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Abstract

Phylogeny estimation is difficult for closely related populations and species, especially if they have been exchanging genes.
We present a hierarchical Bayesian, Markov-chain Monte Carlo method with a state space that includes all possible
phylogenies in a full Isolation-with-Migration model framework. The method is based on a new type of genealogy
augmentation called a “hidden genealogy” that enables efficient updating of the phylogeny. This is the first
likelihood-based method to fully incorporate directional gene flow and genetic drift for estimation of a species or
population phylogeny. Application to human hunter-gatherer populations from Africa revealed a clear phylogenetic
history, with strong support for gene exchange with an unsampled ghost population, and relatively ancient divergence
between a ghost population and modern human populations, consistent with human/archaic divergence. In contrast, a
study of five chimpanzee populations reveals a clear phylogeny with several pairs of populations having exchanged DNA,
but does not support a history with an unsampled ghost population.
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Introduction
Phylogeny estimation is difficult for closely related species or
populations, not simply because branching events were re-
cent, but also because of population genetic factors of incom-
plete lineage sorting (ILS) and gene flow between populations.
ILS is the byproduct of normal genetic drift that causes gene
trees to coalesce in ways that appear inconsistent with the
phylogeny; and it is a major complication when speciation
events have occurred close together in time, or very recently
(Neigel and Avise 1986; Pamilo and Nei 1988; Takahata 1989).
The challenges of phylogenetic inference in the face of ILS can
be addressed by using a multispecies coalescent framework
(Liu and Pearl 2007; Kubatko et al. 2009; Liu et al. 2009; Heled
and Drummond 2010; Bryant et al. 2012; Yang 2015; Rannala
and Yang 2017). And recently there have appeared methods
for phylogenetic inference under a multispecies coalescent
that include rare migration (Jones 2018) or discrete admix-
ture, or hybridization events between populations (Zhang
et al. 2017; Wen and Nakhleh 2018). However, there do not
exist model-based methods for estimating species phyloge-
nies that include continuous gene flow, and the lack of such
methods has long been recognized as a significant limitation

(Degnan and Rosenberg 2009; Liu et al. 2009; Leach�e et al.
2014; Xu and Yang 2016).

Gene flow can have a very large impact on speciation and
divergence (Pinho and Hey 2010), and it can complicate phy-
logeny estimation in multiple ways. 1) Gene flow removes
information about divergence and even a small amount of
regular gene flow over many generations can make two
populations appear closely related (Wright 1931).
2) Unidirectional gene flow can create asymmetries in patterns
of variation such that a population that contributes genes to
another may appear to be derived from the receiving popula-
tion (DeSalle and Giddings 1986). 3) Even if gene flow has not
occurred among sampled populations, phylogeny estimation
for sampled populations may be disrupted if exchange has
occurred with unsampled populations; for example if two phy-
logenetically distantly related sampled populations have each
received genes from the same unsampled population, then
they may appear to be phylogenetically closely related.

Notwithstanding these challenges, it is possible to model
the movement of genes between populations in a probabil-
istic framework. By altering the sample configuration across
populations in the genealogical history, gene flow alters the
coalescent rates and thus changes the depth and structure of
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gene genealogies (Takahata 1988). Because we can calculate
the probabilities of coalescent genealogies that fall within a
phylogeny, with associated demographic parameters (Hey
2010b), it is possible to take a model-based and likelihood-
based approach to demographic inference using coalescent
theory that includes gene flow. Here we describe a new phy-
logenetic method that uses a formal parameterization of
divergence in the presence of gene flow known as an
Isolation-with-Migration (IM) model (Wakeley and Hey
1998). Such models have been implemented in numerous
methods for studying divergence (Hey and Nielsen 2004;
Becquet and Przeworski 2007; Gutenkunst et al. 2009; Lopes
et al. 2009; Hey 2010b; Mailund et al. 2012; Dalquen et al. 2016;
Chung and Hey 2017).

Results

Methods Overview
To connect sequence data to population genetic models, it
has become common to approximate an integration over
gene trees or genealogies using a Markov chain Monte-
Carlo (MCMC) simulation (Kuhner et al. 1995; Wilson and
Balding 1998; Beerli and Felsenstein 1999; Kuhner 2009). This
approach has been adapted to include gene flow between
populations in an IM model (Nielsen and Wakeley 2001), and
such methods have now been extended to allow the analysis
of multiple populations, albeit only for the case of a fixed
phylogenetic topology (Hey 2010b; Dalquen et al. 2016;
Chung and Hey 2017). Here we present the first method
for phylogeny estimation that includes directional gene
flow in a fully model-based Bayesian framework.
Throughout this paper we use “phylogeny” to refer to the
species tree (or the population tree in the case of multiple
populations of a species) that is the tree representing histor-
ical relationships among species or populations, and we use
“genealogy” to refer to a coalescent tree for sampled gene
copies at a locus.

We developed a new augmentation of the genealogy
(fig. 1) in which each locus is represented by a hidden gene-
alogy, GH, that consists of a bifurcating genealogy with zero or
more migration events in an island model in which the sam-
pled populations exist for infinite time (Wright 1951). A hid-
den genealogy is not associated with any phylogeny, but
when it is overlaid by a branching phylogeny, some migration
events are masked and are not relevant, given that topology,
because they occur between populations that are in a single
ancestral population in that topology. We call such migration
events, that are obscured by ancestral populations in a phy-
logeny, hidden migrations. A given augmented genealogy,
such as that shown in the upper left of figure 1, can be over-
laid by any phylogeny to reveal a conventional genealogy.
Hidden migrations do not represent a real evolutionary pro-
cess and do not enter into likelihood calculations. What they
provide is access to a much simpler Metropolis-Hastings up-
date of the population phylogeny than would otherwise be
possible. A change to the phylogeny does not require an
update to the hidden genealogy, and as a result, it is possible

to have reasonable update acceptance rates and MCMC mix-
ing even with relatively large numbers of loci.

