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Abstract

The source-sink relationship determines the ultimate grain yield of rice. In this study, we

used a set of reciprocal introgression lines (ILs) derived from Xuishui09 × IR2061 to map

quantitative trait loci (QTLs) that were associated with sink-, source-, and grain yield-related

traits. A total of 95 QTLs influencing eight measured traits were identified using 6181 high-

quality single nucleotide polymorphism markers. Nine background-independent QTLs were

consistently detected in seven chromosomal regions in different genetic backgrounds.

Seven QTLs clusters simultaneously affected sink-, source-, and grain yield-related traits,

probably due to the genetic basis of significant correlations of grain yield with source and

sink traits. We selected 15 candidate genes in the four QTLs consistently identified in the

two populations by performing gene-based association and haplotype analyses using 2288

accessions from the 3K project. Among these, LOC_Os03g48970 for qTSN3b,

LOC_Os06g04710 for qFLL6a, and LOC_Os07g32510 for qTGW7 were considered as the

most likely candidate genes based on functional annotations. These results provide a basis

for further study of candidate genes and for the development of high-yield rice varieties by

balancing source–sink relationships using marker-assisted selection.

Introduction

Rice (Oryza sativa L.) is one of the most important staple cereals in the world, especially in

Asia. Due to continuously increasing population, diminishing cultivated area, and other fac-

tors, a nearly 40% increase in grain yield will be necessary to meet global food demand during
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the next 40 years [1]. Grain yield of rice is mainly determined by the coordination between

sources and sinks [2]. Spikelet number per panicle and grain size are regarded as the major

sinks that absorb and utilize photosynthate; tissues such as the topmost three leaves (especially

the flag leaf) are often defined as the most important primary sources that produce photosyn-

thate. A good balance between source strength and sink strength is a prerequisite for high

yield potential.

To date, a number of efforts have been made to identify QTLs underlying source-, sink-,

and yield-related traits by using genome-wide association and linkage analyses [3–5]. A large

number of genes related to sources, sinks, and the source–sink relationship have been cloned,

including sink-related genes, such as Gn1a [6], DEP1 [7], Ghd7 [8], GNP6 [9], and GNP1 [10]

for spikelet number, GW5 [11], qTGW3 [12], and GS3 [13] for grain size and grain weight,

source-related genes such as NAL9 [14] for leaf area, and source–sink relationship genes NAL1
(SPIKE, GPS, and LSCHL4) [15–18]. Notably, several QTLs influencing source leaves (e.g., flag

leaves) have been mapped to chromosomal regions closely affecting sink capacities (e.g., spike-

let number per panicle and thousand-grain weight) and yield-related traits (e.g., panicle num-

ber), hinting at possible pleiotropy or tight linkage of genes/QTLs affecting source-, sink-, and

yield-related traits [3, 4]. Detection of these QTLs is still crucial to gain a better understanding

of the genetic basis and the relationship between source- and sink-related traits.

QTL mapping results largely depend on genetic background [19]. Many QTLs detected in

mapping populations can’t be detectable in breeding population, thus impeding their applica-

tion in molecular breeding. So identification of background-independent QTLs or integration

of QTL mapping with molecular breeding in the same population will largely minimize effect

of background on QTL detection. Genetic analysis using reciprocal introgression lines (ILs)

derived from the same parents would be more helpful to understand complex traits [19–22],

especially for studying genetic background effect on QTL detection [19–22]. In view of this

consideration, we constructed a set of reciprocal introgression lines derived from

Xuishui09 × IR2061 and identified background-independent QTLs underlying source-, sink-,

and yield-related traits. We selected candidate genes from the important QTL intervals and

validated the candidate genes based on gene-based association and haplotype analyses using

2288 rice accessions. Our study has shed new light on the genetic bases of source-sink related

traits, and the results provide valuable information for molecular rice breeding by design for

high yield potential.

Materials and methods

Materials

Xiushui09 is a high-yield semi-dwarf japonica (geng) rice variety from China while IR2061-

520-6-9 (abbreviated as IR2061) is a drought tolerance indica (xian) breeding line introduced

from the International Rice Research Institute (IRRI), Los Baños, Philippines. The two parents

are genetically significant differences in grain yield, leaf trait, panicle trait, cold tolerance,

drought tolerance and heat tolerance which are certainly worth of studying. Therefore, we

chose Xuishui09 and IR2061 as the two parents to construct a set of reciprocal introgression

lines (ILs) [21]. Specifically, the F1 plants were simultaneously backcrossed to the two parents

to develop two BC1F1 populations, with each having around 100 plants. Twenty-five individu-

als randomly selected from BC1F1 plants were then used as the male parent to backcross with

the corresponding parent to produce two BC2F1 populations. The BC progenies were selfed

for five consecutive generations without selection, yielding lines from BC2F2 to BC2F6. Finally,

two sets of ILs were developed, consisting of 226 BC2F6 lines in the Xiushui09 background

(XS-ILs) and 233 BC2F6 lines in the IR2061 background (IR-ILs).
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Phenotypic investigation

All of the ILs and their parents were planted in Sanya (SY, 18.3˚N, 109.3˚E), Hainan province

during December 2016–April 2017 and Hangzhou (HZ, 30.3˚N, 120.2˚E), Zhejiang province

during May–October 2017. Each line was grown in a plot of two rows with 12 plants in each

row at a spacing of 25 × 17 cm, with three replicates. The fields were managed according to the

local standard practices. At the full heading stage, flag leaf width (FLW, in cm), flag leaf length

(FLL, in cm) were measured on the main stems of five uniform plants from each replicate of

each line. Flag leaf area (FLA, in cm2) was calculated as FLL × FLW × 0.75 [4]. At maturity,

eight uniform plants in the middle row of each replicate of each line were sampled and dried

in an oven at 70˚C for five days followed by trait measurements of panicle number per plant

(PN), total spikelet number per panicle (TSN), filled grain number per panicle (FGN), thou-

sand-grain weight (TGW, in g), and grain yield per plant (GY, in g).

Phenotypic data analysis

To dissect the effects of genotype-by-environment interaction (GEI) on the tested traits, vari-

ance components were estimated using multiple-site analysis, with all effects treated as ran-

dom. Heritability across environments was computed using the estimated variance

components as VG/(VG + VGEI/s +Ve/sr), where VG, VGEI, and Ve are the variances of genotype,

genotype-by-environment interaction variance, and residual error, respectively; s is the num-

ber of environments, and r is the number of replicates. All of the analyses were conducted with

the PBTools package (http://bbi.irri.org/products) developed by IRRI. A linear mixed model

was used to integrate the phenotypic data from two environments; the line’s genotype effect

was treated as the fixed effect, and the environment and replicate within the environment were

treated as random effects. The lme4 in R package was used to calculate the best linear unbiased

predictors (BLUPs) of each line. BLUP values of each line were used for analysis of phenotypic

correlation using the rcorr function implemented in the R package Hmisc [23].

