C, TMS): δ = 7.99 (s, 4H, 4 × Ar-H), 7.77 (br.
s, 8H, 8 × NH), 7.47–7.45 (m, 12H, 12 × Ar-H), 3.74–3.40 (m, 48H, 24 × CH2), 1.28 (s,
72H, 24 × CH3) ppm; 13C-NMR (75 MHz, CDCl3, 25 ◦C, TMS): δ = 177.43, 169.91, 165.25,
139.23, 136.62, 127.50, 114.26, 112.60, 47.94, 43.66, 42.40, 39.90, 27.66 ppm; FT-IR: 3444 and
3320 cm−1 (s. N-H), 3080 cm−1 (w. Ar-H), 2968, 2933, 2909 and 2871 cm−1 (m. C-H), 1666,
1636 and 1611 cm−1 (s. C=O), 1600 cm−1 (s. C=N); MS: m/z: calcd for C106H144N24O14 (M)+:
2005.5; found: 2006.4; elemental analysis: calcd (%) for (C106H144N26O14 + 6H2O) C 60.21,
H 7.44, N 17.22; found: C 60.21, H 7.52, N 17.23; m.p.: 369.8–371.5 ◦C.

3. Results and Discussion

Dendrons 4 and 5 were prepared according to the literature [32]. Two equivalents of 4
reacted with 4,4′-bipiperidine in the presence of potassium carbonate in THF to lead the
formation of dendrimer 2 in 70% yield. Treatment of two equivalents of 5 with terephaloyl
chloride in the presence of triethylamine in dried THF produced dendrimer 3 in 47% yield
(Scheme 1). Dendrimers 2 and 3 were characterized by 1H- and 13C-NMR spectroscopies,
elemental analysis, and mass spectrometry.

Scheme 1. Preparation of dendrimers 2 and 3.
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The mass spectrum of 3 in Figure 2, obtained by MALDI-TOF as an example, clearly
shows three peaks of m/z at 2006.4, 2028.3, and 2044.3 from [M]+, [M+Na−H]+, and
[M+K−H]+ ions, respectively. Dendrimers 2 and 3 are stable up to 300 ◦C, as evidenced by
TGA analysis (Figure 3), and the temperatures showing 5% decomposition of dendrimers 2
and 3 are about 370 and 430 ◦C, respectively. The slight weight loss below 120 ◦C probably
comes from the vaporization of water because amide groups at their periphery adsorb
moisture easily, as further confirmed by elemental analysis. The error percentages of C, H,
and N between experimental and theoretical values of 2·6H2O or 3·6H2O are all within
0.2%. Interestingly, the residue of TGA from dendrimer 3 was at about 15 wt% at 800 ◦C,
but the residue from dendrimer 2 dropped to zero at about 770 ◦C. The central core of
2, bipiperidine, is probably more flexible and therefore more accessible to be burned off
completely.

Figure 2. The mass spectrum of dendrimer 3.

Figure 3. Thermogravimetric analysis of dendrimers 2 and 3 from 30 to 850 ◦C at a heating rate of
10 ◦C min−1 under an N2 atmosphere.

Dendrimers 2 and 3 were degassed at 110 ◦C under a vacuum for 3 h, and their CO2
gas adsorption behaviors were then studied (Figure 4). The Brunauer-Emmett-Teller (BET)
surface area of 2 on the basis of its CO2 adsorption at 195 K was calculated to be 191.8 m2/g
using the method in the literature [33–35]. In the same manner, the BET surface area of 3
was estimated to be 212.3 m2/g. The BET surface areas of dendrimers 2 and 3 were 41 and
56% higher, respectively, than that of 1 (136.0 m2/g) [32].
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Figure 4. (a) The CO2 sorption isotherms of dendrimer 2 at 195, 273, and 298 K. (b) The CO2 sorption
isotherms of dendrimer 3 at 195, 273, and 298 K.

