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ABSTRACT
Intestinal microbiota is an integral component of the host and plays important roles
in host health. The pacific white shrimp is one of the most profitable aquaculture
species commercialized in the world market with the largest production in shrimp
consumption. Many studies revealed that the intestinal microbiota shifted significantly
during host development in other aquaculture animals. In the present study, 22 shrimp
samples were collected every 15 days from larval stage (15 day post-hatching, dph)
to adult stage (75 dph) to investigate the intestinal microbiota at different culture
stages by targeting the V4 region of 16S rRNA gene, and the microbial function
prediction was conducted by PICRUSt. The operational taxonomic unit (OTU) was
assigned at 97% sequence identity. A total of 2,496 OTUs were obtained, ranging from
585 to 1,239 in each sample. Forty-three phyla were identified due to the classifiable
sequence. The most abundant phyla were Proteobacteria, Cyanobacteria, Tenericutes,
Fusobacteria, Firmicutes, Verrucomicrobia, Bacteroidetes, Planctomycetes, Actinobac-
teria and Chloroflexi. OTUs belonged to 289 genera and the most abundant genera
were Candidatus_Xiphinematobacter, Propionigenium, Synechococcus, Shewanella and
Cetobacterium. Fifty-nine OTUs were detected in all samples, which were considered
as the major microbes in intestine of shrimp. The intestinal microbiota was enriched
with functional potentials that were related to transporters, ABC transporters, DNA
repair and recombination proteins, two component system, secretion system, bacterial
motility proteins, purine metabolism and ribosome. All the results showed that
the intestinal microbial composition, diversity and functions varied significantly at
different culture stages, which indicated that shrimp intestinal microbiota depended
on culture stages. These findings provided new evidence on intestinal microorganism
microecology and greatly enhanced our understanding of stage-specific community in
the shrimp intestinal ecosystem.
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INTRODUCTION
Intestinal microbiota is a complex organ ecosystem with multiple functions critical for
host health (Al-Harbi & Uddin, 2005; Ramirez & Romero, 2017). It has been reported that
the stable intestinal microbiota influences myriad host functions like the establishment
of microorganisms in the intestinal tract and infectious susceptibility (Wu et al., 2010;
Ravel et al., 2014). During the host development, different shifts happen in intestinal
microbiota depending on host age (Fraune & Bosch, 2010; Li et al., 2017). In an effort to
better understand the relationship between intestinal microbiota and host, it is necessary
to identify the composition of the microbiota and understand how they vary during the
host development.

The pacific white shrimp, Litopenaeus vannamei, is becoming increasingly important for
aquaculture as one of the most profitable species in shrimp farming, with the production
being more than 3 million tons per year (Zhang et al., 2016). In recent years, some bacterial
diseases in shrimp, such as early mortality syndrome (EMS), acute hepatopancreatic
necrosis disease (AHPND) and hepatopancreas necrosis syndrome (HPNS), have led to the
shrimp production dropped to nearly 60% and caused global losses to the shrimp farming
industry estimated at more than $1 billion per year (Lightner et al., 2012; Lee et al., 2015;
Huang et al., 2016). Some previous studies reveal that many bacterial diseases are associated
with the shifts and imbalance of intestine microbiota in other aquaculture animals (Perez et
al., 2010; Li et al., 2016) and the probiotic addition is helpful for maintaining the intestinal
bacterial balance (Irianto & Austin, 2002; Balcazar et al., 2006).

Some studies have been conducted on intestinal microbiota in aquaculture animals,
such as grass carp (Wu et al., 2012; Li et al., 2015), yellow catfish (Wu et al., 2010) and
atlantic cod (Dhanasiri et al., 2011). The intestinal microbiota of pacific blue shrimp and
black tiger shrimp have been well investigated (Rungrassamee et al., 2014; Cardona et al.,
2016), while most reports about pacific white shrimp focus on the microbial community
of the surrounding water (Tang et al., 2014; Hou et al., 2016) and the effect of diet on
intestinalmicrobiota (Zhang et al., 2014). A previous report shows that the shift ofmicrobial
composition and structure is less affected by the surrounding environment than by the host
development (Li et al., 2017), and fish intestinal microbiota is mainly shaped by intestinal
environment and some changes accompanying the host development (Yan et al., 2016).
Knowledge of the intestinal microbiota of pacific white shrimp at different culture stages
is still limited.

