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Fifteen-gene expression based model predicts the
survival of clear cell renal cell carcinoma
Ping Li, PhDa, He Ren, MDa, Yan Zhang, MDb, Zhaoli Zhou, PhDc,d,∗

Abstract
Clear-cell renal cell carcinoma (ccRCC) is the major renal cell carcinoma subtype, but its postsurgical prognosis varies among
individual patients.
We used gene expression, machine learning (random forest variable hunting), and Cox regression analysis to develop a risk score

model based on 15 genes to predict survival of patients with ccRCC in the The Cancer Genome Atlas dataset (N=533). We validated
this model in another cohort, and analyzed correlations between risk score and other clinical indicators.
Patients in the high-risk group had significantly worse overall survival (OS) than did those in the low-risk group (P=5.6e-16);

recurrence-free survival showed a similar pattern. This result was reproducible in another dataset, E-MTAB-1980 (N=101,
P= .00029). We evaluated correlations between risk score and other clinical indicators. Risk was independent of age and sex, but
was significantly associated with hemoglobin level, primary tumor size, and grade. Radiation therapy also had no effect on the
prognostic value of the risk score. Cox multivariate regression showed risk score to be an important indicator for ccRCC prognosis.
We plotted a nomogram for 3-year OS to facilitate use of risk score and other indicators.
The risk score model based on expression of the 15 selected genes can predict survival of patients with ccRCC.

Abbreviations: ccRCC = clear-cell renal cell carcinoma, TCGA = The Cancer Genome Atlas.
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1. Introduction

An estimated 66,800 new cases of renal cell carcinoma (RCC)
and 23,400 RCC-related deaths occurred in China in 2015.[1]

Among RCC subtypes, more than 75% of diagnoses are of clear-
cell renal cell carcinoma (ccRCC). However, predicting survival
of patients with ccRCC is challenging because of its genetic
heterogeneity.[2] Biomarkers that can guide prognosis prediction
and drug development for ccRCC are therefore needed.
Many biomarkers including mRNAs, long noncoding RNAs,

miRNAs, and proteins have been widely reported to predict
prognosis in ccRCC. For example, in ccRCC, overexpression of
FABP7 reportedly promotes cell growth and predicts poor
outcome,[3] high RAB25 expression is associated with poor
survival,[4] and enhanced CX3CR1 expression promotes migra-
tion and proliferation.[5] Some miRNAs have been associated
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with survival in ccRCC. Low miR-497 expression reportedly
predicts poor survival in ccRCC patients.[7] Long noncoding
RNA CADM1-AS1 was also shown to promote growth and
migration.[8] However, no single biomarker offers predictability
across datasets, due to the genetic heterogeneity of ccRCC.
Models based on expression of multiple genes have been

developed to predict survival of some cancers, and have been
validated across datasets and study populations.[6,9–12] Although
models have been developed for ccRCC, their robustness and
clinical usefulness are limited.
Here, by screening survival-related genes in The Cancer

Genome Atlas (TCGA) dataset, in combination with random
forest variable hunting and Cox multivariate regression, we have
developed a prognostic model. Patients in the model’s high-risk
group had significantly worse survival than those in the low-risk
group, and this finding was further validated in another dataset.
We also analyzed correlations between risk score (RS) and
clinicopathological indicators.
2. Material and methods

2.1. Data processing

This study does not involve new participants; thus an ethics
committee or institutional review board approval is not
necessary. Raw expression data for ccRCC in TCGA dataset
were downloaded from the UCSC Xena (http://xena.ucsc.edu/
public-hubs/) in a log2 (RSEM+1) transformed format. The data
were further transformed to log2 (RSEM) with R. Clinical
information was also downloaded from the same website and
manually curated.
Processed microarray data (E-MTAB-1980) was downloaded

from the ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) web
site. The processing method has been previously described.[13]
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Figure 1. Genes selected for risk score model. (A) Gene frequency in variable hunting and (B) multivariate Cox regression coefficient for each gene.
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Clinical indicators and follow-up information was further
manually curated.
2.2. Cox univariate and multivariate regression

Cox univariate regression was implemented in TCGA dataset
using R package “survival.” P values were calculated for each
gene, and genes significantly associated with overall survival (OS;
false discovery rate [FDR] <0.00001, adjusted with method
“BH”) were retained as list 1. Using the median expression value
of each gene as cut-off, samples were divided into gene-high and
gene-low groups, and OS differences between these groups was
evaluated; genes with FDR<0.0001 were selected as list 2. Genes
presented in both list 1 and list 2 were retained for further
analysis. Random forest variable hunting was implemented with
these selected genes to optimize the gene panel, with 100 repeats
and 100 iterations. Coxmultivariate regression was performed to
estimate RS with the 15 genes obtained in the previous step. The
Table 1

Coefficients of genes selected.