Genotyping

Genomic DNA for SNP genotyping was isolated from approximately 100 mg fresh leaf samples

of five-week-old seedlings from the two sets of ILs using a modified cetyltrimethylammonium

bromide (CTAB) method [24]. Genotyping was performed using a customized rice 56 K SNP

array containing 56,897 SNPs screened from the 3K Rice Genome Project [25, 26]. Target

DNA preparation, chip hybridization, and array processing were conducted by Capital Bio-

Technology (Beijing, China) according to the Affymetrix Axiom1 2.0 assay protocol. A three-

step filtering strategy was applied to select high quality SNP markers from 56K SNP genotypic

data for QTL mapping. Firstly, markers that were non-polymorphic between the two parents

were removed. Secondly, all heterozygous genotypes were set as “missing” and markers with

more than 10% missing values were removed. Thirdly, markers with a minor allele frequency

(MAF) less than 3% were removed. Finally, 6181 high quality SNP markers were selected for

QTL mapping for the two sets of ILs.

QTL mapping

BLUP values of each line were used for QTL mapping of source-, sink-, and grain yield-related

traits. A total of 6181 high-quality SNP markers were used to conduct the QTL identification.

Linkage maps of XS-ILs and IR-ILs were constructed separately using the Map functionality in

IciMapping [27]. Firstly, SNPs with a known chromosome ID on a physical map were

anchored. The unanchored SNP markers were grouped based on a minimum logarithm of
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odds (LOD) score of 3. Secondly, a combined algorithm of nearest neighbor and two-opt algo-

rithm of traveling salesman problem was used for marker ordering. Finally, the sum of adja-

cent recombination frequencies calculated with a five-marker window size was used as the

rippling criterion. Recombination frequency was converted into map distance by the Kosambi

mapping function. QTL mapping was performed using the software IciMapping V4.1 [27]. A

probability level of the logarithm of the odds (LOD) value greater than 3.0 was used as the

threshold for declaring the presence of a QTL.

Identification of candidate genes

A total of 2288 worldwide accessions, which originated from 89 countries, generated from the

3,000 Rice Genomes Project [26] were collected to conduct gene-based association analysis

and haplotype analysis to identify candidate genes. Based on the known population structure

and division of subpopulations [26], the panel contained 1361 xian accessions (198 xian-1A,

177 xian-1B, 235 xian-2, 245 xian-3, and 506 xian-adm), 628 geng accessions (207 geng -tmp,

80 geng-sbtrp, 279 geng-trp, and 62 geng-adm), 176 aus/boro, 52 basmati/sadri and 71 highly

admixture (adm) accessions (S1 Table). FLL, TGW, and TSN values of 2288 accessions were

measured during December 2016–April 2017 in SY (S1 Table) using the same method as

described above.

The following four steps were conducted to identify candidate genes for QTLs consistently

detected in the two sets of ILs. Firstly, the genes located in the candidate regions for QTLs con-

sistently detected in the two sets of ILs were extracted, and gene functions were annotated by

the Rice Annotation Project Database (https://rapdb.dna.affrc.go.jp/). Then, all available SNPs

located inside these genes were searched from 4.8 M SNPs data generated from 3K RGP in the

Rice SNP-Seek Database [28]. The SNPs with a minor allele frequency less than 0.05 and/or a

missing data rate exceeding 20% were removed, and the remaining high-quality SNPs located

inside these genes were used to perform gene-based association analyses via compressed

mixed linear model using principal component analysis (PCA) and kinship matrix (K). The

analyses were performed with the Genome Association and Prediction Integrated Tool

(GAPIT), a package of R software [29]. The critical P-value for declaring a significant marker-

trait association was 10−5. Thirdly, haplotype analyses were conducted using all of the available

non-synonymous SNPs located inside the gene CDS region searched from 18 M SNPs data

generated from 3K RGP in the Rice SNP-Seek Database [28]. Candidate genes were deter-

mined by testing the significant differences among major haplotypes (containing more than 30

samples) for each important QTL through analysis of variance (ANOVA). Duncan’s multiple

mean comparison test was carried out to determine the significance of any differences (5% sig-

nificance level) using the agricolae package in R. Finally, the most likely candidate genes were

selected based on their biologically related functions.

Results

Basic statistics of markers

The same set of 6181 well-distributed polymorphic SNP markers was available for genotyping

of the two sets of ILs. The number of SNPs per chromosome ranged from 375 on chromosome

9 to 763 on chromosome 1 (S2 Table). The sizes of chromosomes varied from 23.0 Mb (chro-

mosome 9) to 43.3 Mb (chromosome 1). The full genome size was 373.1 Mb, with an average

marker spacing of 61.0 kb ranging from 55.7 kb on chromosome 2 to 72.8 kb on chromosome

12 (S2 Table).
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Genome compositions of the two sets of ILs

Most of the genomes of the reciprocal ILs were similar to their recurrent parents, with XS-ILs

sharing on average 86.7% of the genome with the recurrent parent Xiushui09 (range from 44.6

to 100%), whereas IR-ILs shared on average 90.7% of the genome with the recurrent parent

IR2061 (range from 58.5 to 100%) (S1 Fig). Obviously, the reciprocal introgression line popu-

lations were skewed toward one parent or the other, as expected.

Phenotypic variation and correlation

Although Xiushui09 exhibited significantly greater FLW than IR2061, the FLA value did

not differ between the two parents, because the former had significantly smaller FLL than

the latter in SY (Fig 1). In HZ, Xiushui09 showed significantly larger FLA compared with

IR2061, because the FLW of the former was significantly greater than that of the latter, and

the FLL value did not differ between the two parents. The TGW of Xiushui09 was signifi-

cantly higher than that of IR2061, whereas the PN of Xiushui09 was significantly lower than

that of IR2061 in the two environments. In SY, Xiushui09 showed significantly lower FGN

and similar TSN compared with IR2061, finally resulting in significantly lower GY com-

pared with IR2061. In HZ, Xiushui09 exhibited significantly higher FGN and TSN, thus

resulting in significantly higher GY compared with IR2061 (Fig 1). It was observed that the

two sets of ILs had wide ranges of segregation, i.e., there were transgressive segregations for

the eight traits (Fig 1).

