
Computer-Implemented Articulatory
Models for Speech Production: A
Review
Bernd J. Kröger*

Department of Phoniatrics, Pedaudiology, and Communication Disorders, RWTH Aachen University, Aachen, Germany

Modeling speech production and speech articulation is still an evolving research topic.
Some current core questions are: What is the underlying (neural) organization for
controlling speech articulation? How to model speech articulators like lips and tongue
and their movements in an efficient but also biologically realistic way? How to develop high-
quality articulatory-acoustic models leading to high-quality articulatory speech synthesis?
Thus, on the one hand computer-modeling will help us to unfold underlying biological as
well as acoustic-articulatory concepts of speech production and on the other hand further
modeling efforts will help us to reach the goal of high-quality articulatory-acoustic speech
synthesis based on more detailed knowledge on vocal tract acoustics and speech
articulation. Currently, articulatory models are not able to reach the quality level of
corpus-based speech synthesis. Moreover, biomechanical and neuromuscular based
approaches are complex and still not usable for sentence-level speech synthesis. This
paper lists many computer-implemented articulatory models and provides criteria for
dividing articulatory models in different categories. A recent major research question,
i.e., how to control articulatory models in a neurobiologically adequate manner is
discussed in detail. It can be concluded that there is a strong need to further
developing articulatory-acoustic models in order to test quantitative neurobiologically
based control concepts for speech articulation as well as to uncover the remaining
details in human articulatory and acoustic signal generation. Furthermore, these efforts
may help us to approach the goal of establishing high-quality articulatory-acoustic as well
as neurobiologically grounded speech synthesis.
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INTRODUCTION

An articulatory model is a quantitative computer-implemented emulation or mechanical replication
of the human speech organs. It can be extended towards an articulatory-acoustic model if in addition
an acoustic speech signal is produced based on the geometrical information provided by the
articulatory model. Thus, the term articulatory model will include articulatory-acoustic models in
this paper. The speech organs modeled in these approaches can be divided in sub-laryngeal,
laryngeal, and supra-laryngeal organs. The sub-laryngeal system comprising lungs and trachea
provides subglottal pressure and sufficient airflow for speaking, the laryngeal system provides the
phonatory signal (primary source signal), and the supra-laryngeal system comprising pharyngeal,
oral, and nasal cavities and comprising the articulators for modifying the shape of the pharyngeal and
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oral cavity, i.e., lower jaw, lips, and tongue, modify the phonatory
signal and generates secondary source signals (frication noise) in
case of the occurrence of appropriate constrictions. It is the main
task of an articulatory model to produce natural articulatory
speech movements based on articulatory control commands and
in case of an articulatory-acoustic model in addition to generate
an understandable and natural sounding acoustic speech signal.
In case of the sub-laryngeal system the breathing activity during
speech needs to be specified as a basis for calculating subglottal
pressure and airflow. In case of the laryngeal system vocal cord
tension and aperture needs to be specified as a basis for
calculating the vocal fold vibrations and the phonatory
acoustic signal. In case of the supra-laryngeal system a
succession of vocal tract shapes (cavity shapes of oral, nasal,
and pharyngeal cavity, Figure 1) needs to be specified for
calculating the resulting acoustic speech signal.

Articulatory models mainly serve as a research tool 1) for
defining a set of significant articulatory control parameters which
is capable to control an articulatory model in all its aspects during
speech production, 2) for verifying hypotheses concerning the
neuromuscular and biomechanical properties of speech
articulators, and 3) in case of articulatory-acoustic models to
test acoustic and aerodynamic theories of speech production for
generating realistic acoustic output based on the geometric data
provided by the model.

First articulatory models were mechanical devices (e.g.,
Kempelen’s speaking machine; von Kempelen, 1791, see also
Dudley and Tarnoczy, 1950). Because most computer-
implemented articulatory speech synthesizers currently do not

allow real-time signal generation and because of the advance in
developing anthropomorphic systems during last decades, the
existence of robotic-mechanical reconstruction approaches for
the human vocal tract, allowing a direct aerodynamic and
acoustic signal generation should be mentioned here as well
(e.g., the WASEDA anthropomorphic talking robot; Fukui
et al., 2009). But these approaches still have difficulties to
mimic the neuromuscular and biomechanical details of the
human vocal apparatus and thus to model the geometrical
details of articulators, of vocal tract shapes, and of articulator
movements.

In this paper we focus on computer-implemented models
beginning with models developed in the 1960s/1970s up to
contemporary articulatory models and synthesizers which are
developed to approach the goal of producing high-quality
articulatory-acoustic signals and/or to reproduce the
neuromuscular and biomechanical properties of articulators as
close as possible. We include articulatory models with and
without an acoustic module because some approaches mainly
concentrate on the neuromuscular and biomechanical aspects
while other approaches concentrate on the generation of
acoustically relevant vocal tract geometries. Moreover, many
articulatory models focus exclusively on modeling the supra-
laryngeal part of articulation, especially if an acoustic model part
is not included. These articulatory models are included here
as well.

FEATURES FOR DIFFERENTIATING
COMPUTER-IMPLEMENTED
ARTICULATORY MODELS
A (not necessarily complete) list of well published articulatory
models is given in Table 1. These models can be differentiated
with respect to a set of model features (columns of Table 1).