We developed a program (IMa3) that implements an
MCMC simulation for an IM model with multiple popula-
tions, with uniform prior on population topology, and with
user specified priors on effective population sizes, migration
rates and population splitting times. In this model the phy-
logenetic topology is rooted, and the sequence of internal
nodes is ordered in time such that, for example, a tree in
which populations 1 and 2 join more recently than do 3 and
4, is distinct from one in which populations 3 and 4 join
more recently than the junction of 1 and 2. (Edwards 1970)
identified such trees as “labelled histories.” The method uses
the new hidden genealogy approach to update phyloge-
netic trees, in conjunction with analytic integration over
demographic parameters (Hey and Nielsen 2007). Because
the number of demographic parameters becomes quite
large, and to facilitate mixing of the Markov chain simula-
tion, we implemented hierarchical prior distributions in
which the user specifies the hyperprior densities for the
parameters of population size and migration rate prior
distributions.

Because the ancestral populations in the model change as
phylogenetic topology changes over the course of an IMa3
run, it is expected that most analyses of phylogeny and de-
mography will be done, as we did for the empirical data sets
reported here, as two separate steps. First, a run is conducted
to estimate the marginal posterior probability distribution of
topologies, from which we obtain the phylogeny with the
greatest probability that we use as our estimate, Û; followed
by a second run to estimate demography that is done with
the phylogenetic topology fixed at Û.

Simulation Results
To assess performance of the method as population splitting
times converge, we simulated 50 single locus data sets for
each of a series of splitting time values, in a 3-population
model with gene-flow. Figure 2a shows the mean posterior
probabilities for each splitting time. In each case the true
topology is (2,(0, 1)) and the splitting time between 2 and
the ancestor of 0 and 1, t2;ð0; 1Þ, was set to 1.0, whereas the
splitting time between populations 0 and 1, t0;1, varied be-
tween 0 and 1 (see Materials and Methods for details on
parameter units). As expected the mean posterior probabil-
ities suggest strong support for the true tree when t0; 1 ¼ 0:0
and they suggest even support for all three trees when
t0; 1 ¼ t2;ð0; 1Þ ¼ 1:0. Figure 2a (right axis) also shows a similar
result for the proportion of the maximum a posteriori (MAP)
trees that match the true tree.

To assess the effect of migration that tends to obscure the
true phylogeny, we simulated 50 single locus data sets with
gene exchange between two populations that are not sisters.
In figure 2b, we see that as the population migration rate,
2Nm, goes from 0 to 10 between populations 1 and 2 (the
true tree is (2,(0, 1))), support for the true tree drops and
support for (0,(1, 2)) rises. As the true population migration
rate exceeds the upper bound on the prior on migration, 1.0,
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support for the incorrect tree exceeds the support for the true
tree.

To assess the effect of increasing the number of loci, of
widening the migration prior, and of using hyperpriors, we
simulated multiple data sets, each of 50 loci, for a 4-popula-
tion model. With four populations, there are 18 distinct or-
dered topologies, so results are shown for the true tree, the
two trees most similar to the true tree, and all other trees. The
results for a narrow prior on migration rates are shown in
figure 3A. When a wider uniform prior on migration rate is
used (fig. 3B), the posterior probabilities for topologies are

considerably flatter than when a narrow prior is used, as
expected for these data sets which were simulated without
any migration. Figure 3B also shows a benefit, in terms of
increased posterior probability of the true tree, when using
hyperprior distributions for population size parameters and
migration rate parameters.

We also assessed IMa3 performance on a challenging phy-
logenetic problem with seven populations and substantial
gene flow under an IM model, and we compared perfor-
mance to that found using other methods on the same
data. With seven populations, IMa3 estimates an ordered

FIG. 1. Phylogenies and Hidden Genealogies. The upper left panel shows a hidden genealogy in an island model of 3 populations adjacent to a
phylogeny in which species 1 and 2 are most closely related. The operation of overlaying the phylogeny on the hidden genealogy generates the
genealogy shown within a phylogeny on the right side of the upper panel. This operation leave some migration events irrelevant (hidden) because
they occur between two populations that are not present in the phylogeny at the time of the migration event. In the middle row the same kind of
operation is shown, using the same hidden genealogy as in the top row, but with a different phylogeny that causes a different genealogy (note that
the order in which the populations are listed changes in this phylogeny). A third example with the same hidden genealogy is shown in the lower
panel.
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topology by effectively integrating over all branch lengths, 13
population size parameters, and 72 migration rates
(Hey 2010b). Twenty data sets, each of 50 loci, were generated
with the ms program (Hudson 2002), with each data set
having a randomly sampled topology, as well as having
each population size and migration rate parameter sampled
randomly from a uniform prior. Phylogeny estimates were
also obtained on these same data using Neighbor-Joining
(Saitou and Nei 1987) on distance matrices made using Fst

values and net dxy values (Nei 1987), and using the TreeMix
program (Pickrell and Pritchard 2012). Because TreeMix is a
model-based phylogeny estimation program that can handle
large amounts of data, we also simulated data sets with 10,000

loci under the same IM models used for the 50-locus data sets
and ran TreeMix on these. In contrast to IMa3, these other
methods generate unrooted phylogeny estimates. We also
compared IMa3 to other MCMC genealogy samplers, BPP
(Yang 2015) and StarBEAST2 (Ogilvie et al. 2017), that imple-
ment the multi-species coalescent, but without gene flow.
Like IMa3, these methods generate estimates of rooted
topologies.