In the two sets of ILs, five traits (FLL, FLW, FLA, TSN, and TGW) were controlled mainly

by genotypes (VG), and the heritabilities of the five traits ranged from 0.38 for FLL to 0.70 for

TGW, and from 0.33 for TSN to 0.64 for TGW in XS-ILs and IR-ILs, respectively. FGN, PN,

and GY were more sensitive to environmental factors, with gene and environment together

potentially affecting phenotypic variation. The heritability of the three traits ranged from 0.04

for GY to 0.23 for PN, and 0.14 for GY to 0.31 for FGN in XS-ILs and IR-ILs, respectively (S3

Table).

In the two sets of ILs, the trends of pairwise phenotypic correlations were similar (Fig 2).

The FLA was significantly positively correlated with sink size (TSN) but strongly negatively

correlated with PN, and there was no significant correlation with sink capacity (TGW). GY

showed significant positive correlations with FGN and PN in the two populations. GY was

also significantly positively correlated with TGW in XS-ILs, but there was no significant

correlation with TGW in IR-ILs, implying that PN and FGN made larger contributions to

GY than TGW in IR-ILs. There were negative or non-significant correlations among the

three grain yield component traits (PN, FGN, and TGW) in the two populations. As

expected, FLA showed significant positive correlations with its corresponding component

traits (FLL and FLW), and it was also significantly positively correlated with GY in the two

sets of ILs (Fig 2).

QTL mapping

In total, 95 QTLs were identified for the eight yield-related traits in the two sets of ILs derived

from the Xiushui09 × IR2061 cross, ranging from 6 for GY and PN to 17 for TSN. Among

these, 45 QTLs were detected only in XS-ILs, and 41 only were found in IR-ILs. Nine QTLs in

seven chromosomal regions were commonly identified in the two sets of ILs, with one QTL

(qFLW4b) for FLW, two QTLs (qFLL5c and qFLL6a) for FLL, one QTL (qFLA4c) for FLA, two

QTLs (qTGW5b and qTGW7) for TGW, and three QTLs (qTSN3b, qTSN4b, and qTSN6b) for

TSN. The IR2061 alleles at the qTGW7 and qTSN6b loci were associated with increased TGW

and TSN, and they accounted for 4.6% and 4.3% of TGW, and 10.9% and 4.7% of TSN in
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XS-ILs and IR-ILs, respectively. The Xuishui09 alleles at the remaining loci resulted in

increased corresponding trait values, and they accounted for 2.5% to 26.5% of the phenotypic

variance (Table 1 and Fig 3).

Fig 1. Frequency distribution of the eight evaluated traits in the reciprocal introgression lines across two

environments. FLL, flag leaf length; FLW, flag leaf width; FLA, flag leaf area; PN, panicle number per plant; TSN, total

spikelet number per panicle; FGN, filled grain number per panicle; TGW, thousand-grain weight; GY, grain yield per

plant; SY, Sanya; HZ, Hangzhou; XS-ILs, introgression lines in Xiushui09 background; IR-ILs, introgression lines in

IR2061 background; �, ��, ��� indicate significant differences between Xiushui09 and IR2061 at P< 0.05, P< 0.01, and

P< 0.001, respectively; ns indicates non-significance.

https://doi.org/10.1371/journal.pone.0237774.g001
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Chromosomal regions simultaneously harboring QTLs for source, sink,

and grain yield traits

Comparisons of 43 QTLs affecting source flag leaf size (FLL, FLW, and FLA), 31 QTLs influ-

encing sink capacities (TGW and TSN), and 21 QTLs affecting grain yield (GY) and its related

traits (FGN and PN) revealed seven chromosomal regions simultaneously influencing source

and sink/yield-related traits in the same population (Table 1 and Fig 3). These seven regions

comprised the region of 41.85–42.06 Mb on chromosome 1 harboring qFLA1b for FLA and

qPN1 for PN detected in IR-ILs and the Xuishui09 alleles increased FLA at qFLA1b but

decreased PN at qPN1; the region of 27.70–28.07 Mb on chromosome 3 harboring qTSN3b,

qFLW3b and qFLA3c for TSN, FLW and FLA, respectively, detected in IR-ILs, and the

Xuishui09 alleles at the three QTLs consistently resulted in increased corresponding trait val-

ues; the region of 24.47–24.92 Mb on chromosome 4 harboring qFLW4a for FLW, qFLA4b for

FLA, and qTSN4a for TSN detected in IR-ILs, and the Xuishui09 alleles at the three QTLs con-

sistently increased FLW, FLA, and TSN; the region of 31.15–31.50 Mb on chromosome 4 har-

boring qFLW4b, qFLA4c, qTSN4b, qFGN4b, and qPN4 for FLW, FLA, TSN, FGN, and PN,

respectively, detected in XS-ILs, and the Xuishui09 alleles resulted in decreased PN at qPN4
but increased the corresponding phenotypic trait values at the remaining the four QTLs; the

region of 27.73–28.08 Mb on chromosome 5 harboring qFLL5c for FLL, qFLA5b for FLA, and

qPN5 for PN detected in XS-ILs, and the Xuishui09 alleles increased FLL at qFLL5c and FLA at

qFLA5b but decreased PN at qPN5; the region of 27.40–27.97 Mb on chromosome 6 harboring

Fig 2. Correlations between the eight evaluated traits in introgression lines (ILs) in the Xuishui09 background (XS-ILs) (A) and the IR2061 background

(IR-ILs) (B). FLL, flag leaf length; FLW, flag leaf width; FLA, flag leaf area; PN, panicle number per plant; FGN, filled grain number per panicle; TGW,

thousand-grain weight; TSN, total spikelet number per panicle; GY, grain yield per plant. The colors of square correspond to values of the corresponding r. �,
��, ��� indicate significant correlations at P< 0.05, P< 0.01, and P< 0.001, respectively.

https://doi.org/10.1371/journal.pone.0237774.g002
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Table 1. QTLs identified for yield-related traits in the reciprocal introgression lines.