Two-dimensional models (e.g., Mermelstein, 1973; Maeda,
1990; Stark et al., 1999; Beautemps et al., 2001; Iskarous et al.,
2003) generate mid-sagittal shapes of the vocal tract. While this
geometrical information is the most relevant 2D-information for
many speech sounds there exist sounds like the laterals for which
the midsagittal information is misleading. Laterals exhibit a
midsagittal closure while the lateral parts of the tongue
produce an opening for laminar air flow. Traditionally the
area function is used as relevant information for calculating
vocal tract acoustics from geometrical data. The area function
represents the succession of cross-sectional areas occurring
between glottis and mouth, perpendicular to the airflow within
the vocal tract (area in cm2 as function of distance from glottis).
There exist approaches to approximate area functions from
midsagittal distances (Heinz and Stevens 1964; Perrier et al.,
1992) but these approaches only approximate area functions
roughly because the shape of the cross-sectional area of the
vocal tract cavity perpendicular to the airflow varies strongly
between glottis and mouth. Three-dimensional models (e.g.,
Buchaillard et al., 2009; Harandi et al., 2017) provide the full
spatial information and are capable to calculate correct area
functions in a straightforward way. But the goal of most

FIGURE 1 | Midsagittal view generated using the two-dimensional
articulatory model of Kröger et al. (2014).
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TABLE 1 | List of computer-implemented articulatory models (rows) and criteria for differentiating articulatory models with respect to several features (rows; see text).

Dim. Biomechanical vs.
geometrical vs.

statistical

Number
of control
parameters

Data Acoustic
model

Complete
VT

Dynamic vs.
static, all sound

or less,
syllables

Major
goal

Badin et al. (2002) 3D statistical, linear
component analysis

low (<10) static MRI plus
video facial data

no yes dynamic identifying phonetic
and biomechanical
interpretable model
control parameters

Beautemps et al.
(2001)

2D statistical, linear
component analysis

low (9) cine X-ray plus
video facial data

yes yes dynamic identifying the
degrees of freedom
(i.e., the number of
control parameters)
for an articulatory
model (statistical
model)

Birkholz and Jackel
(2003), Birkholz
(2013)

3D geometric;
parametric

middle (15) static MRI data yes yes dynamic high quality speech
synthesis

Buchaillard et al.
(2009)

3D muscle force model;
biomechanical tissue
model

middle (11) static MRI and CT
data for vowels
(geometries);
EMG data
(muscle
activation)

yes yes static V-sounds muscle force levels for
different French
vowels

Coker (1976) 2D geometric;
parametric

low (<10) static X-ray data yes yes dynamic speech synthesis by
rule; developing an
approach for
articulatory
commands

Dang and Honda
(2004)

2D muscle force model;
biomechanical tissue
model

middle (10 for
tongue)

static MRI data no tongue + VT
walls

movements
towards V- and
C-sound
equilibrium
positions

identifying agonist-
antagonist muscle
groups (muscle
synergies) for V- can
C-sounds

Engwall (2003) 3D statistical; ordered
linear factor analysis

low (6 for tongue) static MRI plus
EMA, EPG

no tongue static V- and
C-sounds VC-
sequences with
C = fricative

identifying kinematic
model control
parameters;
developing methods
for including EMA and
EPG data for
modeling tongue
movements

Harandi et al. (2015),
Harandi et al. (2017)

3D muscle activation +
force model; biome-
chanical tissue
model

high (21 for
tongue and jaw)

tagged MRI plus
cine MRI data

formants tongue + VT
walls

tongue forward-
backward
movement

specifying speaker-
specific muscle
activation patterns
based on tagged and
cine MRI data

Henke (1966) 2D geometric;
parametric

Non-parametric
“goal-seeking”
approach

cine X-ray data transfer
function

yes dynamic specifying control
concepts for
articulatory
movements and
modeling
coarticulation

Iskarous et al. (2003) 2D geometric;
parametric

low (<10) static X-ray data,
ultrasound,
static MRI

yes yes dynamic research tool; testing
gesture patterns by
perception

Kröger et al. (2014) 2D geometric;
parametric

low (<10) static MRI data yes yes dynamic midsagittal views of
dynamic articulation
for teaching and as
tool in speech therapy

(Continued on following page)
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current 3D-models is not the generation of acoustic speech
signals but the detailed modeling of neuromuscular and
biomechanical details of articulators. Moreover 3D-models are

able to incorporate sagittal asymmetries in articulation which
occur to a certain degree in normal as well as in disordered speech
production. Beside 2D-models representing the midsagittal plane

TABLE 1 | (Continued) List of computer-implemented articulatory models (rows) and criteria for differentiating articulatory models with respect to several features (rows; see
text).

Dim. Biomechanical vs.
geometrical vs.

statistical

Number
of control
parameters

Data Acoustic
model

Complete
VT

Dynamic vs.
static, all sound

or less,
syllables

Major
goal

Maeda (1979),
Maeda (1990), Boe€
et al. (1995)

2D statistical; principal
component analysis;
growth model

low (7), see also
Toutios et al.
(2011)

cine X-ray data yes yes dynamic research tool;
identification of model
control parameters

Mermelstein (1973),
Rubin et al. (1981)

2D geometric;
parametric

low (<10) static X-ray data yes yes VCV-sequences VCV-sequences;
coarticulation;
speech synthesis;
research tool

Perrier et al. (2003) 2D muscle activation +
force model (lambda
model);
biomechanical tissue
model

low (<10 for
tongue)

qualitative
comparison with
CVC movement
data extracted
from literature

no tongue VCV-sequences VCV-sequences; C =
velar consonant;
tongue body
movement during C
(loops)

Sanguineti et al.
(1998)

2D muscle activation +
force model (lambda
model);
biomechanical tissue
model

middle and low
(17 muscles -> 6
factors explain a
variance of 75%;
tongue + jaw +
hyoid)

cine X-ray data no tongue,
hyoid, larynx,
lower jaw

periodic jaw and
tongue
movements

organization of
control signals;
dynamic behavior of
articulators;
identifying muscle
synergies