The functional potential of microbial community reflects the connection between
intestinalmicrobiota and the surrounding environment (Abubucker et al., 2012). Therefore,
the functional characterization of the microbial community is necessary to determine
microbial function in the intestine. In other animals, the microbial functions have been
well studied, such as grass carp (Wu et al., 2015) and fine flounder (Ramirez & Romero,
2017). However, the function of shrimp intestine microbiota has not been extensively
explored yet.

Some conventional methods had been adopted to study the microbiota, including
culture-dependent plate counting method (Tuyub Tzuc et al., 2014), clone libraries (Wu

Zeng et al. (2017), PeerJ, DOI 10.7717/peerj.3986 2/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.3986


et al., 2010) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-
DGGE) (Dhanasiri et al., 2011). However, the above traditional methods were certainly
limited since it would underestimate the overall diversity and it was difficult to profile a
comprehensive community in complex environments. The high throughput sequencing,
which can generate more reliable and sufficient information through the amplification
and identification of 16S rRNA gene, can provide a profile of the whole community
(Glenn, 2011; Sun et al., 2014). Many studies detected the intestinal microbiota by high
throughput sequencing to obtain a high-resolution map of the intestinal microbiota in
other aquaculture animals (Al-Harbi & Uddin, 2005; Wu et al., 2012; Rungrassamee et al.,
2014; Ramirez & Romero, 2017).

This study aimed to evaluate the difference of intestinal microbiota at different culture
stages. The present study compared the composition, diversity and functions of intestinal
microbiota in pacific white shrimp, which showed that intestinal microbiota varied
significantly at different culture stages. This study greatly enhanced our understanding of
stage-specific community assembly patterns in the shrimp intestine microecosystem.

MATERIALS AND METHODS
Sample collection
From July to October 2015, 22 intestine samples were collected from 5 shrimp ponds in
a commercial shrimp farm, Maoming, Guangdong, China (21.68◦N, 110.88◦E). Healthy
shrimp were collected every 15 days from the larval stage (stage1, 15 dph) to adult stage
(stage 5, 75 dph) (Table S1).

Each pond was approximately 2,600 m2 and the average depth was 1.5 m. Shrimp larvae
with average length of 0.7 cm were cultured at a stocking density of 200,000 shrimps each
pond. The water temperature was relatively stable at approximately 32 ◦C. The pH value
ranged from 7.5 to 8.61. The concentration of NH3-N, NO2-N, NO3-N, PO3−

4 and SO2−
4

were in range of 0.0089∼1.1095 mg L−1, 0.0022∼0.9869 mg L−1, 0.0323∼3.3007 mg L−1,
0.0171∼0.3131 mg L−1 and 0.0012∼0.3777 mg L−1. There was no antibiotic application
during the culture period. Some probiotics, including Lactobacillus and Bacillus from
Guangdong Zhongtai Biology Co., Ltd. (Guangdong, China), have been mixed with feed
and applied to ponds once a week.

Sampling was according to the previously reported methods (Oxley et al., 2002;
Rungrassamee et al., 2014). The shrimp’s surface was sterilized with 70% ethanol and
the intestine was aseptically dissected. The intestine was put into a 2 mL centrifuge tube
which contained sterile glass beads and 1.5 mL PBS buffer. The tube was thoroughly
vortexed for 3 min and centrifuged at 10,000 g for 1 min. Samples were immediately stored
at −80 ◦C before DNA extraction.