Trait a QTL Chr Genetic interval c (cM) Physical position (Mb) XS-ILs b IR-ILs Previously cloned gene

LOD A d R2(%)e LOD A R2(%)

FLW qFLW1a 1 4.7–5.4 0.65–0.73 3.9 -0.04 2.5

qFLW1b 1 39.9–41.7 6.43–6.64 6.9 -0.05 6.9

qFLW3a 3 36.6–37.1 12.48–12.60 4.7 0.03 3.0

qFLW3b 3 111.0–116.4 27.70–28.07 3.9 0.03 4.0

qFLW4a 4 105.8–108.2 24.47–24.92 4.5 0.06 4.3

qFLW4b 4 146.0–148.6 31.15–31.50 3.9 -0.04 2.5 22.2 0.09 26.5 NAL1 [17]

qFLW5 5 60.2–62.1 7.82–7.88 3.3 -0.03 3.1

qFLW6a 6 1.7–3.9 0.15–0.64 6.1 0.03 3.9

qFLW6b 6 115.9–122.2 27.40–27.97 9.7 0.06 6.7

qFLW6c 6 137.4–139.8 30.19–30.79 3.2 -0.03 3.1

qFLW7 7 14.0–15.9 1.74–1.81 4.2 0.03 2.7

qFLW8 8 156.1–157.2 26.87–27.05 5.9 0.03 3.7

qFLW11 11 76.0–77.1 18.03–18.13 4.5 0.05 4.3

qFLW12 12 47.8–49.7 7.61–7.69 4.5 0.03 4.3

FLL qFLL1 1 189.6–191.1 32.08–32.36 5.9 0.8 6.6

qFLL3 3 76.1–78.0 25.11–25.24 7.0 1.9 8.4

qFLL4a 4 98.8–99.8 23.17–23.23 3.4 -0.5 3.6

qFLL4b 4 118.9–119.8 26.58–26.86 8.0 1.4 9.6

qFLL4c 4 160.8–164.2 33.42–33.60 3.2 0.9 3.7

qFLL5a 5 88.0–92.7 17.03–17.46 3.6 1.1 4.3

qFLL5b 5 104.4–104.8 19.17–19.24 10.0 1.0 11.8

qFLL5c 5 147.1–149.4 27.73–28.08 12.1 -1.3 14.2 11.6 1.8 14.5

qFLL5d 5 154.6–156.8 29.06–29.18 4.0 0.1 4.4

qFLL6a 6 10.9–12.0 2.02–2.31 9.6 -0.7 11.7 4.0 1.1 4.6

qFLL6b 6 137.4–139.8 30.19–30.79 5.7 -1.0 6.5

qFLL8a 8 61.7–63.4 6.18–6.71 12.4 -1.8 14.4

qFLL8b 8 65.6–66.2 7.57–7.67 22.6 2.2 29.5

qFLL10 10 52.8–53.2 18.99–19.10 5.3 -1.7 6.1

qFLL11 11 101.2–102.1 23.08–23.17 3.2 -0.4 3.5

FLA qFLA1a 1 189.6–191.1 32.08–32.36 4.1 1.2 4.2

qFLA1b 1 254.5–256.2 41.85–42.06 3.5 0.9 3.6

qFLA3a 3 27.8–28.0 10.13–10.42 3.0 1.0 3.1

qFLA3b 3 36.6–37.1 12.48–12.60 3.0 -0.3 3.4

qFLA3c 3 111.0–116.4 27.70–28.07 5.2 1.3 5.9

qFLA4a 4 98.8–99.8 23.17–23.23 3.2 -1.0 3.2

qFLA4b 4 105.8–108.2 24.47–24.92 3.3 2.4 3.7

qFLA4c 4 146.0–148.6 31.15–31.50 13.9 -2.0 15.7 11.3 2.7 13.9 NAL1 [17]

qFLA5a 5 88.0–92.7 17.03–17.46 4.4 1.8 4.9

qFLA5b 5 147.1–149.4 27.73–28.08 6.8 -1.9 7.1

qFLA5c 5 154.6–156.8 29.06–29.18 8.1 2.5 9.5

qFLA6a 6 115.9–122.2 27.40–27.97 5.2 1.6 5.9

qFLA6b 6 129.5–130.1 28.88–28.97 3.3 2.2 3.6

qFLA9 9 90.9–94.2 21.27–21.35 3.2 2.2 3.5

TGW qTGW1a 1 20.6–20.8 4.14–4.37 9.1 -1.5 8.5

qTGW1b 1 205.9–207.7 35.47–35.59 9.1 -0.7 7.4

qTGW2a 2 80.9–81.1 9.03–9.52 7.9 -0.8 7.3

(Continued)
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Table 1. (Continued)

Trait a QTL Chr Genetic interval c (cM) Physical position (Mb) XS-ILs b IR-ILs Previously cloned gene

LOD A d R2(%)e LOD A R2(%)

qTGW2b 2 86.7–87.8 10.54–10.86 8.3 0.7 6.7

qTGW3a 3 24.6–26.1 9.32–9.43 6.4 1.2 5.2

qTGW3b 3 38.6–39.9 14.45–14.53 11.7 1.2 10.4

qTGW3c 3 196.9–198.4 35.37–35.77 3.5 0.4 2.9 qTGW3 [12]

qTGW5a 5 6.7–8.6 1.20–1.28 3.9 0.4 3.1

qTGW5b 5 36.7–38.6 5.29–5.41 22.5 -1.2 23.2 16.9 1.0 14.9 GW5 [11]

qTGW5c 5 88.0–92.7 17.03–17.46 3.7 0.4 3.1

qTGW6a 6 95.1–96.0 24.47–24.56 3.5 -0.7 3.1

qTGW6b 6 115.9–122.2 27.40–27.97 8.0 -0.8 6.7

qTGW6c 6 137.4–139.8 30.19–30.79 5.7 -0.7 4.5

qTGW7 7 108.9–109.6 19.32–19.42 5.1 0.8 4.6 5.4 -0.5 4.3

TSN qTSN1a 1 20.6–20.8 4.14–4.37 9.7 15.1 8.0

qTSN1b 1 224.0–225.3 38.37–38.48 4.1 5.4 4.2

qTSN2 2 102.9–104.6 14.63–15.24 5.0 8.2 4.0

qTSN3a 3 2.8–3.0 0.96–1.09 4.5 -8.7 3.5

qTSN3b 3 111.0–116.4 27.70–28.07 7.1 -10.3 5.7 5.5 5.2 5.8

qTSN4a 4 105.8–108.2 24.47–24.92 4.6 6.0 4.7

qTSN4b 4 146.0–148.6 31.15–31.50 9.7 -9.5 7.8 3.2 5.7 3.3 NAL1 [17]

qTSN5 5 41.0–42.7 5.86–6.07 3.6 -6.9 4.0

qTSN6a 6 70.9–72.4 19.9–20.00 6.4 -8.1 6.6

qTSN6b 6 115.9–122.2 27.40–27.97 12.9 15.3 10.9 4.4 -8.1 4.7 APO1 [41]