Serrurier et al. (2019) 2D statistical; principal
component analysis;
speaker-specific

middle (14) static MRI data no yes static V- and
C-sounds

estimation of control
parameters; based on
11 different speakers;
generating individual
models and a mean
speaker model

Serrurier and Badin
(2008)

3D statistical; generic
surface triangular
mesh; principal
component analysis

low (2 for velum) static MRI and CT
plus EMA data

yes velum +
naso-
pharyngeal
wall

static V- and
C-sounds

identifying geometric
model control
parameters; modeling
velum movements
using additional EMA
data; resynthesis of
nasals

Stark et al. (1999) 2D geometric low (<10) cine X-ray data yes yes dynamic speaker-specific
vocal tract
geometries for short
sound sequences

Stone et al. (2018) 1D parametric area-
function

middle (16) static MRI data yes yes dynamic high quality and real
time speech
synthesis

Story and Titze
(1998), Story (2005),
Story et al. (2018)

1D parametric area-
function model;
speaker-dependent;
growth

low (<10) for
static vowel
model; middle
(14) for dynamic
model

static CT and MRI
data

yes area
functions
including
nasal tract

dynamic (VV,
VCV and VCCV
utterances) or
static V- and
C-sounds

articulatory-acoustic
relations for males/
females for
newborns/children/
adults; high-quality
speech synthesis of
isolated sounds and
of sound sequences

Wilhelms-Tricarico
(1996)

3D muscle activation +
force model;
biomechanical tissue
model

low (<10 at higher
control level);
middle (<20 at
lower control
level; tongue)

static MRI data no tongue static tongue
configurations

physiologically based
computer simulation
of speech production;
research tool
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and beside 3D-models representing the complete shape of the
vocal tract, even 1D-models are available, which directly calculate
and process the acoustically relevant area function (Story and
Titze, 1998; Story, 2005; Stone et al., 2018; Story et al., 2018). “One
dimension” in this case means that these models do not calculate
the articulator shapes in a two-dimensional midsagittal plane or
in the three-dimensional space, but just calculate one parameter,
i.e., the (one-dimensional) distance between articulator and vocal
tract wall as function of distance from the glottis along the
midline of the vocal tract from glottis to mouth (e.g., Stone
et al., 2018, p. 1381). These models are focusing directly on the
acoustic effects of speech articulation.

First computer-implemented articulatory models were
geometrical models (Henke 1966; Mermelstein 1973; Coker
1976; Rubin et al., 1981). Geometrical models are defined by
making a priori assumptions concerning the basic geometries
(parts of circles, straight lines) for constructing articulator shapes
and concerning the set of control parameters. One of the most
detailed geometrical 2D-model is that published by Iskarous et al.
(2003). A further very detailed geometrical 3D-model has been
developed by Birkholz and Jackel (2003). Both models are able to
produce fluent speech and can be adapted to vocal tract
geometries of different speakers. One main goal of geometrical
models is to deliver a simple but phonetically and/or linguistically
meaningful set of control parameters. Thus, the model of Iskarous
et al. (2003) directly parameterizes degree and location of
consonantal constrictions and the high-low, front-back, and
rounded-unrounded dimension for vowels. Control parameter
estimation can be done for this kind of model by fitting model
vocal tract shapes to imaging data (contours stemming from
X-ray, CT, EMA, or MRI measurements of natural speakers, see:
Toutios et al., 2011; Ramanarayanan et al., 2013; Narayanan et al.,
2014).

Statistical models are directly based on defined sets of imaging
data. No a priori assumptions are made concerning articulators
and their control parameters. Control parameters are defined
here by using statistical procedures evaluating the variance of
vocal tract shapes occurring in the data set. The data set can be a
set of continuous movement data of whole sentences or a set of
static imaging data representing a list of sound targets. The
location of predefined flesh or tissue points of the articulators
and vocal tract walls is extracted for each image and a principal
component analysis is done on these sets of flesh point locations
(Maeda, 1990; Badin et al., 2002; Engwall, 2003; Serrurier et al.,
2019). In case of theMaeda model 88% of the variance of the flesh
points, derived from a data set of 10 sentences uttered by a French
speaker (519 images in total), can be explained by seven
articulatory parameters, which are directly interpretable as
physiological parameters for lips, tongue, jaw, and larynx (Boe€
et al., 1995).

The goal of geometric and statistical models is to parameterize
vocal tract shapes with as few parameters as possible (see column
4 of Table 1: number of control parameters <10 for most of these
models), but with enough flexibility to fit different speakers
(adaptivity) as well as to fit the whole variety of vocal tract
shapes occurring for each speaker in fluent speech. Most of the
current statistical models are 2D-models (see Tab. 1) but a few

3D-models exist as well (Badin et al., 2002; Serrurier and Badin,
2008).

Biomechanical models approximate the anatomy and
biomechanical properties of all vocal tract articulators. Its
time-variant input is a vector of muscular activation levels
leading to speech articulator movements and producing a
succession of articulator displacements and thus of vocal tract
shapes over time. Here, the body of articulators like tongue, lips,
or velum is subdivided into 2D- or 3D-finite elements with simple
shapes. These elements are defined by a mesh of corner points.
The current location or displacement of these tissue or mesh
points and its displacement velocity and acceleration specifies all
articulator movements. The forces acting on each mesh point and
leading to mesh point movements result from active forces
generated by the muscles and from passive forces resulting
from biomechanical soft tissue properties. Some biomechanical
models are 2D-models (e.g., Sanguineti et al., 1998; Perrier et al.,
2003; Dang and Honda, 2004) but most biomechanical models
are 3D-tongue models (e.g, Wilhelms-Tricarico, 1996;
Buchaillard et al., 2009) or complete 3D-vocal tract models
(e.g., Harandi et al., 2017). The definition of the 2D- or 3D-
finite element mesh is typically based on static X-ray or MRI data
displaying the neutral or rest positioning of articulators. Because
the set of muscles and its function during speech is complex,
muscles are combined to synergetic actingmuscle groups inmany
biomechanical models. These combinations of muscles to muscle
groups allows a direct control of speech-like articulator
movements like vocalic up-down and forward-backward
movements of the tongue dorsum or like consonantal tongue
tip elevation (e.g., Dang and Honda, 2004). The number of
control parameters in general is higher in case of
biomechanical models (see column 4 of Table 1: number of
control parameters is in the range “middle” or “high”, i.e., >10
control parameters), in order to be able to include all muscle
activity values of all relevant muscles or muscle groups
controlling different articulators.