Table 1 shows results for the 7-population simulations in
terms of the numbers of internal edges in estimated trees that
are found in the true phylogeny. For the methods that return
a rooted tree, the correct tree will match five internal edges
when there are seven external nodes (populations).
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FIG. 2. Phylogeny estimation while varying splitting time and migration. (A) A 3 population model was examined as t0;1 varies from 0 to 1, where
t2;ð0;1Þ ¼ 1 and (2,(0,1)) is the true phylogeny. Means and standard errors of estimated posterior probabilities for each phylogeny for 50 data sets
simulated under each t0;1 value are shown on the left axis. The proportion of maximum a posteriori (MAP) trees (out of 50) that matched the tree is
shown on the right axis. (B) A 3 population model with migration that tends to obscure the true phylogenic topology, (2,(0, 1)). Mean and standard
error of estimated posterior probabilities (left axis) for each phylogeny for 50 data sets simulated under each of a range of 2Nm1>2 values. The
proportion of MAP trees matching the true tree is on the right axis.
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FIG. 3. Phylogeny estimation with four populations and zero migration, while varying migration priors, numbers of loci, and use of hyperprior
distributions. Means and standard errors are shown for posterior probabilities (left axis) of phylogenies for 50 data sets simulated for each number
of loci under a fixed phylogenetic topology, ((0, 1)4,(2, 3)5)6 where the ancestor populations (4, 5, and 6) are ordered in time (i.e., populations 0 and
1 split most recently, followed by 2 and 3). In each panel the mean posterior probability is shown for the estimated posteriors for the true tree, the
mean of the two most similar trees ((2,(3,(0, 1)4)5)6 and (3,(2,(0, 1)4)5)6), and the mean of all other trees. The proportion of MAP trees matching
the true tree is on the right axis. (A) Migration rate priors have a U½0; 0:1� distribution. (B) Migration rate priors have a U½0; 1� distribution.
Also shown for the true tree are results using a hyperprior distribution for drift hyperparameters of U[0, 20] and for migration hyperparameters
U[0.0, 1.0].
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IMa3 returned the true tree in 19 out of 20 data sets. The
other MCMC methods, that do not include migration in their
models, did not perform nearly as well. The true model for
these simulations had large amounts of gene flow, which
would account for the relatively poor performance of the
methods that assume no migration. In other studies, analyses
of simulated data have shown relatively good performance of
such methods when gene flow is modest (Leach�e et al. 2014).
Among the methods that do not provide a rooted tree esti-
mate, performance was not very good on these high gene-
flow problems, with one important exception. When TreeMix
was run on data sets with 10,000 loci simulated under the
same IM models as used for the 50 locus data sets, it per-
formed well and returned the correct unrooted tree the large
majority of the time.

Human Hunter Gatherer Analyses
We studied the phylogenetic and demographic history of
three African hunter gatherer populations, including Baka
Pygmies from Cameroon, and Hadza and Sandawe, both
click-language speakers, from Tanzania (Lachance et al.
2012). We also included a sample of Yorubans from Nigeria
as representative Bantu-speaking nonhunter gatherers. As
these represent only a small fraction of human populations
in Africa, and given the probability that these populations
have exchanged genes with others that are not in the analysis
(Wall 2000; Plagnol and Wall 2006; Hammer et al. 2011; Henn
et al. 2011), we were particularly interested in the comparison
between analyses with and without an unsampled ghost pop-
ulation that was set to be a sister population to the clade of
sampled populations (i.e., an outgroup population). The abil-
ity to include an unsampled population is a major advantage
of some coalescent-based methods (Beerli 2004). Gene flow
between sampled and unsampled populations can have a
large effect on the pattern of variation within sampled pop-
ulations and can in turn disrupt estimates of phylogenetic
and demographic history if that gene flow is not accounted
for.

Both analyses supported a common phylogeny in which
the Tanzanian populations are most closely related, (Baka,
[Yoruba,{Hadza, Sandawe}]), which is the tree supported in
the original analyses (Lachance et al. 2012). However, support
for this topology was stronger in the analysis with a ghost
population, with the estimated posterior probability for the
most strongly supported tree at 0.42 for the no-ghost model,

and 0.86 for the ghost model (see supplementary tables 1 and
2, Supplementary Material online). To assess whether the
model with the ghost performs better, in IMa3 runs condi-
tioned on the estimated phylogeny, we implemented a ther-
modynamic integration approach (Lartillot and Philippe
2006) to estimate the marginal likelihood and ran this under
both the model with the ghost and without. The logs of the
marginal likelihoods suggest a Bayes factor that strongly
favors the ghost model (estimated marginal likelihood for
the ghost model: �4,885; nonghost model: �4,905).

Figure 4 shows the estimated histories, for IMa3 runs using
the estimated phylogeny, with splitting times for the sampled
populations ranging from about 20 to 60 KYA. Effective pop-
ulation sizes for sampled populations and their ancestors
ranged from 29,000 for the Yoruba to 3,000 for the Hadza
(supplementary table 5, Supplementary Material online),
which were known to harbor low levels of variation (Henn
et al. 2011). None of the migration rate parameters shared by
sampled populations were found to differ significantly from
zero, however, there were several strong and significant sig-
nals of gene flow from the ghost population.

For the sampled populations, the ghost can best be con-
sidered as reflecting the existence of multiple unsampled
African populations, that have themselves experienced gene
exchange. The large effective population size of the ghost
(33,000 fig. 4 and supplementary table 6, Supplementary
Material online) is consistent with the ghost actually repre-
senting a large structured population. However for the an-
cient parts of this model, much older than the common
ancestry of the sampled populations, the common ancestry
time of the ghost and the ancestor of the sampled popula-
tions (850 KYA) suggests the presence of a sister population
to the ancestor of modern humans that exchanged genes for
some period of time. A plausible candidate for that sister
population would be that which ultimately gave rise to
Neanderthals. Our estimated time and broad confidence in-
terval is not inconsistent with other population genetic-based
estimates of human/Neanderthal divergence, which range
from 550 to 800 KYA (Beerli and Edwards 2003; Prufer et al.
2014; Mendez et al. 2016).