qTSN7a 7 78.4–79.5 15.30–15.38 6.9 -9.9 5.7

qTSN7b 7 97.5–98.8 17.42–17.48 7.7 7.7 8.2

qTSN7c 7 149.7–150.6 25.32–25.44 4.2 7.5 4.3

qTSN7d 7 177.0–178.7 29.57–29.67 3.1 -7.8 2.5 Ghd7.1 [40]

qTSN8 8 33.9–36.9 3.04–3.25 3.5 8.8 2.7

qTSN10 10 0–2.4 0.04–0.11 3.2 -10.8 3.3

qTSN12 12 109.8–112.2 15.16–15.40 3.5 -2.1 4.0

FGN qFGN1 1 213.0–213.5 37.07–37.18 4.8 -7.7 6.2

qFGN3a 3 10.1–12.1 3.37–4.08 7.4 -11.9 9.1

qFGN3b 3 145.9–146.9 29.28–29.49 4.3 -8.3 5.2

qFGN4a 4 63.7–64.4 19.13–19.24 9.9 -17.4 12.3

qFGN4b 4 146.0–148.6 31.15–31.50 5.5 -8.1 6.5 NAL1 [17]

qFGN5 5 41.0–42.7 5.86–6.07 5.3 -3.5 9.5

qFGN6 6 80.5–81.2 22.02–22.16 5.1 -8.5 8.7

qFGN7 7 61.5–62.1 9.11–9.21 3.2 -4.3 3.5 Ghd7 [8]

qFGN12 12 163.5–163.7 25.45–25.68 6.3 -7.8 7.3

PN qPN1 1 254.5–256.2 41.85–42.06 5.3 -0.5 9.6

qPN3 3 177.5–178.4 32.45–32.54 3.2 0.4 4.2

qPN4 4 146.0–148.6 31.15–31.50 7.5 0.6 10.8 NAL1 [39]

qPN5 5 147.1–149.4 27.73–28.08 5.0 0.6 7.0

qPN6a 6 52.6–54.1 15.91–16.01 4.1 0.5 7.3

qPN6b 6 115.9–122.2 27.40–27.97 3.1 -0.5 4.1

GY qGY1 1 181.7–183.2 29.91–29.99 4.3 0.5 8.9

qGY2 2 132.8–134.3 21.30–21.67 3.3 -1.1 4.7

qGY4 4 54.3–54.9 16.17–16.47 3.7 -1.9 5.6

(Continued)
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qTSN6b, qFLW6b, qFLA6a, and qPN6b for TSN, FLW, FLA, and PN, respectively, detected in

XS-ILs, and the IR2061 alleles decreased PN at qPN6b but increased the trait values at the

remaining three QTLs; the region of 30.19–30.79 Mb on chromosome 6 harboring qFLL6b for

FLL, qFLW6c for FLW, and qTGW6c for TGW in IR-ILs, and the IR2061 alleles at three QTLs

resulted in increased trait values (Fig 3).

Performance of yield and its related traits of a near-isogenic IL XC10 and

Xiushui09

In this study, five chromosomal regions (27.70–28.07 Mb on chromosome 3, 24.47–24.92 Mb on

chromosome 4, 31.15–31.50 Mb on chromosome 4, 27.40–27.97 Mb on chromosome 6, and

30.19–30.79 Mb on chromosome 6) simultaneously influencing source- and sink- related traits

were identified in the same population (Fig 3). Among these chromosomal regions, the

Xuishui09 alleles at the first three were associated with increased corresponding source-, and

sink- trait values, whereas the IR2061 alleles at the latter two chromosomal regions increased

trait values (Table 1). Based on selection against foreground favorable allele introgressions from

the donor parent and background of the recurrent parent, one near-isogenic introgression line,

XC10, was chosen from the XS-ILs by marker-assisted selection (MAS). Specifically, the IL XC10

carried the corresponding introgressed IR2061 alleles at qTSN6b/qFLW6b/qFLA6a located in the

region of 27.40–27.97 Mb on chromosome 6 but had no IR2061 allele introgressions at the other

QTLs for TSN, FLW, or FLA; otherwise the line showed 93.7% of the genome of Xuishui09 (Fig

4A). XC10 showed significant increases in FLA (+19.1% and 15.1%), FGN (+42.7% and 29.3%),

and TSN (+28.2% and 26.7%) along with slightly lower but non-significant differences in TGW

and PN compared with the recurrent parent Xuishui09 in SY and HZ. Finally, XC10 produced

21.3% and 18.7% higher grain yield than Xuishui09 in SY and HZ, respectively (Fig 4B), indicat-

ing that introgression of the IR2061 favorable alleles at qTSN6b/qFLW6b/qFLA6a contributed to

increased grain yield due to increases in the corresponding source and sink traits.

Candidate gene analysis

In this study, nine QTLs in the seven chromosomal regions were consistently identified in the

two sets of ILs. We searched the Oryzabase online resource (https://shigen.nig.ac.jp/rice/

oryzabase/) for known rice genes that co-localized with the nine QTLs. Three known genes

(APO1, NAL1, and GW5) at five QTLs (qTSN6b, qTSN4b/qFLA4c/qFLW4b, and qTGW5b)

were related to the corresponding traits.

Table 1. (Continued)

Trait a QTL Chr Genetic interval c (cM) Physical position (Mb) XS-ILs b IR-ILs Previously cloned gene

LOD A d R2(%)e LOD A R2(%)

qGY6 6 102.0–102.2 25.61–25.71 3.1 -1.8 5.9

qGY8 8 144.7–145.1 24.39–24.51 3.9 0.2 6.5

qGY12 12 156.2–160.3 24.12–24.75 8.7 -2.4 13.7

a FLL, flag leaf length; FLW, flag leaf width; FLA, flag leaf area; PN, panicle number per plant; TSN, total spikelet number per panicle; FGN, filled grain number per

panicle; TGW, thousand-grain weight; GY, grain yield per plant.
b XS-ILs, introgression lines in Xiushui09 background; IR-ILs, introgression line in IR2061 background.
c Genetic interval indicate genetic distance in IR-ILs.
d Additive effects (A) were estimated as the substitution effect of recurrent parent allele by donor parent allele.
e R2 (%) is the proportion of phenotypic variance explained by each QTL.

https://doi.org/10.1371/journal.pone.0237774.t001
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We conducted gene-based association and haplotype analyses to identify candidate genes

for the remaining four QTLs (qFLL5c, qFLL6a, qTGW7, and qTSN3b) using 2288 accessions of

3K. The 2288 accessions presented substantial variations for the FLL, TGW, and TSN in SY