The data set on which a model is based is of great importance
for its quality and its empirical realism. In case of most models,
static magnetic resonance imaging (MRI) data, static 2D X-ray, or
static 3D-computer tomography (CT) data are used which
display target vocal tract shapes of vocalic and consonantal
speech sounds of one or more speakers (e.g., Mermelstein,
1973; Beautemps et al., 2001; Birkholz and Kröger, 2006).
Dynamic X-ray movement data (cine-radio data;
cineradiography), i.e., a succession of vocal tract shapes for
complete utterances are rare because of ethical reasons due to
the high radiation exposure. MRI movement data (cine MRI)—
which can be gathered with less health risks–are hard to acquire
with a sufficient spatio-temporal resolution but are currently used
more and more (Harandi et al., 2017; Carignan et al., 2021). In
order to check movement features of a model EMA data
(electromagnetic articulography), EMA data in combination
with EPG data (electropalatography), or X-ray microbeam
data can be used but these data give only selective punctual
spatial information concerning the vocal tract shape (Westbury
et al., 1990; Wrench and Hardcastle, 2000; Toutios et al., 2011).
Moreover, tagged MRI in combination with cine MRI (2D) is
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capable of tracking movements of tissue points on the surface as
well as inside an articulator and thus can give information
concerning the displacement of finite element mesh points
during connected speech (Stone et al., 2001; Harandi et al., 2017).

Some articulatory modeling approaches try to approach the
goal not just to generate vocal tract shapes but in addition to
generate acoustic speech signals based on the input control
information (e.g., Rubin et al., 1981; Maeda, 1990; Iskarous
et al., 2003; Birkholz, 2013; Story et al., 2018). The goal of
older models was to reach high-quality speech synthesis using
simple articulation-based control concepts. Later models mainly
aim for unfolding articulatory-acoustic relations or want to check
whether the implemented control concept results in correct
audible speech movements. Acoustic models implemented in
2D-articulatory models calculate mainly pressure and flow
changes along the direction of airflow and can be called one-
dimensional acoustic models while 3D-articulatory models can
incorporate more complex 2D- or 3D-acoustic models as well
(Mullen et al., 2007; Speed et al., 2013).

Most articulatory models, especially those which aim to
generate vocal tract shapes as well as acoustic speech signals
model all articulators and thus generate the complete vocal tract
shape. These models are mainly geometrical or statistical models
(e.g., Rubin et al., 1981; Maeda, 1990; Iskarous et al., 2003;
Birkholz, 2013) while most of the biomechanical models
concentrate on modeling the tongue, its movements and its
neuromuscular structure (e.g., Wilhelms-Tricarico 1996;
Engwall, 2003; Perrier et al., 2003; Dang and Honda, 2004).
Some models do not calculate an audible acoustic signal but
the acoustic transfer function of the vocal tract or the formant
pattern (Henke, 1966; Harandi et al., 2017).

A further criterion for differentiating articulatory models is
whether they are able to generate static vocal tract shapes only or
whether they are able to generate articulatory movement patterns.
Most of the articulatory models generate dynamic vocal tract
articulator movements. But some models just generate static
vocalic vocal tract shapes because they concentrate on research
questions concerning vowel systems (e.g., Buchaillard et al., 2009)

or they concentrate on the generation of static vowel and
consonant vocal tract shapes because of research questions
concerning language-specific sound systems (e.g., Serrurier
et al., 2019).

The last criterion for differentiating articulatory models listed
in Tab. 1 is the question concerning the primary research goal for
which a model is intended to be used. As mentioned earlier one of
the goals in the early years of computational articulatory models
(earlier than the last decade of the 20th century, Figure 2) was to
generate high-quality speech synthesis on the basis of a relatively
restricted but phonetically linguistically relevant set of
articulatory control parameters following a rule system of
intuitive and linguistically motivated commands.

But this goal is not reached yet and the paradigm for
developing articulatory models changed towards modeling
speech articulators in more detail on the biomechanical level
and to extract neurobiologically relevant higher-level control
commands for the generation of the complex muscle
activation pattern for all vocal tract articulators and thus for
the generation of speech articulator movements. This branch of
models can be labeled as neurobiologically and biomechanically
realistic models.

One further research goal which can be focused on by using
articulatory models including a neurobiologically realistic control
concept is to model speech acquisition. Because it is not possible
to uncover the exact neural learning processes during learning
tasks like babbling (i.e., exploring all articulatory and acoustic
capabilities of the own vocal tract) or during learning tasks like
imitation (i.e., trying to learn words from a caretaker in order to
be able to start first trials of speech communication) as well as to
uncover the microscopic aspects of the development of the
human nervous system during the first years of life where
speech acquisition mainly takes place, neurobiologically
inspired computational control models including articulatory
models as front-end devices for the generation of articulatory
movement patterns and acoustic speech-like (and later speech)
signals are helpful. These models are able to mimic learning
processes during speech acquisition including sensorimotor

FIGURE 2 | Visualization of the evolution of articulatory models over time. Models are cited here by the first author, as listed in Table 1. Main research goals and two
criteria for differentiating articulatory models (biomechanical vs. geometrical and statistical models; 1D and 2D models vs. 3D models) are labeled and visualized.
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learning and thus to unfold potential neural processes of speech
learning. A review of this research is given by Pagliarini et al.
(2021). The articulatory models used in this research area are
mainly the Maeda (1990) model which can be downloaded as
VTCalcs software (see VTCalcs, 2021) and the Birkholz (2013)
model which can be downloaded as Vocal Tract Lab (see
VocalTractLab, 2021).