DNA extraction and sequencing
Total DNA was extracted by the PowerFecal DNA Isolation Kit (MoBio, Palo Alto, CA,
USA) following the manufacturer’s directions. The concentration and purity of total
DNA were determined by NanoVuePlus Spectrophotometer (GE Healthcare, USA) and
1% agarose gels. The primer pair 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R
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(5′-GGACTACHVGGGTWTCTAAT-3′) were used to amplify the V4 hypervariable region
of 16S rRNA gene, which was modified with a barcode tag with a random 6-base oligos
(Bates et al., 2011). Sequencing libraries were generated via using TruSeq DNA PCR-Free
Sample Preparation Kit (Illumina, San Diego, CA, USA). In addition, the library quantity
was assessed on Qubit 2.0 Fluorometer (Thermo Scientific, Waltham, MA, USA). The
libraries were sent for sequencing by Illumina Hiseq2500 platform (Illumina, San Diego,
CA,USA), whichwas conducted byNovogene Bioinformatics TechnologyCo.,Ltd. (Beijing,
China). Raw data generated from Hiseq2500 platform were paired-end reads.

Data analysis
Based on the unique barcode, sequences were assigned to samples and then removed off
the barcode and primer sequence by QIIME (Version 1.7.0, http://qiime.org/index.html)
(Caporaso et al., 2010). In order to merge paired-end reads when at least some of the reads
overlap the read generated from the opposite end of the same DNA fragment, FLASH
(Version 1.2.7, http://ccb.jhu.edu/software/FLASH/) was used to get raw tags (Magoc &
Salzberg, 2011). In terms of quality control, raw tags with low quality (quality value ≤19,
homopolymers ≥3 bases and sequence length≤200 bp) were filtered by QIIME according
to the QIIME quality filtering process in a bid to obtain the high-quality clean tags. Tags
were compared with Gold database (http://drive5.com/uchime/uchime_download.html)
by UCHIME algorithm (http://www.drive5.com/usearch/manual/uchime_algo.html)
so as to remove off chimera sequences and then the effective tags were finally gained
(Edgar et al., 2011).

Sequences with over 97% similarity were considered as the same OTUs for
further annotation (Edgar, 2013). To align the sequences, the GreenGene Database
(http://greengenes.lbl.gov/download) was used as a reference database (DeSantis et al.,
2006). Later, the taxonomic information was annotated by RDP classifier (Version
2.2, http://sourceforge.net/projects/rdp-classifier/) with 80% confidence threshold.
OTUs abundance information was normalized using a standard of sequence number
corresponding to the sample with the least sequences. The Venn diagram, which
was used to find out the shared OTUs among groups, was conducted by Draw Veen
Diagram online tool (http://bioinformatics.psb.ugent.be/webtools/Venn/). Alpha diversity,
showing the complexity of species for one sample through 5 indices, including Chao,
Shannon, Simpson, ACE and Good’s coverage, was calculated by QIIME following the
tutorial (http://qiime.org/scripts/alpha_diversity.html) and displayed via R software
(Version 2.15.3). Beta diversity, used to evaluate differences of samples in species
complexity, was calculated by QIIME (http://qiime.org/scripts/beta_diversity.html).
Unweighted pair-group method with arithmetic means (UPGMA) was conducted
to report the hierarchical clustering of samples by QIIME following the guidance
(http://qiime.org/scripts/jackknifed_beta_diversity.html). Statistical analyses of alpha
diversity were calculated by analysis of variance (ANOVA) to compare the significant
differences at different culture stages by SPSS (Version 21). Multiple-response permutation
procedure (MRPP) was conducted to test significant difference between any two of
compared culture stages using the vegan package in R (Cai, 2006). Permutational analysis of
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multivariate dispersions (PERMDISP) was used to test whether the microbial community
varied at different culture stages by using the vegan package in R (Anderson, 2006).
Permutational multivariate analysis of variance (PerMANOVA) was conduct to compare
microbial composition and function dissimilarities (Anderson, 2001). A calculated P value
< 0.05 was considered to be statistically significant.

Microbial function prediction based on 16S rDNA data
The OTU table was used to generate the inferred metagenomic data by using PICRUSt
(version 1.1.0) to predict the metagenomic functional capacity (Langille et al., 2013).
The abundance values of each OTU were firstly normalized to its 16S rRNA copy
number respectively. Predicted functional pathways were annotated by using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2012) at level 2 and level 3
KEGG orthology groups (KOs) (Langille et al., 2013). The accuracy of the predictions of the
metagenomes was assessed by computing the nearest sequenced taxon index (NSTI). The
associated metabolic pathways were identified by means of employing the HMP unified
metabolic analysis network (HUMAnN) (Abubucker et al., 2012). Moreover, the KOs at
different culture stages were further examined by PerMANOVA. The relationships among
functional capacities were analyzed by principal component analysis (PCA).