Fig 3. Distribution of QTLs identified in the two sets of introgression lines. Red, blue, and black indicate the QTLs

affecting source-, sink-, and grain yield-related traits, respectively. Green rectangles indicate the QTL regions

simultaneously affecting source-, and sink-/grain yield-related traits in the same population. Asterisks indicate that the

QTLs were consistently identified in the two sets of introgression lines. Numbers on the chromosome indicate physical

position of each QTL.

https://doi.org/10.1371/journal.pone.0237774.g003
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(S2 Fig). A total of 184 annotated genes located in the four QTL regions (qFLL5c, qFLL6a,

qTGW7, and qTSN3b) according to the Rice Genome Annotation Project Database

(RAP-DB). Of 2366 SNPs available in the 184 genes, a total of 32 significant SNPs located

inside the 22 genes were identified to significantly associate with the corresponding traits

Fig 4. The performance of a near-isogenic introgression line XC10 and its recurrent parent Xuishui09. (A) Graphical genotype

of Xuishui09, IR2061 and XC10, respectively. Yellow green and dark gray bars denote chromosome regions from Xuishui09 and

IR2061, respectively. (B) Comparison of grain yield and its related traits between XC10 and Xuishui09 in Sanya and Hangzhou. �,
��, ��� indicate significant differences at P< 0.05, P< 0.01, and P< 0.001, respectively; ns indicates non-significance.

https://doi.org/10.1371/journal.pone.0237774.g004
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(FLL, TSN, or TGW) by gene-based association analysis (Fig 5). Among the 22 genes, 15 genes

had significant differences in corresponding traits among different haplotypes based on haplo-

type analyses (Table 2). Finally, the 15 genes were screened as candidate genes.

For qTSN3b, this locus was mapped in the region of 27.70–28.07 Mb on chromosome 3

containing 63 annotated genes according to the Rice Genome Annotation Project Database

Fig 5. Gene-based association analyses of targeted genes related to qTSN3b (A), qFLL5c (B), qFLL6a (C) and qTGW7
(D). Each green point show a SNP located in the genes in QTL intervals. Red lines show the threshold employed to

determine significant SNPs.

https://doi.org/10.1371/journal.pone.0237774.g005
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(RAP-DB). A total of 1231 SNPs in 63 genes were used for association analysis. Based on gene-

based association analysis results, four genes (LOC_Os03g48600, LOC_Os03g48970,

LOC_Os03g49020, and LOC_Os03g49180) were used for haplotype analysis (Table 2). Signifi-

cant differences in TSN were detected among different haplotypes for the four candidate genes

(Table 2). Of these, LOC_Os03g48970 is identical to OsNF-YA4, encoding a Nuclear Factor Y

(NF-Y) transcription factor in rice [30]. Two haplotypes of OsNF-YA4 were found, and Hap1

(G) was associated with significantly more TSN than Hap2 (A) (Fig 6A).

In the region from 27.73 to 28.08 Mb on chromosome 5 harboring qFLL5c, 750 SNPs in 60

genes were used for association analysis. According to the gene-based association analysis

results, six genes (LOC_Os05g48450, LOC_Os05g48560, LOC_Os05g48590, LOC_Os05g48670,

LOC_Os05g48760 and LOC_Os05g48870) were selected for the haplotype analysis (Fig 5B).

LOC_Os05g48560 had only one haplotype containing more than 30 rice accessions. No signifi-

cant differences in FLL were found among different haplotypes for LOC_Os05g48670

Table 2. Comparison of the yield-related traits among the haplotypes of the 22 genes within four QTLs consistently identified in the two sets of introgression lines.

QTL MSU_locus No.

Hap

Hap1 Hap2 Hap3 Hap4 Hap5 Hap6 Hap7 Hap8 Hap9 MSU_locus_annotation

qTSN3b LOC_Os03g48600 2 133.5b 144.8a - - - - - - - Domain of unknown function DUF966 domain

containing protein, expressed

LOC_Os03g48970 2 137.1a 130.1b - - - - - - - Nuclear transcription factor Y subunit, putative,

expressed

LOC_Os03g49020 5 135.1b 138b 130b 139.9b 158.9a - - - - Hypothetical protein

LOC_Os03g49180 3 136b 129.3c 145a - - - - - - Alkaline phytoceramidase, putative, expressed

qFLL5c LOC_Os05g48450 3 34.1a 34.7a 29.6b - - - - - - Aminotransferase domain containing protein,

putative, expressed

LOC_Os05g48560 1 - - - - - - - - - Expressed protein

LOC_Os05g48590 6 34.9ab 33.5ab 27.6c 33.2b 35.2a 33.9ab - - - OsIAA19—Auxin-responsive Aux/IAA gene

family member, expressed

LOC_Os05g48670 2 33.3a 34a - - - - - - - OsFBT10—F-box and tubby domain containing

protein, expressed

LOC_Os05g48760 4 34.7a 34.8a 28.7c 32.8b - - - - - Protein of unknown function DUF1421 domain

containing protein, expressed

LOC_Os05g48870 4 33.5a 33.2b 28.1c 32.9b - - - - - Auxin response factor 15, putative, expressed

qFLL6a LOC_Os06g04690 8 34.7a 30.7b 35a 32.5ab 34.4a 34.4a 33.3ab 33.1ab OsFBX184—F-box domain containing protein,

expressed

LOC_Os06g04710 4 34.5a 31.8b 33.6a 25.6c - - - - - Expressed protein

LOC_Os06g04800 3 33.7a 32.7a 32.3a - - - - - - Peptidase, T1 family, putative, expressed

LOC_Os06g04840 4 34.4a 32.7a 26.4b 33.1a - - - - - Leucine rich repeat protein, putative, expressed

LOC_Os06g04940 1 - - - - - - - - - Early nodulin 93 ENOD93 protein, putative,

expressed

LOC_Os06g04960 6 32a 34.4a 34.5a 32.6a 32.9a 33.6a - - - Expressed protein

LOC_Os06g04980 5 34.4a 32a 32a 32.9a 32.9a - - - - OsFBX185—F-box domain containing protein,

expressed

LOC_Os06g05060 4 34.6a 34.3a 28c 32.9b - - - - - ELF3 protein, putative, expressed

LOC_Os06g05080 2 33.4a 33.3a - - - - - - - Cytochrome c oxidase subunit 5B, mitochondrial

precursor, putative, expressed

LOC_Os06g05160 9 34.7a 34ab 32.2abc 32.6abc 34.7a 31.4bc 33.2abc 31.6bc 30.7c Sulfate transporter, putative, expressed

qTGW7 LOC_Os07g32470 8 23.9b 23.5b 26a 25.8a 23.5b 25.7a 25.9a 24.5b - Expressed protein

LOC_Os07g32510 4 24.9a 24.9a 21.5b 22.2b - - - - Dof zinc finger domain containing protein,

putative, expressed

Letters (a, b, and c) are ranked by Duncan’s test at P< 0.05.

https://doi.org/10.1371/journal.pone.0237774.t002
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(Table 2). Highly significant differences in FLL were detected among different haplotypes at

the remaining four candidate genes (LOC_Os05g48450, LOC_Os05g48590, LOC_Os05g48760,

and LOC_Os05g48870) (Table 2 and Fig 6B).