MODELING VOCAL TRACT
AERODYNAMICS AND ACOUSTICS: THE
SOUND SOURCES
The quality of a synthetic acoustic speech signal strongly depends
on the quality of the source signals. Sound sources occurring in
speech production are the vibrating vocal folds leading to
phonation in case of voiced sounds and further vocal tract
constrictions leading to an increase in velocity of air flow and
causing turbulent noise. While the vibrating vocal folds are
labeled as primary sound source further constrictions within
the vocal tract capable of producing turbulent noise are called
secondary sound sources. Secondary sound sources appear e.g., in
fricative sounds like/f/,/v/,/s/,/z/or/S/or/Z/(SAMPA symbols are
used here, see SAMPA, 2021). Here, a vocal tract constriction is
produced by an articulator approaching a vocal tract wall or a
second articulator (e.g., lower lips approaching upper teeth or
tongue tip approaching the alveolar ridge or hard palate) which
causes an accelerated flow within and in front of the constriction
(jet flow) and which leads to turbulent noise in front of the
constriction. The glottis (glottal constriction) itself can produce
turbulent noise as a side product during phonation or as a “stand
alone sound” (glottal fricative/h/) if the vocal folds are adducted.
Within the phonation mode the vocal folds exhibit oscillations
leading to a (quasi-) periodic modulation of the glottal flow and
subsequently to a (quasi-) periodic acoustic speech signal with a
fundamental frequency reflecting the glottal vibration period. In
order to model both types of sound sources adequately a detailed
aerodynamic and aeroacoustic model needs to be incorporated as
part of an articulatory speech synthesizer.

Aeroacoustics deals with the interaction of the flow mode of
air (aerodynamics) and the sound mode of air (acoustics). While
in case of aerodynamics an air volume is seen as incompressible
including translational as well as rotational motion and where
energy is transported by moving the whole air volume
(convection), in case of acoustics an air volume is seen as
compressible (local pressure and flow variations) and energy is
transported here by sound wave propagation (e.g., Krane, 2005).
While airflow (aerodynamics) is mainly considered as steady or
quasi-steady (temporal variation of vocal tract constrictions like
building, holding and release of a constriction appears in intervals
of about 50 msec or longer and thus reflect a periodicity below
20 Hz), acoustic pressure and flow variations can be considered
likewise as fast (above 20 Hz), but the transition from
aerodynamics to acoustics in terms of frequency or periodicity
is fluent. In case of primary and secondary sound sources
especially the energy transfer from air flow to acoustics in case
of secondary sound sources and from air flow to the mechanical

system of the vocal folds in case of the primary sound source
needs to be modeled in-depth.

Because current simulation models of sound sources especially
in case of the generation of turbulent noise do not yet provide
satisfactory auditory results a lot of research is done using
mechanical aeroacoustic models and theoretical approaches for
the primary and secondary sound sources (e.g., McGowan, 1988;
Pelorson et al., 1997; Krane, 2005; McGowan and Howe, 2012;
McPhail et al., 2019; Motie-Shirazi et al., 2021). New simulation
approaches have been developed including more detailed
knowledge concerning aeroacoustic phenomena concerning
secondary sound sources (e.g., Howe and McGowan, 2005) as
well as concerning the primary sound source (e.g., Schickhofer
and Mihaescu, 2020; Schoder et al., 2020) but these approaches
are computationally complex and not integrated in articulatory
speech synthesizers so far. A well elaborated acoustic model for
articulatory speech synthesis including all relevant loss
mechanisms important for a correct modeling of vocal tract
acoustics and for steady state aerodynamics and which can be
implemented in a time-domain reflection-type line analogue
without high computational costs has been developed by
Liljencrants (1985) and Liljencrants (1989) and an equivalent
frequency domain approach has been published by Sondhi and
Schroeter (1987). Both approaches are still widely used in
articulatory speech synthesis systems. These types of models
produce acceptable acoustic signal quality in case of voiced
sounds and they allow the integration of noise source
generators for modeling fricative sounds, plosive noise bursts,
and glottal noise. The noise source amplitude is controlled here
by the Reynolds number and the spectrum of the noise source is
white or colored noise depending on the place of articulation.
While these systems are one dimensional (only calculating
pressure and flow along the vocal tract cavity midline from
glottis to mouth eventually branched for including the nasal
cavity) current solutions based on fluid dynamic approaches
which model the three-dimensional wave propagation within
the vocal tract are available as well (e.g., Huang et al., 2002;
Levinson et al., 2012). To this day only few acoustic models
including a detailed aeroacoustic concept are designed for
articulatory speech synthesis because of their computational
effort (Pelorson et al., 1994; Sinder et al., 1998; Narayanan
and Alwan, 2000; Birkholz et al., 2007; Zappi et al., 2016; Pont
et al., 2018).