Chimpanzee Analyses
The subspecies of the common chimpanzee (Pan troglodytes)
share much of their genetic variation, with most estimates of
divergence times falling within the past half million years

Table 1. Counts of the Number of Simulated Seven-Population Data Sets that Matched Estimated Phylogenies (20 total).a

Number of Correct Internal Edges

Method 5 4 3 2 1 0
Methods that provide a rooted tree IMa3 19 1 0 0 0 0

BPP 4 3 8 3 0 2
*Beast2 2 8 7 3 0 0

Methods that provide an unrooted tree NJ-Fst — 6 8 5 0 0
NJ-netDxy — 6 9 4 0 1
Treemix — 5 8 7 0 0
Treemix (10,000 loci) — 18 2 0 0 0

aCounts are ordered by method, and by number of correct internal edges. Unrooted trees cannot share >4 internal edges with the true rooted tree.
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(Caswell et al. 2008; Hey 2010a; Prado-Martinez et al. 2013; de
Manuel et al. 2016). Several studies have reported evidence of
gene flow among subspecies based upon population genetic
analyses (Won and Hey 2005; Becquet et al. 2007;

Prado-Martinez et al. 2013; de Manuel et al. 2016). The bo-
nobo (Pan paniscus) is thought to have diverged from the
ancestor of the common chimpanzee over 1 Ma, and they
show some evidence of gene flow in the past with the
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FIG. 4. Estimated histories for human populations. Boxes represent populations, with widths proportional to estimated effective population sizes
(ancestral Ne is given for scale). Confidence intervals are indicated as dashed-line boxes aligned with the corresponding population’s box on the left
side. Estimated population migration (2Nem)rates that are associated with a migration rate significantly >0 based on a marginal likelihood ratio
test (Nielsen and Wakeley 2001) are shown together with their estimated 2Nem values (*p < 0:05; **p < 0:01; ***p < 0:001) Migration rates
not significantly different from zero at p < 0:01 are not shown (a) Without a ghost population. Estimated splitting times are shown to scale with
95% confidence intervals. No migration rates were significantly different from zero. (b) With a ghost population. Splitting times are shown evenly
distributed because of the great depth of the first split. The 95% confidence intervals for three recent splits are similar to part figure “a”. Confidence
interval for the oldest split was 554–1,663 KYA.
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common chimpanzee (de Manuel et al. 2016). We used whole
genome assemblies for 3–5 individuals per species/subspecies
from the Great Ape Genome Project (Prado-Martinez et al.
2013).

For a five population IM model, the phylogenetic compo-
nent has four population splitting times and 180 distinct
ordered topologies, whereas the demographic component
has 9 population size parameters and 32 migration rate
parameters. We also ran the data under a 6 population
model, with one unsampled “ghost” population (Beerli
2004) included as an outgroup to the sampled populations.
The estimated histories are shown in figure 5 with the topol-
ogy having the highest estimated posterior probability
(0.956). The second most probable tree had the same overall
topology but with the order of the first two splitting events
reversed in time (see supplementary table 1, Supplementary
Material online). This is the same tree estimated with various
distance metrics for a microsatellite data set (Gonder et al.
2011) and later with full genome data (Prado-Martinez et al.
2013). Overall, the splitting time and effective population size
estimates are quite consistent with previous estimates (Hey
2010a), with the largest exception being the recent divergence
time of the eastern and central subspecies (Pan t. schweinfur-
thii and Pan t. troglodytes 13,000 years, with 95% CI range:
4,200–51,600 years). Previous estimates for this pair of sub-
species, using an IM framework, ranged from 32,000 to 46,000
(Hey 2010a).

Figure 5 also shows the 2Nm values and the directions of
migration parameters that are statistically significantly differ-
ent from zero (at the p < 0:01 level) using a likelihood
ratio test (Nielsen and Wakeley 2001). Five of the 32 migration
parameters were significant based on this test. Three of these
involve Pan t. ellioti and its geographical neighbors, Pan t.
verus to the west and the ancestor of Pan t. troglodytes and
Pan t. schweinfurthii to the east. The signal of low migration
between the common ancestors of the common chimpanzee
and Pan paniscus is also consistent with suggestions of gene
flow early in the divergence of the two chimpanzee subspe-
cies, however, we do not see evidence of more recent ex-
change between the species that has also been suggested
(de Manuel et al. 2016). Figure 5 also shows low significant
gene flow from Pan t. ellioti into Pan t. schweinfurthii, which
has been previously reported based on an analyses of whole
genome data using the TreeMix program on the same
genomes used here (Prado-Martinez et al. 2013). If the ranges
of common chimpanzee subspecies are relatively stable, as
might be the case if they are primarily proscribed by large
rivers (Goldberg 1998; Mitchell et al. 2015), then this signal of
migration has probably been caused by some departure of
the data from the models being used.

When the data were analyzed with a ghost population as
an outgroup to the five sampled populations, IMa3 returned
the same phylogeny as it did when run without a ghost.
However, the posterior probability distribution of topologies
was much flatter, with the expected tree having Pan t.
schweiinfurthii and Pan t. troglodytes as most closely related,
followed in time by the pair of Pan t. ellioti and Pan t. verus
(posterior probability 0.303) followed very closely by a tree

with the order of these pairings reversed (supplementary ta-
ble 2, Supplementary Material online). Results for the ghost
model for splitting times, migration rates and effective pop-
ulation size estimates were all quite similar to the nonghost
model, suggesting that there has not been a large impact on
chimpanzee phylogenetic and demographic history from
other unsampled populations. Where the ghost and non-
ghost histories differ the most is in the size of the chimpanzee
common ancestor and the presence in the nonghost model
of significant gene flow into the Bonobo. Although these
differences are suggestive of the presence of one or more
nonsampled populations early in the divergence of the Pan
genus, we did not find that the ghost population model fit the
data substantially better than the model without a ghost
population. Overall support for the nonghost model was
higher than for the ghost model (marginal likelihood without
a ghost: �5291.8, with a ghost: �5307.9), notwithstanding
the fact that the nonghost model has 21 fewer parameters
than the ghost model (245 vs. 266).

Discussion
Evolutionary biologists have long recognized that one cannot
well address the phylogenetic history of closely related species
without simultaneously considering their population genetic
history (Gillespie and Langley 1979; Tajima 1983; Felsenstein
1988; Avise 1994; Maddison 1997; Arbogast et al. 2002;
Maddison and Knowles 2006). The new method presented
here makes possible the simultaneous study of population
genetics and phylogenetics. When run as a phylogeny esti-
mator, the method integrates over all IM models within the
bounds of the user-specified prior, and returns a posterior
probability density over all ordered, rooted topologies. IMa3
overcomes much of the difficulty associated with MCMC-
based genealogy samplers by implementing a new kind of
genealogy augmentation method (the hidden genealogy)
that minimizes the changes being made to genealogies. The
method cannot overcome some challenges that inherently
arise when gene exchange is present. Gene flow will contrib-
ute to populations being more similar and to an overall flat-
tening of the posterior probabilities for both population
genetic and phylogenetic components of the model. Gene
flow can also generate a clear signal of the incorrect phylog-
eny if it exceeds the prior distribution (fig. 2), and it can cause
some aspects of population genetic history to not be identi-
fiable using genealogical models (Than et al. 2006; Sousa et al.
2011). Like many other genealogy samplers, IMa3 is limited by
the assumptions that loci are separated by high recombina-
tion, whereas recombination within loci is absent.