Univariate

Genes HR 95% CI P

CCDC137 2.3–1.8 2.8 <.000
KL 0.78–0.72 0.83 <.000
ZIC2 1.2–1.2 1.3 <.000
FBXO3 0.44–0.35 0.56 <.000
CDC7 1.9–1.6 2.3 <.000
IL20RB 1.2–1.1 1.2 <.000
CDCA3 1.7–1.5 1.9 <.000
ANAPC5 2.9–2.1 4.1 <.000
OTOF 1.4–1.3 1.5 <.000
POFUT2 2.6–2.1 3.2 <.000
ATP13A1 3–2.2 4.1 <.000
MC1R 1.7–1.5 1.9 <.000
BRD9 3.3–2.4 4.6 <.000
ARFGAP1 2.1–1.8 2.6 <.000
COL7A1 1.3–1.2 1.4 <.000

CI= confidence interval, HR=hazard ratio.
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RS was calculated as RS ¼ i bixi, where bi refers to the
coefficient of each gene calculated, and xi indicates the relative
expression value of corresponding gene.
2.3. Statistical analysis

All statistical analyses in this study were performed with R and R
packages. The Cox probability hazard model was performed
with R package “survival.” ROC curves were plotted with R
package “pROC,”[14] and “randomForestSRC” was used to
perform random forest survival variable hunting. The nomogram
was plotted with R package “rms.”

3. Results

3.1. Survival genes identification

Survival analyses were performed in TCGA dataset (N=533).
Cox univariate regression was used to correlate expression level
Multivariate

Exp (coef.) 95% CI P

01 1.31–0.86 1.98 .20465
01 1–0.88 1.15 .94248
01 1.07–1 1.14 .05688
01 1.5–0.91 2.46 .10923
01 1.23–0.95 1.59 .12192
01 1.06–0.99 1.14 .07375
01 1.01–0.8 1.28 .93046
01 0.99–0.55 1.75 .96288
01 1.13–1.01 1.26 .03487
01 1.34–0.92 1.94 .12374
01 1.3–0.76 2.21 .3385
01 1.09–0.88 1.35 .42618
01 1.2–0.71 2.02 .49814
01 0.77–0.47 1.28 .3205
01 1.09–1 1.19 .04175
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of each gene with OS; genes significantly associated with survival
(FDR<0.00001) was retained for further analysis (termed as
gene list 1). Samples in TCGA dataset were then divided into
gene-high and gene-low groups according to the median
Figure 2. Prognostic effect of risk score on training dataset. (A) Overall survival and
Detailed survival information and expression patterns of candidate genes also dif
status; bottom: candidate gene expression profiles). (D) Survival difference in quarti
for risk score and other clinical information.

3

expression level of each gene, and survival differences were
compared between these 2 subgroups (termed as gene list 2).
Survival-associated genes (FDR<0.00001) were retained. Genes
in both list 1 and list 2 were identified for further analysis, and 75
(B) recurrence-free survival differed between high-risk and low-risk groups. (C)
fered between high-risk and low-risk groups (top: risk score; middle: survival
les was also compared. (E) Three-year survival by areas under the curve (AUCs)
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Figure 3. Risk score performance in other independent cohorts. (A) Survival
differences for high-risk and low-risk groups in another independent dataset, E-
MTAB-1980, resemble the profile of the training datasets, along with (B) gene
expression.
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genes were identified. Random forest variable selection was
carried out to optimize and narrow down the panel. Finally, 15
genes were identified (Fig. 1A, Table 1). The RSwas calculated as:
RS = (0.0896∗CCDC137) + (�0.2552∗KL) + (0.1807∗ZIC2) +
(0.0869∗FBXO3) + (0.2608∗CDC7) + (0.2924∗IL20RB) +
(0.1183∗CDCA3) + (�0.0137∗ANAPC5) + (0.0104∗OTOF) +
(0.0620∗POFUT2) + (0.2056∗ATP13A1) + (0.4044∗MC1R) +
(0.0664∗BRD9) + (0.0049∗ARFGAP1) + (0.2689∗COL7A1).
The gene symbol indicates the relative expression level.
Coefficients of each gene are shown in Fig. 1B. Positive
coefficients suggest that the gene is negatively associated with
survival time/rates; genes with negative coefficients are positively
associated survival.

3.2. Risk score in TCGA dataset

The performance of the RS was assayed in TCGA dataset. After
calculating the RS of each patient using the aforementioned
formula, the samples in TCGA dataset were divided into low-risk
and high-risk groups according to the median RS in this dataset,
and their survival differences were compared. Patients in low-risk
group had a significantly better prognosis than the high-risk
group (Fig. 2A, N=533, P=5.6e-16; detailed survival informa-
tion is shown in Supplementary Table 1, http://links.lww.com/
MD/C400). Recurrence-free survival (RFS) in the 2 groups was
also compared, and the result is consistent with the OS profile
(Fig. 2B). In addition, we divided the samples in TCGA dataset
into quartiles, and assayed the survival difference among
subgroups (Fig. 2D), and similar results were seen. Patients with
high RS usually had early events, and unique expression pattern
of the 15 genes (Fig. 2C). We plotted areas under the curve
(AUCs) for 3-year OS with respect to age (0.625), sex (0.516),
hemoglobin (0.629), primary tumor size (0.610), grade (0.736),
and RS (0.784; Fig. 2E). Collectively, these results indicate that
RS can help predict survival of patients with ccRCC.