In case of the primary sound source, we can separate models
directly prescribing a glottal cross-sectional area as function of
time andmodels including a self-oscillating glottis module. While
in the first category of models the glottal flow can be calculated
directly (e.g., Titze, 1989; McGowan and Howe, 2012), a complete
mechanical model of the vocal folds needs to be implemented in
case of the second category of models in order to calculate the
vocal fold vibration pattern and the glottal area as function of
time first before the glottal air flow can be calculated. Here the
oscillatory motion pattern of the vocal folds results from the
interactions of this mechanical system with the aerodynamic
system (self-oscillating glottis models, e.g., Ishizaka and
Flanagan, 1972; Story and Titze, 1995; Avanzini et al., 2006;
Tao et al., 2006; Elie and Laprie, 2016; Maurerlehner et al., 2021).
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In case of both models aeroacoustic effects are important mainly
for shaping the waveform of the glottal flow (e.g., McGowan and
Howe, 2012) but aerodynamic and aeroacoustic effects can
influence the pressure distribution along the glottal
constriction as well and thus influence the aerodynamic forces
acting on the vocal folds and thus influencing the glottal area
oscillation pattern (Pelorson et al., 1994; McPhail et al., 2019).

In order to be able to calculate the air flow in the vocal tract,
first of all the subglottal pressure must be determined. The mean
subglottal pressure occurring in speech production for example
occurring over syllable-level time intervals is mainly a function of
volume change of the lung during expiration (e.g., Tanihara et al.,
2018) and together with the quasi-steady air flow it in addition
depends on the mean aerodynamic resistance resulting from the
glottal constriction and the vocal tract constrictions occurring
downstream towards the mouth. Thus, a sub-laryngeal system
including a lung model controlled by articulatory parameters like
lung volume or lung force (McGowan and Saltzman, 1995)
together with a laryngeal system including a physiologically
based vocal fold model controlled by articulatory parameters
like glottal aperture and vocal fold tension (e.g., Ishizaka and
Flanagan, 1972) together with a supra-laryngeal articulatory-
acoustic system including aeroacoustics as discussed above is
needed in order to complete an articulatory-acoustic speech
production model from the aerodynamic point of view.

AN OPEN QUESTION: MUSCLE GROUPS,
MUSCLE ACTIVATION PATTERNS, AND
CONCEPTS FOR ARTICULATORY
CONTROL COMMANDS

A crucial problem concerns the set of parameters controlling an
articulatory model. The set of control parameters should be as
small as possible and should be intuitive in the sense that each
parameter is interpretable at the articulatory-phonetic level (e.g.,
location and degree of consonantal constriction, vocalic
dimensions like front-back, low-high, rounded unrounded).
Moreover, this set of control parameters should be
neurobiologically plausible. It should be able to extract this set
of parameters from muscle activation patterns and vice versa, it
should be possible to transform each pattern of control
parameters into a muscle activation pattern which controls the
articulators and thus completely describes the displacements or
movements of all articulators (Figure 3). In a neurobiologically
grounded modeling approach the activation of a higher level
description of speech articulation (which should be transformable
into a vector of model control parameter values for each point in
time) occurs within the cortical premotor area while the more
complex muscle activation pattern is activated within the primary
motor area for each utterance.

It is not possible to extract such a set of neurobiologically
plausible control parameter patterns in a straightforward way in
vivo because we cannot uncover all details of the human cortical
and subcortical neural network which is responsible for speech
processing. A prerequisite for extracting control parameters
indirectly from models is that we have available a detailed
biomechanical articulatory model including a detailed
modelling concept for articulator tissues and for all muscles
controlling the articulators. If we can develop a control
concept for such a model which leads to natural articulatory
speech movement patterns and which exhibits different control
parameters for different linguistic goals (e.g., consonantal versus
vocalic movement patterns) it can be concluded that the
appropriate set of control parameters is a promising candidate
to be incorporated in a neural control concept.

A detailed model for relating muscle activation, muscle
force, and muscle length is the λ model (Feldman et al., 1990)
which has been applied to speech articulation (Sanguineti
et al., 1998; Perrier et al., 2003). In this approach muscle
activation results from an external activation control signal
as well as from current muscle length and rate change of
length. Thus, neuromuscular activation depends on a control
signal (muscle activation patterns generated at the primary
motor cortex) and on proprioceptive feedback. On this basis
muscle force can be calculated from the external muscle
activation control signal in combination with information
about muscle length and its rate change. It is concluded
that each muscle can be controlled effectively by specifying
its threshold muscle length. This set of threshold muscle
length, labeled as set of λ’s, determines the current
equilibrium position of all articulators and is used in this
approach as an equivalent to muscle activation patterns.

FIGURE 3 | Hierarchical organization of articulatory models and their
control modules and their levels of control (blue boxes).
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In all muscle-based biomechanical approaches (e.g.,
Wilhelms-Tricarico, 1996) including the λ model, active stress
of muscle tissue results from neuromuscular activation. This
stress is muscle force per cross-sectional area of all muscle
fibers of a muscle and leads to muscle contraction, i.e., change
in muscle length. Contrariwise, passive stress and strain of muscle
tissue and other tissues inside and at the surface of articulators
results from deformation.

It is assumed that the set of central control parameters is
presumably organized into a number of different combinations of
threshold muscle lengths and their change. Thus, different
muscles or parts of muscles (macro-fibers of muscles) together
form synergies for initiating movement primitives or elementary
motor behaviors. Movement primitives are identified by
Sanguineti et al. (1998) for different articulators like jaw and
tongue dorsum. Perrier et al. (2003, p. 1589) defines the central
control commands directly as sets of λ’s or as “targets” or
“postures” which represent specific equilibrium positions for
all articulators for different speech sounds. Movements are
produced by continuously varying the set of λ’s from one
sound target to the next sound target. Because the set of λ’s
defines the location of all articulators completely, different sound
targets need to be specified for consonants in order to reflect the
coarticulatory influence of neighboring vowels while each vowel
can be represented by one target. A concrete set of λ’s is estimated
for three French vowel realizations of/i/,/a/and/u/for the tongue
by Buchaillard et al. (2009). λ values are given here as a percentage
of muscle length with respect to the muscles rest length defining
the rest position of the tongue.