Importantly, IMa3 makes full use of the data, and it fits a
very general and widely used phylogenetic and demographic
model to the data without approximation. For divergence
problems where gene flow is not an issue, investigators
have many tools upon which to draw; but until now this
has not been the case for the many contexts where high levels
of gene flow are known or likely and in which the divergence
history may be refractory to conventional analyses (Nosil
2008; Pinho and Hey 2010; Leach�e et al. 2014).
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Materials and Methods

Target Density
We use an Isolation-with-Migration (IM) model for multiple
populations (Gutenkunst et al. 2009; Hey 2010b), in which
sampled populations have a bifurcating phylogenetic history
that includes a specified topology and periods of duration of
sampled and ancestral populations, that is, branch lengths.

A model with n sampled populations will have n� 1 ances-
tral populations, and every population has an associated ef-
fective population size, Ne, as well as migration rates to and
from every other population with which it coexists over a
period of time, given the phylogeny. The unknowns to be
estimated are partitioned into three sets, including: 1) the
effective population size and migration rate parameters, H;
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FIG. 5. Estimated phylogenetic and demographic history for bonobo and common chimpanzee subspecies. Estimated population migration
(2Nem)rates that are associated with a migration rate significantly >0 based on a likelihood ratio test (Nielsen and Wakeley 2001) are shown
together with their estimated 2Nem values (**p < 0:01; ***p < 0:001). Migration rates not significantly different from zero at p < 0:01 are not
shown. Population topology is shown by the position of ancestral population boxes with respect to pairs of descendant population boxes.
Estimating splitting times are given on the left, with distances not proportional to the values, but evenly distributed for clarity. (A) Without a ghost
population. (B) With a ghost population. (C) The phylogeny from A drawn to scale and showing confidence intervals of splitting times.
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2) the rooted ultrametric population phylogeny, fU; sg,
which includes the topology U and the times of ancestral
population splitting s; and 3) when there are L > 1 loci, a set
of L mutation rate scalars, u (Hey and Nielsen 2004).

The new method builds upon a multi-population version
of a Bayesian method that provides a joint estimate of the
elements of H, along with marginal estimates of the elements
of u and s, all for a fixed U (Hey 2010b). The method works by
running a Markov chain Monte Carlo (MCMC) simulation
that generates samples of genealogies, splitting times, and
mutation rate scalars G; s; ug � pðG; s; ujXÞf , (in the
case when X includes data from multiple loci, G is a set of
genealogies, one from each locus). Then, for a fixed U, H can
be estimated by optimizing

p HjXð Þ ¼
ð ð ð

p HjG; s; uð ÞpðG; s; ujXÞ dG ds du

� 1

k

Xk

i¼1

pðHjGi; si; uiÞ;

for a sample of k values of fGi; si; uig � PðG; s; ujXÞ.
To include U, not as a fixed value but as a variable in the

model, we developed a new MCMC simulator to provide
samples of G; s;U; ug � pðG; s;U; ujXÞf . The challenge
in designing a Metropolis-Hastings update of U is that every
change in the phylogeny (either topology or branch lengths)
also requires updates to the full set of genealogies (Rannala
and Yang 2003; Hey and Nielsen 2004). Each instance of G
includes, for all of the loci, an ultrametric branching graph
that specifies the population states of all edges at all times,
including the time and direction of migration events. Because
U and s specify which populations exist at which times, they
necessarily also constrain G in terms of the kinds of migration
events that occur at which times and which genealogy edges
can coalesce at which times. The entanglement of phylogeny
with the genealogies of all the loci leads to increasingly low
acceptance rates of proposed updates to the phylogeny with
larger data sets. To overcome this difficulty we developed a
new kind of genealogy augmentation that minimizes those
changes in G required when proposing a change in U.

As shown in figure 1, the new method uses a hidden ge-
nealogy, GH, that exists in an island model in which the sam-
pled populations persist for infinite time (Wright 1951).
When the hidden genealogy is overlaid by a population phy-
logeny, some migration events remain relevant whereas
others (hidden migrations, mh) do not because they occur
between two populations that are masked by an ancestral
population in the phylogeny. Figure 1 shows how a single
hidden genealogy can be masked by any phylogeny to reveal
a conventional genealogy under the phylogeny.

Given a phylogeny, a hidden genealogy includes both a
conventional genealogy and hidden migrations, that is,
GH ¼ fG;mHg. Because the probability of the data on a ge-
nealogy depends only on genealogy branch lengths and to-
pology, and not on migration events (hidden or otherwise),
p XjG; uð Þ ¼ pðXjGH; uÞ. Then the target density of the
MCMC simulation is

pðGH; s;U; ujXÞ / p XjGH; uð Þp GHjs;Uð Þp s;Uð Þp uð Þ ¼
p XjG; uð Þp Gjs;Uð ÞpðmHjG; s;UÞpðs;UÞpðuÞ;

(1)

where p Gjs;Uð Þ is the usual prior on genealogies found by
integrating over H (Hey and Nielsen 2007), pðmHjG; s;UÞ is
the prior on hidden migrations (see supplementary informa-
tion, Supplementary Material online), pðs;UÞ is a uniform
prior on splitting time intervals (Hey 2010b) and topology,
and pðuÞ is the uniform prior (log scale, geometric mean of 1)
of the mutation rate scalars (Hey and Nielsen 2004).