Accession number
The raw data in this study have been deposited in the GenBank Sequence Read Archive
database. The accession number is SRX2946975.

RESULTS
Composition of intestinal microbiota
Quality and chimera filtration of the raw data produced totally 1,408,105 high quality
sequencing reads from 22 samples, belonging to five culture stages, with an average of
64,005 reads, ranging from 41,250 to 79,515 (Table 1). By performing the alignment at an
average length of 253 bp, OTUs were clustered at 3% distances, among which each OTU
represented a unique phylotype. Finally, 2,496 OTUs were obtained and the number of
OTUs detected in each sample ranged from 585 to 1,239, with an average of 880 OTUs
(Table 1).

OTUs were identified into 43 phyla. Sequences that could not be classified into any
known groups were assigned as ‘others’. The most relative abundant phyla in all samples
were Proteobacteria (63.5%), Cyanobacteria (7.0%), Tenericutes (6.5%), Fusobacteria
(5.3%), Firmicutes (4.1%), Verrucomicrobia (3.6%), Bacteroidetes (3.6%), Planctomycetes
(2.9%), Actinobacteria (0.8%) and Chloroflexi (0.4%) (Fig. 1). Proteobacteria was themost
abundant phylum among 21 samples except sample E2, in which Cyanobacteria was the
most abundant phyla (27.8% relatively abundance).

At genus level, a total of 289 taxa were identified. The top 10 genera were
Candidatus_Xiphinematobacter (3.4%), Propionigenium (3.4%), Synechococcus (2.7%),
Shewanella (1.3%), Cetobacterium (1.1%), Bacillus (0.9%), Robiginitalea (0.7%), Fusibacter
(0.5%) and Arcobacter (0.5%) (Fig. S1). The abundance of Lactobacillus and Bdellovibrio
were 0.04% and 0.002% respectively.
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Table 1 Sequencing and OTU classification information. Summary of sequencing read analysis, num-
bers of OTUs, and numbers of OTUs that can be classified into different levels (phylum, class, order, fam-
ily and genus). A, B, C, D and E stand for the ponds. 1, 2, 3, 4 and 5 stand for the culture stages.

Sample Trimmed tags OTUs Phylum Class Order Family Genus

A1 73,996 645 18 46 78 103 73
B1 64,306 591 20 48 84 109 83
C1 64,282 817 21 54 100 131 115
D1 66,164 622 14 41 69 95 69
E1 70,365 737 17 44 70 97 77
A2 61,460 1,169 32 74 121 161 147
D2 70,166 1,170 26 65 105 140 132
E2 63,705 910 18 51 94 105 84
A3 61,660 976 28 64 112 134 108
B3 62,061 971 25 59 101 132 117
C3 38,103 993 31 72 120 153 127
D3 69,588 1,150 27 63 113 154 147
E3 60,883 947 21 50 91 112 91
A4 45,440 978 29 66 101 134 132
B4 38,348 585 22 48 85 109 84
C4 40,220 643 19 46 77 101 83
D4 62,236 722 18 47 81 105 98
E4 61,853 708 18 46 77 100 86
A5 57,143 1,075 28 68 111 143 122
C5 66,736 1,239 27 66 111 156 143
D5 68,803 757 17 40 74 104 87
E5 67,102 972 25 53 90 114 90

For further investigation of the dominant microbiota that exists in all samples, Veen
diagram was constructed to identify dominant OTUs presented in intestine (Fig. 2). There
were 59 OTUs shared among 22 samples, representing 83.1% of the total reads. Among
the shared OTUs, 17 OTUs (28.8%) belonged to Proteobacteria, 5 OTUs (8.5%) belonged
to Cyanobacteria and 5 OTUs (8.5%) belonged to Bacteroidetes.