In the region from 2.02 to 2.31 Mb on chromosome 6 harboring qFLL6a, 249 SNPs in 51

genes were used for association analysis. Based on gene-based association analysis results, a

total of 10 genes were used for haplotype analysis (Fig 5C). LOC_Os06g04940 was identified in

only one haplotype containing more than 30 rice accessions (Table 2). No significant haplo-

types were found in LOC_Os06g04800, LOC_Os06g04960, LOC_Os06g04980, or LOC_Os06g
05080 (Table 2). Highly significant differences for FLL among different haplotypes were

observed at five genes (LOC_Os06g04690, LOC_Os06g04710, LOC_Os06g04840, LOC_Os06
g05060 and LOC_Os06g05160) (Table 2). Among those genes, LOC_Os06g04710 is identical to

dwarf and deformed flower 1 (ddf1-1), encoding an F-box protein in rice [31]. Four haplotypes

of ddf1-1 were found, and Hap 1 and Hap 3 exhibited significantly larger FLL than the other

two haplotypes (Fig 6C).

The locus qTGW7 was mapped in the region of 19.32–19.42 Mb on chromosome 7 contain-

ing 10 annotated genes. A total of 136 SNPs in 10 genes were used for association analysis.

According to gene-based association analysis results, two genes (LOC_Os07g32470 and

LOC_Os07g32510) were used for haplotype analysis (Fig 5D). Significant differences in TGW

were detected among different haplotypes at the two candidate genes (Table 2). LOC_Os07
g32510 encodes a Dof zinc finger domain protein. Four haplotypes of LOC_Os07g32510 were

found, and the TGW values of Hap 1 and Hap 2 were significantly larger than those of Hap 3

and Hap 4 (Fig 6D).

Discussion

Effect of genetic background on detection of grain yield QTLs

QTLs influencing grain yield and its related traits are usually sensitive to genetic background

and environment [19]. Among the 95 QTLs affecting yield and its related traits identified in

this study, only nine (9.5%) QTLs shared by the two different populations in the two different

genetic backgrounds, indicating that most of the QTLs (90.5%) were very specific to the

genetic background. The results clearly suggest that most yield QTLs detected in one popula-

tion would not be identified in another population, i.e., highly genetic background effects

existed that influenced the detection of QTLs for yield and related traits [19]. The

QTL × genetic background interaction has been considered as one of the major factors limit-

ing the use of QTLs in MAS for quantitatively inherited traits, as evidenced by effects of QTL

dep1 (dense and erect panicle1) on grain yield varied with the backgrounds [7, 32–34]. There-

fore, it is indispensable to identify background-independent QTLs influencing yield for breed-

ing high-yield rice by MAS, as shown in this study. Here, the nine QTLs (qFLL5c, qFLL6a,

qFLW4b, qFLA4c, qTSN3b, qTSN4b, qTSN6b, qTGW5b, and qTGW7) consistently identified

in the two different genetic backgrounds might certainly be made a priority for enhancement

of rice production via MAS.

Candidate gene identification of important QTLs

The region 27.70–28.07 Mb on chromosome 3 harboring qTSN3b contains four candidate

genes, including OsNF-YA4 (LOC_Os03g48970), encoding a Nuclear Factor Y (NF-Y) tran-

scription factors in rice [30]. OsNF-YA4 is involved in regulating the development of the rice

panicle, affecting panicle number, grain number per panicle, grain filling, and grain weight.

OsNF-YA4 overexpressed transgenic plants exhibited abnormal yield component values,

where grain filling rate, TSN, PN, and TGW were significantly decreased compared to the
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Fig 6. Haplotype analyses of the most likely three candidate genes for qTSN3b, qFLL6a, and qTGW7, and four

candidate genes for qFLL5c for yield-related traits using non-synonymous single nucleotide polymorphisms

(SNPs) within the coding region. (A) Gene structure (left) and total spikelet number per panicle of different

haplotypes (right) of LOC_Os03g48970 at qTSN3b. (B) Gene structures (left) and flag leaf length of different haplotypes

(right) of LOC_Os05g48450, LOC_Os05g48590, LOC_Os05g48760, and LOC_Os05g48870 at qFLL5c. (C) Gene

structure (left) and flag leaf length of different haplotypes (right) of LOC_Os06g04710 at qFLL6a. (D) Gene structure

(left) and thousand-grain weight of different haplotypes (right) of LOC_Os07g32510 at qTGW7. FLL, flag leaf length;

TSN, total spikelet number per panicle; TGW, thousand-grain weight. The �� and ��� denote significance of ANOVA

at P< 0.01 and P< 0.001, respectively. Letters above violins (a, b and c) are ranked by Duncan’s test at P< 0.05.

https://doi.org/10.1371/journal.pone.0237774.g006
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control [30]. In the present study, two haplotypes of OsNF-YA4 were identified, and haplotype

G showed significantly more TSN than haplotype A (Fig 6A). Therefore, OsNF-YA4
(LOC_Os03g48970) is considered as the most likely candidate gene for qTSN3b.

For qFLL6a, dwarf and deformed flower 1 (ddf1-1, LOC_Os06g04710) that encodes an F-

box protein in rice is the most likely candidate gene. The ddf1-1 mutant exhibited significantly

shorter and thinner stems, leaves, and roots than the wild type [31]. Genetic complementation

of the ddf1-1 mutant showed that all the mutant phenotypes were rescued, including plants

with dwarf stature and smaller stems, leaves, roots, and panicles, as well as aberrant spikelets

[31]. In the present study, four haplotypes of ddf1-1 were detected, of which Hap 1 and Hap 3

were associated with significantly larger FLL than the other two haplotypes (Hap 2 and Hap 4)

(Fig 6C).