To ensure that the use of hidden genealogies does
not affect parameter estimates we designed a prior density
for mH that is a proper probability distribution, that is,Ð

p mHjG; s;U; uð Þ dmH ¼ 1 for all fG; s;U; ug (see sup-
plementary information, Supplementary Material online).
By recording fG;s;U;ug from samples of fGH;s;U;ug; we
can estimate the target density, pðG;s;U;ujXÞ, with the stan-
dard likelihood, the conventional coalescent prior and the
uniform priors on s; U and u. A further check can be made
by fixing the topology while using the new sampler with hid-
den genealogies, in which case the target density is the same as
for a multi-population sampler that does not use hidden ge-
nealogies and that uses a fixed topology. We confirmed this by
comparing results of the IMa3 program, run while using hid-
den genealogies to update branch lengths but not topology,
with those of the IMa2 program (Hey 2010b) (results not
shown).

Apart from including U as an unknown, all of the assump-
tions and parameterizations are unchanged from the first
multi-locus method for demographic inference under an
IM model (Hey and Nielsen 2004). Under this framework,
with multiple loci, elements of H and s are scaled by the

geometric mean of the mutation rates, u ¼
 QL

i¼1
ui

!1=L

,

where ui is the mutation rate for locus i per generation
(not per base pair, but for the full length of locus i). Then
individual population size, migration rate, and splitting time
parameters are scaled as, 4Neu; m=u, and tu, respectively (m
is a migration rate per generation per gene copy). The mu-
tation rate scalar for locus i is defined as ui ¼ ui=u, and thus
the geometric mean of all the mutation rate scalars is always 1
throughout the MCMC simulation. Following an analysis,
estimates of parameters on demographic scales (e.g., 4Ne in
individuals and t in generations) can be obtained using an
estimate of the geometric mean of mutation rates for the loci
used in the study. Population migration rate (i.e., 2Nem)
estimates are obtained by optimization of a posterior density
for 2Nem that is obtained by integration over the margins of
the estimated posterior density for H (Hey 2010b).

Hierarchical Priors
One of the challenges of Bayesian estimation of IM models is
assigning prior distributions for a large number of parameters.
To simplify this process and to improve parameter estimation
we adopted a hierarchical framework in which the prior

Phylogeny Estimation with Gene Flow . doi:10.1093/molbev/msy162 MBE

2813

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy162#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy162#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy162#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy162#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy162#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy162#supplementary-data


distributions for the demographic parameters in H are sam-
pled from a hyperprior distribution specified by the user. In
the conventional (nonhierarchical) framework, a demo-
graphic parameter h 2 H follows a uniform prior density
pq with lower bound 0 and upper bound q, as specified by
the user. In the hierarchical framework, the uniform prior
distributions are specified by hyperparameters that are drawn
from the hyperprior density, q � pQ, where pQ follows a
uniform density with lower bound 0 and upper bound Q,
as specified by the user. We use two hyperprior distributions,
one for the population size elements of H and one for the
migration rate elements of H.

Use of hyperprior distributions means that at any point in
time the state space of the Markov chain simulation includes
the hyperparameters, one for each element of H.
Additionally, because U is changing, only some of the possible
ancestral populations are included in the model at any point
in time. We allow for changing of hyperparameters for the
elements of H when U changes by including in the Markov
chain state space sampled hyperparameter values for all pos-
sible populations and all possible pairs of populations. These
hyperparameters (i.e., the upper bounds of the uniform prior
distributions) are subject to Metropolis-Hastings updates at
intervals by proposing new values from the hyperprior
distributions.

Any ancestral population can be identified in terms of the
subset of sampled populations it is ancestral to, so the total
number of possible populations (sampled and ancestral) in an
n population model is the number of possible distinct subsets,
or 2n � 1 (excluding the empty set). This is the number of
population size hyperparameters that need to be included in
the state space. For migration hyperparameters, the total
number of possible pairs of populations can be determined
by considering that for any one population pair one of the
two will be ancestral to k sampled populations and the other
will be ancestral to one or more populations that are not in
the set of size k to which the first population is ancestral.
There are n

k

� �
possible subsets of size k, each of which will be

paired with a population that could be ancestral to any subset
of the complementary set of n� k sampled populations.
There are 2n�k � 1 of these, so the number of possible pairs
of populations when either population is ancestral to k sam-
pled populations is n

k

� �
2n�k � 1
� �

=2. Summing over k from
1 to n� 1, we get a total of ð3n � 2nþ1 þ 1Þ=2 possible pairs
of coexisting populations, each of which will have two hyper-
parameters, one for each direction, in the state space of the
MCMC simulation. For updating the hyperparameters of one
or more of the current elements of H, the Metropolis-

Hastings ratio is simply
p �Gjs;Uð Þ
p Gjs;Uð Þ ; where the prior distribu-

tions for those elements of H, when integrating over H to

obtain p �Gjs;U
� �

, are given by the newly proposed hyper-

parameters, and the integration for p Gjs;Uð Þ is done using
the current hyperparameters.

Estimation
At any point in time the Markov chain simulation will be on a
single phylogenetic tree topology, and this will define the

populations to which the elements of H pertain. In other
words the ancestral populations, and the migration events
that involve ancestral populations, will change as U changes,
and therefore sampled values of H and s must be partitioned
with respect to the U value with which they were sampled.
To estimate both phylogeny and demography, the simplest
approach is to proceed in two steps. First, estimate the mar-
ginal posterior density of topology, pðUjXÞ, by conducting an
MCMC run over fG; s;U; ug and by sampling only values of
U. Second, given an estimate, Û, from the estimated marginal
density for the topology p̂ðUjXÞ, Û ¼ argmax p̂ðUjXÞ, that
was recorded in step one, run a conventional MCMC simu-
lation with phylogeny fixed at Û to obtain estimates of split-
ting times, population sizes and migration rates.

Program Development
We developed a new program, IMa3, that is based on the
parallel version of IMa2 (Sethuraman and Hey 2016) and that
implements the new methods described here. Testing of the
method presents a challenge because, with one exception, we
do not know the true posterior density for this model, even
for the smallest of data sets with three or more populations
under an IM model. The exception is a null data set, in which
the probability of the data is constant across all genealogies. In
this case we expect and confirmed that the program returns a
posterior distribution for phylogenetic topology that is
indistinguishable from the prior distribution. We are also
able to confirm an important prediction of the criterion
that

Ð
p mHjG; s;Uð ÞdmH ¼ 1 by running the program

with hidden genealogies in the state space, but for a fixed
phylogenetic topology. In this case the target density is the
same as that for the IMa2 program (i.e., fixed topology and no
use of hidden genealogies), and results should be (and were
confirmed to be) indistinguishable from those found using
the IMa2 program.