Diversity, similarity and function analysis
The diversity and richness indices of all samples from five ponds were calculated in an effort
to illustrate the complexity of each sample (Table S2). The completeness of sequencing was
estimated with Good’s coverage, showing the probability of a randomly sequence already
detected in the sample. The rarefaction curves approached the plateau (Fig. S2). The Good’s
coverage ranged from 0.989 to 0.996, suggesting that additional 90 to 250 reads needed to
be sequenced before discovering new OTUs. Shannon index and Simpson index were often
used to quantify the diversity. The Shannon index ranged from to 1.936 to 6.592, while
the Simpson index ranged from 0.273 to 0.968. The richness of each sample was calculated
via Chao index and ACE index. Chao index ranged from 558 to 1,386, while ACE index
ranged from 599 to 1,416.
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Figure 1 Relative read abundance of different bacterial phyla within the different communities. Se-
quences that cannot be classified into any known group are assigned as ‘Others’ bacteria. A, B, C, D and E
stand for the ponds. 1, 2, 3, 4 and 5 stand for the culture stages.

Full-size DOI: 10.7717/peerj.3986/fig-1

The similarity and difference in different intestinal microbiota samples were further
investigated. UPGMA clustering showed that almost all of the individual samples were
clustered into groups according to the culture stage (Fig. 3). The OTU number, Shannon
index, Simpson index, ACE index and Chao index were shown in boxplot graph (Fig. 4),
and ANOVA showed that there was extremely significant difference in the OTU number,
Shannon index, Simpson index, ACE index and Chao index at different culture stages (P
value < 0.05) (Table 2). MRPP and PERMDISP showed the intestinal microbiota differed
significantly between any two of compared stages (P value < 0.05) (Table 3). Among the
top 10 phyla, PerMANOVA demonstrated the abundance of Proteobacteria, Fusobacteria,
Tenericutes, Verrucomicrobia, Planctomycetes and Chloroflexi changed significantly at
different culture stages (P value < 0.05) (Fig. 5).

Functional prediction of the intestinal microbiota
The changes in the presumptive functions of the intestinal microbiota of pacific white
shrimp were examined by predicting the metagenomes using PICRUSt. The accuracy
of the prediction was evaluated by computing the NSTI, and the mean of the samples
was 0.171 ± 0.023. The metagenomic prediction showed the intestinal microbiota was
enriched with functions that were related to transporters, ATP-binding cassette (ABC)
transporters, DNA repair and recombination proteins, two component system, secretion
system, bacterial motility proteins, purine metabolism, ribosome, pyrimidine metabolism,
peptidases and transcription factors (Table 4). The relative abundance of transporters
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Figure 2 Analysis of the shared OTUs in different libraries.Venn diagram shows the unique and shared
OTUs in the different libraries. A, B, C, D and E stand for the ponds. 1, 2, 3, 4 and 5 stand for the culture
stages.

Full-size DOI: 10.7717/peerj.3986/fig-2

(5.25%) and ABC transporters (3.06%) were at the highest level during all culture stages.
Two component system (2.49%) as well as DNA repair and recombination proteins
(2.43%) were the thirdly and fourthly most abundant KOs. The range of KOs related to
membrane transport, cell motility, energy metabolism, and the signal transduction was
wide, while other KOs varied at small range. Moreover, PerMANOVA showed there were
totally 199 KOs shifting significantly at different stages (P value < 0.05), including the KOs
which belonged to amino acid metabolism, carbohydrate metabolism, energy metabolism,
membrane transport and nucleotide metabolism (Fig. 6). PCA revealed that the functions
of intestinal microbiota from the same culture stages were clustered closer, with the
first two components explaining a total of 58.67% of the variation (Fig. 7). The results
suggested the functional KOs of the intestinal microbiota varied a lot according to different
culture stages.

DISCUSSION
The intestinal microbiota of pacific white shrimp at different culture stages was investigated
by high throughput sequencing to profile the complex microecosystem in shrimp intestine.
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Figure 3 UPGMA clustering of samples. The UPGMA clustering was calculated with weighted Unifrac
Distance. A, B, C, D and E stand for the ponds. 1, 2, 3, 4 and 5 stand for the culture stages.