Of the two candidate genes for qTGW7, LOC_Os07g32510 is a Dof zinc finger domain pro-

tein. The Dof proteins, a class of zinc finger domain transcription factors, have been reported

to participate in regulation of gene expression in seed storage protein synthesis in developing

endosperm [35, 36]. It has been reported that seed weight increased in Arabidopisis due to

overexpressing one of two soybean Dof transcription factor genes GmDof4 and GmDof11 [37].

In rice, grain size and weight were decreased in the antisense transgenic lines of Dof daily fluc-
tuations 1 (RDD1) encoding a Dof transcription factor gene [38]. In the present study, four

haplotypes of LOC_Os07g32510 were detected, with Hap 1 and Hap 2 being associated with

significantly larger TGW values than the other two haplotypes (Fig 6D), suggesting that

LOC_Os07g32510 is a likely candidate gene of qTGW7 that probably affects TGW in rice.

Comparison of QTLs detected in this study with previously cloned genes

Of the 95 QTLs for source-, sink- and grain yield-related traits, ten QTLs were located in the

same or adjacent regions containing previously reported cloned genes in rice (Table 1). For

example, qFLW4b for FLW, qFLA4c for FLA, qTSN4b for TSN, qFGN4b for FGN, and qPN4
for PN were mapped in the region of 31.15–31.50 Mb on chromosome 4 that harbored the pre-

viously reported NAL1 associated with pleiotropic effects on multiple traits related to the

source (e.g., leaf width, leaf chlorophyll content, and photosynthetic efficiency), the sink (e.g.,

TSN), and the PN in diverse genetic backgrounds [15–18, 39]; qTGW3c in the region 35.37–

35.77 Mb on chromosome 3 and qTGW5b in the region 5.29–5.41 Mb on chromosome 5 were

co-located with qTGW3 [12] and GW5 [11] associated with rice grain size and grain weight,

respectively; qFGN7 in the region 9.11–9.21 Mb and qTSN7d in the region 29.57–29.67 Mb on

chromosome 7 were close to Ghd7 [8] and Ghd7.1 [40] regulating spikelet number, plant

height and heading date in rice; qTSN6b for TSN was co-located in the region 27.40–27.97 Mb

on chromosome 6 harboring APO1 for the number of primary rachis branches that ultimately

increase the harvest index and grain yield in rice [41]. Allelism of the above QTLs for yield and

its related traits detected in this study with the previously reported genes awaits further verifi-

cation using fine mapping and QTL cloning.

Application in rice breeding for high yield potential

In the history of rice breeding, the balance between sources (e.g., FLL, FLW, and FLA) and

sinks (e.g., TSN and TGW) plays an important role in guiding the breeding of super high-yield

rice varieties. The significant positive correlations of FLL, FLW and FLA with TSN in the two

populations were in agreement with previous studies [4]. However, no significant correlations

were observed between the three flag leaf traits and TGW except between FLW and TGW in

XS-ILs in the two sets of ILs (Fig 2). In this study, we identified five QTL clusters (in the

regions of 27.70–28.07 Mb on chromosome 3, 24.47–24.92 Mb on chromosome 4, 31.15–31.50
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Mb on chromosome 4, 27.40–27.97 Mb on chromosome 6, and 30.19–30.79 Mb on chromo-

some 6) simultaneously influencing the source- and sink-related traits, hinting at possible plei-

otropy or tight linkage. SPIKE (NAL1) located at a QTL cluster (qFLW4b/qFLA4c/qTSN4b/

qFGN4b) in the region of 31.15–31.50 Mb on chromosome 4 showed pleiotropic effects in reg-

ulating the development of multiple traits related to source (leaf width, leaf chlorophyll con-

tent, and photosynthetic efficiency) and sink (spikelet number per panicle) in different genetic

backgrounds [15–18]. NILs with the superior NAL1 allele achieved 18.7% and 18% yield

increases compared with their controls 9311 and IRRI146 [15, 17], respectively. Therefore, we

inferred that it is possible to improve the grain yield by introgression of favorable alleles of the

above five QTL clusters (qFLW3b/qFLA3c/qTSN3b, qFLW4a/qFLA4b/qTSN4a, qFLW4b/

qFLA4c/qTSN4b/qFGN4b, qFLW6b/qFLA6a/qTSN6b, and qFLW6c/qFLL6b/qTGW6c) into

geng or xian varieties to develop super high-yield rice cultivars, as demonstrated by the IL

XC10 from this study (Fig 4).

In general, large-panicle cultivars exhibit greater plant size, larger FLL and FLW, and fewer

numbers of tillers [42]. In the present study, strong negative correlations of FLL, FLW, FLA

and TSN with PN were observed in the two populations (Fig 2). The significant negative corre-

lation between TSN and PN, which is also known as the concept ‘yield component compensa-

tion’ can be partly explained by the developmental trade-off between tiller or panicle number

and organ size (plant height, leaf size, and panicle size) or physiological competition for nitro-

gen during spikelet differentiation in rice [43, 44]. In this study, we identified two QTL clusters

in the region of 31.15–31.50 Mb on chromosome 4 and 27.40–27.97 Mb on chromosome 6

underlying the development of multiple traits related to source (FLW and FLA), sink (TSN),

and grain yield-related traits (PN and FGN) in XS-ILs, and the alleles increasing FLW, FLA,

TSN, and FGN decreased PN. In addition, another two QTL clusters in the region of 41.85–

42.06 Mb on chromosome 1 and 27.73–28.08 Mb on chromosome 5 were identified that

simultaneously influenced leaf size and PN with opposite directions of additive effect. How-

ever, only a few overlapping QTL clusters affecting PN and the other source- and sink-related

traits were detected in the two populations, suggesting that most QTLs influencing PN and the

other source- and sink-related traits are genetically independent. Therefore, one strategy for

improvement of yield could be via deploying or pyramiding different favorable alleles of inde-

pendent QTLs for PN and the other source- and sink-related traits to well coordinate source

and sink relationships.

Conclusions

We identified 95 QTLs for the yield- traits, nine of which were consistently detected in seven

chromosomal regions in the two set of ILs, and seven QTL clusters that simultaneously

affected source-, sink-, and grain yield-related traits were detected in the same population. A

total 15 candidate genes for the four QTLs consistently detected in the two populations were

identified and the most likely candidate genes for three QTLs (qTSN3b, qFLL6a, and qTGW7)

were inferred from gene-based association analysis, haplotype analysis and functional annota-

tion. Favorable alleles of genetic background-independent QTLs for source-, sink, and grain

yield-related traits were mined. These results provide an effective guide to developing varieties

with high yield potential by balancing source–sink dynamics via marker-assisted selection.
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