The IMa3 program is flexible in a number of ways: 1) it
allows for nonuniform priors on phylogenetic topology; 2) it
implements three widely used mutation models (infinite sites
[Kimura 1969], HKY [Hasegawa et al. 1985], and stepwise
[Kimura and Ohta 1978]); 3) it implements both uniform
and exponential prior distributions for migration rate priors
and for migration rate hyperpriors; and 4) it retains the func-
tionality of IMa2 for conducting likelihood ratio tests of
nested demographic models. IMa3 is written in Cþþ and
can be run on multiple processors. For most data sets, the
mixing of the Markov chain simulation is greatly improved by
inclusion of a sequence of heated chains, with Metropolis
swaps of state spaces between chains (Geyer 1991).
Parallelization of IMa3 is implemented by having two or
more chains per CPU, with swapping between chains coded
using MPI (Altekar et al. 2004; Sethuraman and Hey 2016).

Assessment of the quality of a set of sampled phylogeny
values, in terms of convergence and mixing of the MCMC
simulation, presents conventional and significant challenges
(Gilks and Roberts 1996). We assessed sample quality by es-
timating effective sample sizes (ESSs) during a run, by com-
paring estimated posterior distributions for samples collected
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in the first and second half of a run, and by repeating runs
with different random start points.

Because of parallelization it is possible to get a substantial
reduction in run times by using multiple processors. However,
the innovations introduced here, while making it possible to
estimate phylogeny in an Isolation-with-Migration context,
do not alter the underlying dynamics that caused the pred-
ecessors of the IMa3 program (i.e., IMa2 etc.) to be notori-
ously slow (e.g., McCormack et al. 2008; Su�arez et al. 2014;
Palstra et al. 2015). Nevertheless, we used relatively large num-
bers of loci (for a genealogy-sampling MCMC-based ap-
proach) for our analyses. The chimpanzee data took about
2 weeks on 40 CPUs to return phylogeny estimates, and about
half that time to return parameter estimates when run on the
estimated phylogeny. The human data set took about
4 weeks and 1 week for these runs, respectively. Each of the
50 locus, seven population data sets for simulation set 4 took
about 2 days with 40 CPUs for phylogeny estimation. These
times do not include the time needed for replicate runs for
ensuring convergence.

Human Hunter Gatherer Data
We used the data reported by (Lachance et al. 2012) for the
Baka, Hadza and Sandawe populations (3, 5, and 5 genomes,
respectively) in addition to 7 Yoruban genomes (Drmanac
et al. 2010). All had been sequenced to an average depth of
60X coverage and aligned to the Hg19 human reference ge-
nome using the same protocol (Drmanac et al. 2010). Data
were filtered to avoid regions: with less than 5X coverage for
all individuals, regions within 10,000 base pairs of RefSeq loci,
regions not showing conserved human/chimpanzee synteny,
recent segmental duplications, CpGs, or conserved noncod-
ing elements (Gronau et al. 2011), and regions most subject to
GC-biased gene conversion (Capra et al. 2013). To generate
sampled regions that do not show evidence of recombina-
tion, sequences were phased (Stephens et al. 2001) and sub-
sampled using the 4-gamete criterion (Hudson and Kaplan
1985) as previously described (Hey 2010a). Two hundred ran-
domly selected autosomal regions, with a mean length of
1490 base pairs, were used for estimating the phylogeny to-
pology. We used a mutation rate of 1:25� 10�8 per base per
generation (Scally and Durbin 2012), and a generation time of
29 years as estimated from human hunter gatherer popula-
tions. IMa3 runs were conducted for four- and five-
population models (without and with a ghost, respectively).
Initial runs to estimate the topology of the species tree were
conducted with hidden genealogies and topology updating.
Hyperpriors were set to U 0; 5½ � for the population size (ge-
netic drift) parameters, U½0; 0:2� or U½0; 0:5� for migration
rates, and U½0; 1� for population splitting times. These runs
were done with 400 chains on 20 or 40 processors, with 24 h
burnin prior to sampling, and at least 500,000 topologies were
sampled. Mixing was assessed by restarting runs, and com-
paring estimated posterior densities for topologies on runs
observed at different times. To estimate the demographic
model, given a phylogeny, IMa3 was run with a fixed topology
using prior distributions with widths identical to the hyperp-
riors. These runs were done with 400 chains on 20 processors,

with a 15-h burnin prior to sampling, and at least 15,000
sampled genealogies.

Chimpanzee Data
To study the divergence of chimpanzees, including the bo-
nobo and four subspecies of common chimpanzee, we used
whole genome assemblies with 20x coverage on average and
sample sizes ranging from 3 to 5 individuals per species/sub-
species from the Great Ape Genome Project (GAPA supple-
mentary table 12.4.1, Supplementary Material online) (Prado-
Martinez et al. 2013). Data were filtered in the same way as for
the human hunter-gatherer data. One hundred randomly
selected autosomal regions were used for estimating the phy-
logeny topology, and then these regions and an additional
100 loci were used for estimating the demographic history
conditional on the phylogeny estimate. The mean length of
the loci used was 2,030 base pairs. We used a generation time
of 25 years (Langergraber et al. 2012), and the same mutation
rate of 1:25� 10�8 as for the human data set.

IMa3 runs were conducted for five- and six-population
models (without and with a ghost, respectively). Initial runs
to estimate the topology of the species tree were conducted
with hidden genealogies and topology updating. Hyperpriors
were set to U 0; 4½ � for the population size (genetic drift)
parameters, U½0; 1� for migration rates, and U½0; 2� for pop-
ulation splitting times. These runs were done with 500 chains
on 40 processors, with 24 h burnin prior to sampling, and at
least 50,000 trees were sampled. Mixing was assessed by
restarting runs, and comparing estimated posterior densities
for topologies on runs observed at different times. To esti-
mate the demographic model, given a phylogeny, IMa3 was
run with a fixed topology using and prior distributions with
widths identical to the hyperpriors. These runs were done
with 400 chains on 20 processors, with a 15-h burnin prior
to sampling, and at least 15,000 sampled genealogies.