Full-size DOI: 10.7717/peerj.3986/fig-3

Figure 4 Boxplots figure of shows the range of different alpha diversity index. The Boxplots figure showed there was significant difference at dif-
ferent culture stages of OTU number (A), Shannon index (B), Simpson index (C), ACE index (D) and Chao index (E). The asterisk represents that
there is significant difference in groups by ANOVA (P value < 0.05). The two-asterisk represents that there is extremely significant difference in
groups (P value < 0.01).

Full-size DOI: 10.7717/peerj.3986/fig-4

Results showed that the microbial composition and function shifted significantly at
different stages.

The Good’s coverage ranged from 0.989 to 0.996, which suggested that the complete
microbial communities present in the samples were identified completely in this study.
The RDP Classifier was able to classify an average of 11.6% sequences to the genus level,
indicating that the high abundance of unclassified sequences represented a significant
presence of novel species. The result was consistent with previous studies on other
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Table 2 ANOVA of OTU number, Shannon index, Simpson index, ACE index and Chao index at dif-
ferent culture stages. ANOVA was used to compare significant differences at different culture stages. The
asterisk represents that there is significant difference in groups (P value < 0.05). The two-asterisk repre-
sents that there is extremely significant difference in groups (P value < 0.01).

Index F value P value

OTU number 8.283 0.001∗∗

Shannon index 15.291 <0.001∗∗

Simpson index 38.958 <0.001∗∗

ACE index 6.580 0.001∗∗

Chao index 5.120 0.002∗∗

Table 3 MRPP and PERMDISP test for significant difference between two culture stages.MRPP test
shows differences in intestinal microbiota between culture stages. Observe-delta represents the difference
within group. Expect-delta represents the difference between groups. The difference between groups is
larger than the difference within group (P value < 0.01). PERMDISP test whether the intestinal micro-
biota varied at different culture stages. The t value is calculated by Levene’s test. The asterisk represents
that there is significant difference in groups (P value < 0.05). The two-asterisk represents that there is ex-
tremely significant difference in groups (P value < 0.01).

Group MRPP PERMDISP

Observed-delta Expected-delta P value t value P value

Stage 1 vs Stage 2 0.2570 0.3641 0.001∗∗ 3.944 0.032∗

Stage 1 vs Stage 3 0.3562 0.4173 0.001∗∗ 1.149 0.001∗∗

Stage 1 vs Stage 4 0.2933 0.4677 0.001∗∗ 0.882 0.014∗

Stage 1 vs Stage 5 0.3341 0.4158 0.001∗∗ 8.808 0.005∗∗

Stage 2 vs Stage 3 0.3351 0.4269 0.002∗∗ 15.336 0.016∗

Stage 2 vs Stage 4 0.3600 0.4871 0.001∗∗ 7.536 0.002∗∗

Stage 2 vs Stage 5 0.3054 0.3201 0.024∗ 6.575 0.023∗

Stage 3 vs Stage 4 0.2388 0.3006 0.001∗∗ 3.351 0.004∗∗

Stage 3 vs Stage 5 0.2661 0.2769 0.049∗ 10.261 0.039∗

Stage 4 vs Stage 5 0.3121 0.3546 0.001∗∗ 5.906 0.002∗∗

aquaculture animals’ intestine that intestine harbors a large bacterial diversity (Wu et
al., 2012; Ramirez & Romero, 2017).