The conformations of dendrimers 2 and 3 were studied to further elucidate the effect
of central cores on void spaces of dendritic molecules. As demonstrated in the optimization
of dendrimer 1 by CaChe using the MM2 model [32], the conformation of 2 was obtained
by bonding two pre-optimized dendrons, 4 and 4,4′-bipiperidine, followed by optimiza-
tion. Since 4,4′-bipiperidine can be in two possible H,H′-cis and H,H′-trans isomeric forms
(Figure 5), two corresponding conformations of dendrimer 2 were optimized. The heat of
formation for 2 with the H,H′-cis isomer is −22.11 Kcal/mol and that for the H,H′-trans
isomer is −26.71 Kcal/mol. Analogously, terephaloyl piperazine can be in two possible
isomeric forms, i.e., O,O′-cis and O,O′-trans conformations (Figure 5), so two isomers of den-
drimer 3 were optimized. The heat of formation for the O,O′-cis isomer of 3 is 1.45 kcal/mol,
and that for the O,O′-trans isomer is −2.10 kcal/mol (Figure 6). Since the trans isomer
of both dendrimers is more stable than the corresponding cis isomer, dendrimers 2 and
3 exist predominantly as the trans forms in their bulk solids. Although simulations in
CaChe were carried out in the gas phase and the conformations of dendrimers in bulk
solids may differ from the optimized conformations, the results can be used to qualitatively
correlate the relative BET values of dendrimers 2 and 3. As mentioned in the literature [32],
several strong H-bond interactions for constructing the porous pores of dendrimer 1 arise
between the C=O and NH moieties of the 1-3-5-TAB moiety. Therefore, the space around
the 1-3-5-TAB unit may not be available for gas access in dendrimers 2 and 3, and the
distances between two oxygen atoms of two C=O groups, to some extent, explain the void
space in one dimension of both dendrimers in the solid state. Two O . . . O distances in
the H,H′-trans conformation of 2 are about 17.9 and 15.8 Å, respectively, and those of the
O,O′-trans conformation of 3 are about 21.9 and 21.2 Å, respectively (Figure 6). The O . . . O
distances in the O,O′-trans conformation of 1 are about 12.2 and 13.0 Å (Figure S1) [32].
Based on the optimized conformations, the void space in the bulk solid of dendrimers 1–3
is in the order of 3 > 2 > 1, consistent with the BET measurements.
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Figure 5. The cis and trans of 4,4′-bipiperidine and terephaloyl piperazine.

Figure 6. The molecular conformations of dendrimers 2 and 3 in a space-filled model, O: red, C: gray, N:
purple, H: white; (a) the H,H′-cis of 2; (b) the H,H′-trans of 2; (c) the O,O′-cis of 3; (d) the O,O′-trans of 3.

To study the VOC adsorbing behaviors of dendrimers, dendrimer 1 as a model com-
pound was recrystallized from hexane-THF (19:1), vacuumed at 110 ◦C for 3 h, then
1H-NMR spectroscopy confirmed the complete removal of solvents. To adsorb the vapor of
VOC, the vacuumed 1 (≈6.5 mg) was then maintained at room temperature (≈28 ◦C) in
a closed bottle (10 mL) containing a small amount of VOC (≈1 mL) in an isolated bottle
(2 mL). After 18 h, the resulting dendrimer was dried in a fume hood for 10 min and then
dissolved in CDCl3 or DMSO-D6 for 1H-NMR spectroscopy measurement. A specific chem-
ical shift (δ) of the dendrimer, away from and therefore excluding the signal interferences
from H2O and impurities, was used as an internal standard to quantify the amount of
adsorbed VOC. For example, the intensity of the chemical shift at ≈8.1 ppm from the H
(at C4) between two amide substituents of dendrimer 1 (Figure 1) was used to compare
with the intensity of o-H (≈8.2 ppm) of nitrobenzene, and the quantification of adsorbed
nitrobenzene could then be obtained. As these two chemical shifts from dendrimer 1 and
nitrobenzene, respectively, are away from those of H2O and other impure hydrocarbons,
the interferences from H2O and impurities can be excluded. Accordingly, other adsorbed
VOCs by dendrimers 1–3 could be thus quantified. As shown in Table 1, one molecule of
dendrimer 1 can adsorb 4, 11, 3 and 0.6 equivalents of nitrobenzene, pyridine, toluene, and
hexane, respectively (Figure S2). In a similar manner, one molecule of dendrimer 2 was
found to adsorb 3, 7, 2, and 0.3 equivalents of the corresponding VOCs. Based on the BET
study and simulation, the void space of dendrimer 2 in the bulk solid is larger than that of
dendrimer 1. However, the adsorption capacities of 2 for nitrobenzene, pyridine, toluene,
and hexane are slightly lower than those of 1. It has been reported that adsorption capaci-
ties of porous materials could depend on their void spaces and the functional groups on the
surface of the porous substrate [36,37]. To achieve higher adsorption capacity, dendrimer 3
with terephaloyl piperazine in the central core was prepared. One molecule of 3 was found
to adsorb 4, 24, 5, and 0.8 equivalents of nitrobenzene, pyridine, toluene, and hexane, re-
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spectively (Figure S2). The amide functionality of terephaloyl piperazine not only enlarges
the void space of bulk dendrimers but also enhances the interaction between VOCs and
the porous substrate. The adsorption capacity of 3 in pyridine is equivalent to 946.2 mg/g,
a more than 2-fold increase from the reported value in the literature (400.8 mg/g) [20].
Although dendrimer 3 has a significantly smaller surface area than MOFs [36–40], its void
space may increase in the process of adsorbing VOCs because its void pore is formed by
flexible H-bonding interactions between dendritic peripheral groups, as evidenced by the
liquid formation and pyridine adsorption onto bulk solid 3. The adsorption capacities of 3
in nitrobenzene and toluene were also calculated to be 273.4 and 229.6 mg/g, respectively,
based on 1H-NMR spectroscopy, which are less than the reported values of nitrobenzene
(344 mg/g)13 and toluene (1096 mg/g)38. It is worthwhile to note that no significant de-
compositions of dendrimers 1-3 after adsorbing VOCs were observed, as demonstrated
by the related 1H-NMR spectra (Figure S2). Therefore, VOC-containing dendrimers are
expected to be recovered for further VOC adsorption

Table 1. The VOC adsorption of dendrimers 1–3.