Simulated Data
Python scripts were written to generate command lines for
the ms program (Hudson 2002) for an IM model using ran-
domly sampled population sizes, migration rates, and phylog-
eny branch lengths from specified prior distributions for
population trees with fixed or random topologies for multiple
populations. The ms program generates data under the infi-
nite sites model of mutation (Kimura 1969). All data were
simulated using demographic parameters scaled by the mu-
tation rate per locus per generation, u (Hey and Nielsen 2004),
including: the population mutation rate for each population,
4Neu (Ne is the effective population size); the migration rate
per mutation, m=u (m is the rate of migration per gene copy
per generation); and population splitting time, t u (t is the
time since population splitting in units of generations). Four
sets of simulations were generated to address different
aspects of performance, with all simulations sampling 5
gene copies per population per locus.

Set 1. To assess performance as population splitting times
converge, 50 single locus data sets for three populations were
simulated for each of a series of splitting time values (fig. 2).
Data were simulated using drift parameters; 4Neu, drawn at
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random for each population from a uniform prior distribu-
tion U½0; 20� and migration rate parameters, m=u, in both
directions between all pairs of coexisting populations, drawn
at random from U 0; 0:1½ �: For the IMa3 runs, these same
uniform distributions were used for priors for drift and mi-
gration terms, whereas the priors for splitting times for the
IMa3 runs were set to U½0; 2�. For each data set IMa3 was
run with a burnin of 30,000 steps, after which 50,000 topol-
ogies were sampled.

Set 2. To assess performance when migration occurs be-
tween distantly related populations, 50 single locus data sets
for three populations were simulated for each of a series of
migration rates from population 1 to 2, whereas the true tree,
((0, 1), 2), has populations 0 and 1 as most closely related
(fig. 3). The migration rate, m=u, for each simulation was
based on the simulated drift parameter for population 1,
4N1u, so as to match one of a series of specified population
migration rates (2Nm) ranging from 0 to 10. Splitting times
were fixed at 0.5 and 1.0; and drift parameters were sampled
from U½0; 20�. IMa3 was run using the same priors, burnin
and sampling rates as for the Set 1 simulations.

Set 3. To assess performance over a range of data set sizes,
and varying priors, 50 data sets for either 1, 2, 5, or 10 loci were
simulated under a four population model for a fixed topology
of ((0, 1)4,(2, 3)5)6, where the ancestor populations (4, 5, and
6) are ordered in time (i.e., populations 0 and 1 split most
recently, followed by 2 and 3). Data were simulated using
migration rates fixed at 0; with drift parameters; 4Neu,
drawn from U½0; 20�; and with the three splitting times fixed
at 0.5, 1.0, and 1.5, respectively (fig. 4). For the IMa3 runs
without hyperpriors, the priors for drift parameters and split-
ting times were sampled from uniform distributions the same
as for Sets 1 and 2 (U½0; 20� and U½0; 2�, respectively).
Migration rate priors were set either to a narrow
(U½0; 0:1�) or a wide (U½0; 1�) distribution. For runs using
hyperprior distributions the hyperparameters for the genetic
drift terms were drawn from U½0; 20� while those for the
migration terms were drawn from U½0; 1�. For each data set
IMa3 was run with a burnin of 60,000 steps, after which
50,000 topologies were sampled and the maximum a poste-
riori tree taken as the estimated topology. For the 5 and 10
locus data sets, multiple metropolis-coupled chains (Geyer
1991) were used to ensure mixing.

Set 4. To assess the accuracy of estimated topologies under
a large and complex model, twenty 50 locus data sets for
seven populations were simulated. For each data set, a phy-
logenetic topology was drawn at random from a uniform
distribution over all possible rooted ordered topologies.
Data were simulated under this topology with drift parame-
ters sampled at random from U 0; 3½ �. Each model has 72
migration rate parameters, with half (36) randomly picked to
have zero gene flow and half having a migration parameter
drawn at random from U 0; 0:2½ �. The splitting times were
fixed to be at even intervals f0.25, 0.5, 0.75, 1.0, 1.25, 1.5} and
mutation rate scalars were sampled from U 0:25; 4:0½ � (log
scale) subject to the constraint that their geometric mean is 1.
IMa3 runs were done using 200–400 heated chains, on 20 to
40 processors. For the population size parameters, the

hyperprior distribution was U½0; 4�, while for migration
rate parameters the hyperprior distribution was U½0; 0:3�.
Mixing was assessed by restarting runs, and comparing esti-
mated posterior densities for topologies on runs observed at
different times.

The 20 seven population data sets were also examined
using several other methods for estimating phylogenetic trees
(table 1). For BPP (Yang 2015) the prior distribution of pop-
ulation sizes was a fairly flat gamma distribution,
Gð10; 4000Þ, with a mean per base pair (0.0025), similar to
that used for IMa3, and divergence time priors having gamma
distribution Gð10; 8000Þ. For StarBeast2 (Ogilvie et al. 2017),
which is implemented in the Beast2 program (Bouckaert et al.
2014), the prior for the phylogenetic tree was a Yule model,
where speciation rate were sampled from a log-normal dis-
tribution with mean of 1 and standard deviation of 1.25. The
constant per-branch population sizes were assumed to follow
an inverse gamma prior distribution, InvG(a; b), where the
shape parameter a is set to 3 and beta is the scale parameter.
The mean and variance of this distribution are both equal to
l ¼ b=2, where l is sampled from a hyperprior::
l � p lð Þ / 1=l. That is, log lð Þ � p log lð Þð Þ / 1.
Sampling details are provided in supplementary information,
Supplementary Material online.

URLS
Source code for IMa3 and IMfig is available at https://github.
com/jodyhey/IMa3. All simulated data and associated scripts
and results are available at https://bio.cst.temple.edu/�hey/
nolinks/Hey_2018_IMa3paper_archive_results_simualtions_
data.zip.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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