A set of movement primitives resulting from specific subsets of
muscles or parts of muscles are called muscle groups is suggested
by Dang and Honda (2004). These muscle groups are activated by
defining co-contraction activation levels for agonist-antagonist
pairs or triplets of muscles. Muscle groups and corresponding
movement patterns are identified for independent tongue dorsum
and tongue tip movements here (vocalic and consonantal
movement primitives). This approach allows to specify subsets
of muscles for example for defining vocalic tongue dorsum or
consonantal tongue tip movements and consonantal movements
can be superimposed on underlying vocalic movements in this
approach.

Harandi et al. (2017) present a data driven approach for
estimating muscle force and muscle activation patterns based
on cine MRI and tagged MRI data. Here muscle activation
patterns are estimated for the whole set of muscles for each
point in time. Higher-level control concepts are not postulated.

A non-muscle-based model for controlling a geometrical
articulatory model (Iskarous et al., 2003) is given by
Ramanarayanan et al. (2013). Here, a pattern of linguistically
defined gestures as postulated in the framework of Articulatory
Phonology (Browman and Goldstein 1992) is activated for
controlling all speech articulators. Here, gesture-based
activation patterns establish the central control structure. But a
(lower-level) biomechanical muscle-based activation level is not
included. The approach directly defines (higher-level) activation
patterns for gestures, which are later labeled as articulatory
movement primitives by Ramanarayanan et al. (2013, p. 1378):

“Articulatory movement primitives may be defined as a
dictionary or template set of articulatory movement patterns
in space and time, weighted combinations of the elements of
which can be used to represent the complete set of coordinated
spatio-temporal movements of vocal tract articulators required
for speech production.” These movement primitives or gestures
are defined as coordinative structures based on synergy principles
by controlling the movements of one or more articulators and can
be converted into movement pattern by using the task-dynamics
approach (Saltzman and Munhall 1989). Based on an analysis of
EMA and dynamic MRI data using matrix factorization
techniques seven articulatory primitives are identified by
Ramanarayanan et al. (2013), i.e., labial, apical and dorsal
constriction gestures in context of front or back vowels. All
models including detailed biomechanical muscle models and a
muscular activation level are labeled in column 3 of table 1 as
“biomechanical”.

A blueprint for the organization of neural control in speech
production is given by the DIVA model (Directions Into
Velocities of Articulators, see Guenther 2006, Bohland et al.,
2010, and Guenther and Vladusich 2012). This approach
differentiates a higher level neural representation of speech
units like syllable called speech sound map located in the
premotor cortex and a lower level neural representation of
these units called articulatory map located in the primary
motor cortex. Bohland et al. (2010) extended the DIVA
approach towards the GODIVA-model (Gradient Order DIVA
model) which in addition gives a detailed description of the
planning process of articulation, i.e., how planning units like
syllables, words or short phrases can be parsed from the flow of
linguistic-phonological information. But the concrete
implementation of the DIVA model leads to control signals
for a statistical model (Maeda model, see Maeda, 1979, Maeda,
1990 and Boe€ et al., 1995) which does not control a detailed
muscle-based biomechanical articulatory model.

DISCUSSION: LIMITATIONS AND FUTURE
DIRECTIONS FOR MODELING SPEECH
ARTICULATION
One of the main problems in developing articulatory models is
the lack in articulatory data exhibiting a sufficient spatio-
temporal resolution. Static MRI and X-ray (or CT) data give a
sufficient spatial resolution in order to extract the surface shape of
all articulators and vocal tract walls with a mean error of around
1 mm but a sufficient temporal resolution is only reached by some
highly specialized research groups (e.g., Fu et al., 2017; Carignan
et al., 2021). In case of midsagittal 2D-data a resolution of about
50 Hz (time interval of 20 msec) as is reported for cine X-ray
tracking is not sufficient in case of tracking and modeling for
example consonantal closing-opening movements. The temporal
resolution for tracking speech movements should reach
10–5 msec (100–200 Hz). In the case of 3D-data most
measurements extract static vocal tract geometries because the
data acquisition procedure still takes seconds in case of MRI. In
some laboratories cine 2D-MRI data can be acquired already with
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rates of 12.5–23 Hz (80–43 msec) with a spatial resolution of
about 2.5 mm (Narayanan et al., 2014). Thus, EMA data are
added in order to get a sufficient temporal resolution. Here, 12
flesh points or more can be tracked with a temporal resolution of
200 Hz and higher and with a spatial resolution below 1 mm
(Richmond et al., 2011). EMA in principle is not limited to
measuring 12 flesh points but gluing coils on articulators (tongue,
lips) is tricky and limits the total number of coils that can be glued
on. Moreover, EMA receiver coils with its diameter of about
3 mm may influence articulation. Recently even cine MRI
increases dramatically in temporal resolution up to 50 Hz
(20 msec) with a spatial resolution of 1.4 mm including a post-
processing resampling procedure leading to an even higher
temporal resolution up to a factor 10 (Carignan et al., 2021)
or up to 166 Hz (6 msec) with a spatial resolution of 2.2 mm (Fu
et al., 2017).

Current biomechanical models mainly concentrate on
modeling jaw and tongue. A complete model including all
articulators should be established, but the main problem with
biomechanical models is its control. A huge number of muscles
needs to be modelled and thus the muscle activation pattern
controlling articulation over time is complex. It is assumed that
this lower-level control information is generated from a higher-
level motor command level, but there exists no standard approach
how to define synergies or coordinative structures for speech
articulation and a widely accepted standard higher-level control
concept for speech articulation still needs to be developed.