The dominant phyla in shrimp intestine were Proteobacteria, Tenericutes and
Fusobacteria in this study, which were commonly found in the intestine of banana
prawn (Oxley et al., 2002), black tiger shrimp (Rungrassamee et al., 2014) and pacific blue
shrimp (Cardona et al., 2016). Earlier studies on the intestinal microbiota of grass carp
proved that Proteobacteria, Firmicutes and Fusobacteria were the dominant phyla (Van
Kessel et al., 2011; Wu et al., 2012). Carp microbiota seemed to be slightly different from
shrimp microbiota in the present study, which might be related to some factors that could
affect the microbial composition in intestine, including the differences of species, water
quality, diet, and population density (Wu et al., 2012;Kim & Kim, 2013;Ramirez & Romero,
2017). In addition, as the most abundant phyla, Proteobacteria and Firmicutes were also
found in black tiger shrimp (Penaeus monodon) and banana prawn (Penaeus merguiensis)
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Figure 5 The abundance of the top 10 phyla at different culture stages. The relative abundance of each phyla at 5 culture stages is shown. The
abundance of stage1 was given value 1 and the other stages were given the relative abundance compared to stage 1. The asterisk represents that there
is significant difference in groups by PerMANOVA (P value < 0.05). The two-asterisk represents that there is extremely significant difference in
groups (P value < 0.01).

Full-size DOI: 10.7717/peerj.3986/fig-5

(Oxley et al., 2002; Rungrassamee et al., 2014). Proteobacteria seemed to be the dominant
phylum among the aquaculture animals.

The second most abundant phylum was Cyanobacteria, with 7.0% relative abundance.
Synechococcus and Microcystis, belonging to Cyanobacteria phylum, were detected in
all shrimp intestine and their abundance were 2.8% and 1.3% respectively. However,
Cyanobacteria were seldom found in such a high abundance in other aquaculture animals.
The abundance of Cyanobacteria was less than 0.01% in black tiger shrimp, grass carp,
bighead carp and Atlantic cod (Dhanasiri et al., 2011; Rungrassamee et al., 2014; Li et al.,
2015). Among our previous studies, the abundance of Cyanobacteria ranged from 17.3%
to 36.9% in the pacific white shrimp culturing water (Hou et al., 2016). The abundance
of Cyanobacteria in pacific white shrimp intestine might be concerned with the water
environment.

Cetobacterium and Bacteroides were reported as major producers of the vitamin B12
in intestine (Tsuchiya, Sakata & Sugita, 2008; Vogiatzoglou et al., 2009) and they were the
dominant genera in grass carp’s intestine, with the abundance of more than 50% (Li et
al., 2015). In the present study, Cetobacterium and Bacteroides were found in all shrimp
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Table 4 Relative abundance of predicted functions. KOs in KEGG level3 are listed following the relative average abundance. The KEGG level 2 is
also listed.

KOs KEGG level 2 Relative abundance

Transporters Membrane transport 4.25 to 6.06
ABC transporters Membrane transport 2.46 to 3.58
DNA repair and recombination proteins Replication and repair 2.09 to 2.89
Two component system Signal transduction 1.79 to 3.16
Secretion system Membrane transport 1.50 to 2.99
Bacterial motility proteins Cell motility 1.23 to 3.02
Purine metabolism Nucleotide metabolism 1.89 to 2.32
Function unknown Poorly characterized 1.64 to 2.58
Ribosome Translation 1.28 to 2.72
Pyrimidine metabolism Nucleotide metabolism 1.32 to 1.94
Peptidases Enzyme families 1.30 to 1.73
Transcription factors Transcription 1.03 to 1.97
Ribosome biogenesis Translation 1.21 to 1.7
Oxidative phosphorylation Energy metabolism 1.04 to 1.66
Amino acid related enzymes Amino acid metabolism 1.14 to 1.53
Other ion-coupled transporters Cellular processes and signaling 0.97 to 1.69
Chromosome Replication and repair 1.14 to 1.45
Arginine and proline metabolism Amino acid metabolism 0.94 to 1.28
Chaperones and folding catalysts Folding, sorting and degradation 1.01 to 1.10
Glycolysis/Gluconeogenesis Carbohydrate metabolism 0.82 to 1.21
Pyruvate metabolism Carbohydrate metabolism 0.98 to 1.11
Amino sugar and nucleotide sugar metabolism Carbohydrate metabolism 0.88 to 1.10
DNA replication proteins Replication and repair 0.79 to 1.45
Aminoacyl-tRNA biosynthesis Translation 0.64 to 1.32
Carbon fixation pathways in prokaryotes Energy metabolism 0.87 to 1.08
Methane metabolism Energy metabolism 0.84 to 1.06

intestine, with the low abundance of 1.2% and 0.1%. Previous studies suggest that the
abundance of Bacteroidesmay be relatively low in the intestinal contents of different fishes
(Han et al., 2010; Roeselers et al., 2011; Li et al., 2017). A previous research showed that
when fish was cultivated at high stocking density, the relative abundance of Cetobacterium
would increase 7 to 11 folds in intestine (Zhou et al., 2011). The abundance ofCetobacterium
in pacific white shrimp intestine might be related to the low stocking density.