3.3. Risk score in validate dataset

The good performance of RS model may result from overfitness.
To test our model, another dataset, E-MTAB-1980 (N=101),
which was generated from another platform (Aligent Micro-
array), was used for validation. The RS of each sample in E-
MTAB-1980 dataset was calculated, and the samples were then
divided into high-risk and low-risk groups according the median
RS value of this dataset. Consistently with the result of TCGA
dataset, the high-risk group in the E-MTAB-1980 dataset showed
significantly worse survival than the low-risk group (P= .00029;
Fig. 3A; Supplementary Table 2, http://links.lww.com/MD/
C401). The patients in the high-risk group had early events
and relatively shorter OS. In addition, the gene expression pattern
resembled the training dataset (Fig. 3B). All these results indicate
that the RS model is valid across datasets and platforms.

3.4. Risk score and other clinicopathological indicators

We investigated correlations between RS and other clinical
indicators. The RS is independent of age and sex, but significantly
associated with hemoglobin, primary tumor size, and grade
(Fig. 4A). Cox multivariate regression showed that the RS was
significantly associated with ccRCC prognosis (Fig. 4B), whereas
other clinical indicators, including primary tumor size and sex,
were not significantly associated with survival. A nomogram that
considered RS, sex, hemoglobin, primary tumor size, histologic
4

grade, pathologic stage, and lymph invasion was plotted for 3-
year OS (Fig. 4C) in which RS had a wider range of risk points (0–
100) than the other indicators. To assay the bias of the RS to
clinical indicators, the samples were divided into subgroups
according to clinical factors, including age (60 as cut-off),
hemoglobin (normal or low), primary tumor size (1cm as cut-
off), pathological grade (1–2 or 3–4), stage (1–2 or 3–4), and
lymph invasion. The prognostic value of RS was estimated in the
subgroups, and showed that the RS is effective in all these
subgroups (Fig. S1, http://links.lww.com/MD/C399).

3.5. Risk score and radiation

Radiation is an important adjuvant therapy for ccRCC. To test
whether the RS prognostic value was affected by radiation,
TCGA samples were divided into radiation-receiving and
radiation-depleted group (patients did not receive radiation),

http://links.lww.com/MD/C400
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http://links.lww.com/MD/C401
http://links.lww.com/MD/C399


Figure 4. Risk score and other clinical indicators. (A) Box plot shows relationships between risk scores and other clinicopathological indicators. (B) Coxmultivariate
regression using clinical indicators and risk scores; red lines: 95% confidence interval; red dot: hazard ratio. (C) Three-year survival nomogram based on risk scores
and other clinical indicators.
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according to therapy records. Patients were divided into high-risk
and low-risk groups. As expected, the high-risk group had a
significantly worse survival than the low-risk group in both the
radiation-depleted group (Fig. 5A) and radiation-receiving group
(Fig. 5B), indicating that the prognostic value of RS was not
affected by radiation.

4. Discussion

Outcomes of patients with ccRCC are determined by many
factors, including surgery type, therapy methods, and genetic
heterogeneity of ccRCC. Surgery and therapy methods are
controllable, but genetic heterogeneity is not.[2] Thus, single
biomarkers often fail to predict survival across datasets, so a
5

multiple biomarker-based model is needed. In this article, a RS
model was developed and validated using gene expression,
random forest variable hunting, and Cox regression. Subsequent
analyses showed that the RS significantly indicated prognosis.
Among genes used for this model, CDC7, CDCA3, and

ANAPC5 are involved in the cell cycle, and affect prognosis and
migration in other cancer types.[15–17] POFUT2 and ATP13A1
(enzymes), ADP ribosylation factor, GTPase activating protein 1,
and collagen type VII alpha-1 chain were also included.
In the past years, multiple gene expression-based signatures

have been developed to predict the progression of ccRCC.[18] For
example, combining expression of miR-21 and miR-126 led to
good ccRCC survival prediction.[19] A 5-gene expression-based
model was developed using TCGA dataset, and another model

http://www.md-journal.com
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Figure 5. Risk score and radiation. Survival difference of high-risk and low-risk groups in radiation-depleted (A) and radiation-receiving (B) group was also
significant.
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combined clinical indicators and molecular biomarkers.
However, these model lacks test datasets,[21] and their samples
were from single centers. Based on radiogenomics, a model was
developed based on the molecular assay of ccRCC to predict
survival.[22] Rini et al[23] reported that a 16-gene model was
robust and effective in predicting recurrence after surgery for
ccRCC. We assayed it in TCGA cohort, but could not validate it
(not shown), as the model was developed and validated using Q-
RTPCR platform. A CpG-methylation-based assay reportedly
predicted survival in ccRCC (P=1.4e-6) in TCGA cohort,[24] but
our model performed better (P=5.6e-16). Ourmodel was trained
from a next-generation sequencing platform and was validated
using microarray with a totally independent dataset. In
conclusion, our model performed better.
This study had some limitations. This is a retrospective study,

and may be inherently biased. Further prospective studies with
more samples from different centers are needed to validate our
findings.
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