As mentioned above, a very comprehensive and detailed
neural model for speech production is the DIVA model
(Guenther, 2006), but even this model does not include a
detailed muscle-based biomechanical model. This may result
from the fact that in case of human sound production we do
not find a one-to-one relation of muscles and speech sounds.
Even the production of a single speech sound (a single
configuration of speech articulators) requires a synergistic
cooperation of different groups of muscles (cf. Dang and
Honda, 2004) while for example in the case of birdsongs,
sounds are producible by one-to-one innervations of vocal
muscles (Adam et al., 2021).

Already at the end of the last century leading researchers in
speech production stated: “It has been hoped for decades that
speech synthesis based on articulatory geometry and dynamics
would result in a breakthrough in quality and naturalness of
speech synthesis, but this has not happened. It is now possible
to generate high quality synthetic speech, such as with the
Klatt synthesizer, by modeling only the properties (spectral,
etc.) of the output signal.” (Wilhelms-Tricarico and Perkell
1997, p. 222). During the following decades the situation has
not changed much for articulatory-acoustic speech synthesis,
while the quality of acoustic corpus-based speech synthesis
increased dramatically towards nearly natural (Zen et al.,
2009; Kahn and Chitode, 2016, and see research goals in
Figure 2). Thus, the problem of high-quality speech
synthesis is solved from the viewpoint of engineering but
increasing the quality of articulatory-acoustic speech
synthesis should be a side product if more knowledge is
available concerning natural movement generation for

speech articulators and if the remaining research questions
in aeroacoustic signal generation are solved.

But nevertheless, one remaining goal of modeling speech
production including speech articulation will be to reach high-
quality speech synthesis. To reach this goal will be a step-by-step
procedure which concerns all domains of the speech production
process: 1) More anatomical details needs to be included in
modeling, e.g., concerning the 3D-shape of vocal tract cavities
and its changes during speaking (e.g., Vampola et al., 2015; Traser
et al. 2017; Birkholz and Drechsel, 2021). 2) More knowledge is
needed concerning the neurophysiological processes of
controlling the movements of vocal tract organs during speech
production at a higher control level (e.g., Guenther, 2006;
Bohland et al., 2010; Guenther and Vladusich, 2012) as well as
at the neuromuscular level at which neural activation causes
articulator motion (e.g. Buchaillard et al., 2009). 3) More
knowledge is needed especially concerning the phonation
process in order to be able to produce individual and naturally
sounding voice qualities (e.g., Vasudevan et al., 2017;
Maurerlehner et al., 2021). 4) More acoustic and aeroacoustic
knowledge is needed for improving the quality of acoustic signal
generation and signal modification within the vocal tract (Zappi
et al., 2016; Schoder et al., 2020).

Last but not least an attempt will be made here to answer the
three core questions raised in the abstract concerning
improvement of the generated acoustic signal quality and
concerning the biological realism of the control concept and
concerning the articulatory model. 1) Currently there exists no
concrete concept for modeling the underlying neural
organization controlling speech articulation. This concept
should be neurobiologically grounded, should be activated by
linguistic information like a phonological sound chain
augmented by prosodic information, and should generate a
motor description of the utterance under production. This
kind of information is generated by gesture scores as defined
by Ramanarayanan et al. (2013). But a neurobiological realization
and implementation of gesture scores for example in a neural
speech production model as well as the realization of a
comprehensive approach for generating muscle activation
patterns from gesture scores and its incorporation in a
complete sensorimotor model of speech production has not
yet been realized yet. This should be one of the next steps in
developing control concepts for articulatory speech synthesis and
for developing speech production models in general.

2) A lot of approaches are available for modeling speech
articulators like tongue, lips, velum etc. and their movements.
There are geometrical, statistical, or biomechanical approaches as
discussed in this paper. In contrast to geometrical and statistic
approaches, which are already usable as part of articulatory
speech synthesizers (e.g., Birkholz model, see VocalTractLab,
2021; Maeda model as part of the DIVA speech production
model, see VTCalcs, 2021) the next step or goal should be to
establish comprehensive biomechanical and neurobiologically
plausible models capable of generating speech movements for
a complete set of vocal tract articulators and thus to establish
biomechanical models capable for generating a temporal
succession of complete vocal tract cavity shapes (vocal tract
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geometries) as a basis for calculating the acoustic speech signal
(e.g., Vogt et al., 2005; ArtiSynth, 2021). 3) Beside modeling
articulatory movement patterns and their control, the
improvement of the acoustic signal generation within the
vocal tract is a further goal. As already discussed above a lot
of work is currently done in order to improve the modeling of the
primary sound source by developing complex self-oscillating
vocal fold models and their interaction with the aerodynamic
system, in order to improve the modeling of secondary sound
sources by unfolding the aeroacoustic principles of noise
generation which in principle occur at all vocal tract
constrictions, and in order to improve the quality of the
acoustic signal modification in the vocal tract by using
sophisticated acoustic/aeroacoustic modeling approaches.

But all these steps increase the computational costs and
thus bring us far away from real-time applications which of
course should be a further goal even for articulatory speech
synthesis. Beside increasing naturalness of speech synthesis
by using exclusively biologically motivated production

principles the ultimate benchmark for the quality of
articulatory speech synthesizers is the naturalness of the
generated acoustic speech signal. While for example
articulatory movement patterns like mouth or tongue
movements may be assessed relatively easily as natural by
our visual perceptual system this is not the case for the
auditory perception of acoustic speech signals. Thus, the
ultimate challenge for the developers of speech synthesis
systems is the auditory evaluation of the produced speech
signals and as each developer knows, the generation of not
only understandable but also natural speech is the most
complex and most challenging goal in developing and
improving speech synthesis systems.
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