Nitrobenzene Pyridine Toluene HexaneHost
Guest

1 in DMSO-D6 4 11 3 0.6
2 in DMSO-D6 3 7 2 0.3

3 in CDCl3 4 24 5 0.8

To further understand why dendrimers 2 and 3 have different adsorbing ability in
pyridine, the isosteric heats of CO2 sorption (Qst) were calculated by the virial method
(Scheme S1) [41–44]. Based on the CO2 adsorptions at 273 K and 298 K (Figure 4), the Qst of
3 was measured to be 35.8 kJ/mol at zero coverage, and the Qst of 2 was only 25.9 kJ/mol
at zero coverage (Figure 7). Both Qst values decreased when more CO2 gas was adsorbed
by dendrimers 2 and 3. At about 0.7 mmole uptake, the Qst of 3 is similar to that of 2,
about 24.0 kJ/mol for both dendrimers, which agrees with our previous result that the
void spaces from i in their bulky stackings are more easily accessed by CO2 gas than those
from ii [32]. In i void spaces, compared to 2, dendrimer 3 possesses two additional amide
groups in the dendritic core to enhance the interaction with CO2 molecules in the presence
of triazine moieties. Therefore, the Qst of 3 is higher than that of 2 below 0.6 mmole uptake.
When most void spaces from i are filled up, a small amount of CO2 molecules may go into
the void spaces from ii, and at this stage, the Qsts of 3 and 2 are similar.

Figure 7. The isosteric heat (Qst) of CO2 sorption of dendrimers 2 and 3.

According to our previous study [32], the Qst of 1 was 27.8 kJ/mol at zero coverage,
which is slightly larger than that of 2 but much smaller than that of 3. This trend is
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in agreement with the adsorption capacity of dendrimers 1–3. Two additional amide
groups in the central core of dendrimer 3 also strengthen the interaction of pyridine in
the presence of the triazine moiety, greatly increasing the adsorption capacity of pyridine.
However, the adsorption capacities of dendrimer 3 in nitrobenzene, toluene, and hexane
are much less. The crystallographic analysis of 3 may provide useful information for
the difference. However, an attempt to grow crystals from 3 for a single crystal structure
determination was not successful, and only powders from 3 were obtained. The N2 sorption
isotherms of dendrimers 2 and 3 at 77 K show that there is almost no N2 adsorption for 2
(Figure S3). Therefore, the pore size distribution is estimated by the adsorption of nitrogen
by dendrimer 3. There are two major pore sizes for 3: the first is ≈5.8 Å and the second
is ≈7.5 Å (Figure S4). The peak intensity of the first is greater than that of the second. In
addition, its distribution is quite broad, indicating the porous framework is quite flexible
and may change under VOC absorption, as previously mentioned. The molecular sizes
of nitrobenzene and toluene are slightly larger than that of pyridine, so the adsorption
capacities of nitrobenzene and toluene are less than that of pyridine. Hexane does not
provide any strong interaction functionality with the amide and triazine moiety of the
porous substrate, and thus its adsorption capacity can be almost negligible.

4. Conclusions

In summary, we have successfully prepared two new triazine-based dendrimers. The
one with a longer core length possesses the amide functionality in the central core. It
therefore has greater void space, more N-containing substrates, and better adsorption
capacity of pyridine in the bulk solid. In particular, the adsorption capacity of pyridine is
equivalent to 946.2 mg/g, which is much better than the reported values in the literature.
The characteristics of easy preparation, purification, and reprocessing in dendrimer 3 make
it a potential candidate for applications in sensing or sequestrating pyridine from VOCs.
The void pores of bulk dendrimers are constructed by flexible intermolecular H-bond or π–
π interactions and therefore able to be potentially enlarged in the course of adsorbing VOCs,
as demonstrated in the present case. In addition to zeolites, activated carbons, polymeric
resins, and metal-organic frameworks, porous dendrimers are promising for further studies
in the adsorption of VOCs. Because dendrimers are generally soluble in organic solvents,
their adsorption of VOCs can be easily quantified by 1H-NMR spectroscopy. It was also
discovered that the isosteric heats (Qst) of the dendrimer based on the CO2 sorption may
provide criteria for exploiting potential materials for VOC adsorption because the Qst
of porous materials is proportional to the adsorption capacity of VOCs in our triazine-
based system.

Supplementary Materials: The following are available online, Figure S1: The molecular conforma-
tions of dendrimer 1 in space-filled model, Figure S2: The 1H-NMR spectra of dendrimers 1–3 after
adsorbing VOCs, Figure S3: The N2 sorption isotherms of dendrimers 2 and 3 at 77K, Figure S4: The
pore size distribution of dendrimer 3 under nitrogen, Figure S5: The 1H-NMR and 13C-NMR spectra
of dendrimers 2 and 3, Scheme S1: Estimation of isosteric heats of gas adsorption.
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