Probiotic was added in shrimp culturing, the abundance of Bacillus was 0.9% and the
abundance of Lactobacillus and Bdellovibrio were low in shrimp intestine, with relative
abundance of 0.04% and 0.002%, even in some samples undetected. The result suggested
that the probiotic addition did not effectively establish a large population in shrimp’s
intestine as expected. Further studies are supposed to evaluate the abundance and retention
of the probiotic for ensuring their potentially beneficial effects on host health.

The core microbiota is considered as a set of OTUs shared by all samples (Turnbaugh et
al., 2009). Amongother aquaculture animals, themajority of the sharedOTUs varied among

Zeng et al. (2017), PeerJ, DOI 10.7717/peerj.3986 12/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.3986


Figure 6 Predicted functions of the intestinal microbiota that varies significantly at different culture
stages. The asterisk represents that there is significant difference in groups by PerMANOVA (P value <
0.05). The two-asterisk represents that there is extremely significant difference in groups (P value < 0.01).

Full-size DOI: 10.7717/peerj.3986/fig-6
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Figure 7 PCA shows the similarity of samples. PCA presents the similarity of KOs at different culture
stages. Samples from the same culture stage were clustered closer.

Full-size DOI: 10.7717/peerj.3986/fig-7

species and belonged to Fusobacteria, Bacteroidetes, Firmicutes and Chloroflexi (Dhanasiri
et al., 2011; Wu et al., 2012; Li et al., 2017). All shrimp samples harbored similar intestinal
bacterial communities dominated by shared OTUs, with the total relative abundance of
83.1%. The sharedmicrobiota reflects the effects of diet, growth, stocking density and water
quality on intestinal microbiota (Wong et al., 2013). Results demonstrated that there was a
subset of microbes existing in all culture stages, whichmight be relevant to the fundamental
structure and function of the shrimp intestinal microbiota.

The functional capacity of intestinal microbiota was predicted by PICRUSt. KOs related
to transporters and ABC transporters were the most abundant KOs. Both transporters
and ABC transporters were reported as the largest known protein families and were
widespread in bacteria, archaea and eukaryotes (Xiong et al., 2014). It was reasonable that
these KOs were found in high abundance in the intestinal microbiota. The two component
system was a signal transduction system that sensed developmental and environmental
stimuli (Podgornaia & Laub, 2013). It demonstrated that the microbial function differed
significantly at different culture stages, which revealed the difference of intestinalmicrobiota
in regulating basic functions at different culture stages.

A study reveals that the intestinal microbiota of gibel carp tends to form distinct
communities at different stages during the host’s age (Li et al., 2017). It was reported that
microbial functions also varied specifically during the host development because the basic
capacities were influenced by the interactions of host and microbes (Newell & Douglas,
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2014). In the study, the diversity of intestinal microbiota from the same culture stage
demonstrated significant difference, while the most abundant phyla and functions varied
significantly. The close relationships of functional capacities in the same culture stages
were also found. These findings suggested that the composition, diversity and function of
the intestinal microbiota in pacific white shrimp concerned with the culture stage.

CONCLUSIONS
The present study reported the comprehensive intestinalmicrobiota in pacific white shrimp.
The composition of intestinal microbiota was found and the dominant intestinal microbes
were shared in all samples. Diversity, composition and function shifted significantly at
different culture stages. These findings enlarged the knowledge of stage-specific intestinal
microbiota in shrimp microecosystem, and more studies are needed to explore the
relationship between the microbial changes at different culture stages and shrimp health.
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