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Abstract
Preterm-born children are at increased risk of lifelong neurodevelopmental difficulties. Group-wise analyses of magnetic
resonance imaging show many differences between preterm- and term-born infants but do not reliably predict
neurocognitive prognosis for individual infants. This might be due to the unrecognized heterogeneity of cerebral injury
within the preterm group. This study aimed to determine whether atypical brain microstructural development following
preterm birth is significantly variable between infants. Using Gaussian process regression, a technique that allows a
single-individual inference, we characterized typical variation of brain microstructure using maps of fractional anisotropy
and mean diffusivity in a sample of 270 term-born neonates. Then, we compared 82 preterm infants to these normative
values to identify brain regions with atypical microstructure and relate observed deviations to degree of prematurity and
neurocognition at 18 months. Preterm infants showed strikingly heterogeneous deviations from typical development, with
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little spatial overlap between infants. Greater and more extensive deviations, captured by a whole brain atypicality index,
were associated with more extreme prematurity and predicted poorer cognitive and language abilities at 18 months. Brain
microstructural development after preterm birth is highly variable between individual infants. This poorly understood
heterogeneity likely relates to both the etiology and prognosis of brain injury.
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Introduction
Preterm birth affects approximately 10% of all live births world-
wide (Chawanpaiboon et al. 2019) and represents a leading
cause of infant mortality and morbidity (Liu et al. 2015). Pre-
maturity increases the risk of atypical brain development and
has been associated with a wide range of neurocognitive and
behavioral deficits that often persist into adolescence. These
include higher incidence of attention-deficit/hyperactivity dis-
order (ADHD) and autism spectrum disorder among survivors
(Johnson and Marlow 2011; Bhutta et al. 2014; Agrawal et al.
2018). Gestational age (GA) at birth is important but is not the
sole determinant of later functional outcome. Instead, enor-
mous clinical diversity of individuals born preterm likely reflects
multifactorial causes which have heterogeneous effects on brain
development.

Diffusion MRI has been used to characterize the cerebral
consequences of prematurity and assign neurocognitive prog-
nosis. Studies of preterm infant at a group level have identified
important neuroanatomical correlates of the various behavioral
impairments in this population. As a group, preterm infants
show atypical maturation at term-equivalent age compared
with term-born infants (van Kooij et al. 2012; Ball et al. 2013,
2015) that has been related to poorer neurodevelopmental
outcome (Counsell et al. 2008; van Kooij et al. 2012; Duerden
et al. 2015). Prematurity has been associated with subtle
diffuse microstructural alterations, where preterm infants show
microstructural diffusion consistent with more “immature”
white and gray matter compared with term-born infants
(Counsell et al. 2003; Anjari et al. 2007; Ball et al. 2013).

However, studies comparing group means assume that
groups are homogenous, for example, in the location and
the extent of abnormalities, and do not allow for different
alterations in different individuals within the same group. Given
the highly variable clinical courses suffered by preterm infants,
such homogeneity cannot be assumed. We hypothesized that
individual heterogeneity may in part be the cause for relatively
poor predictive power of neonatal MRI, reasoning that this
may account for why neither conventional nor diffusion MRI
are precise predictors of individual neurocognitive prognosis,
particularly in the absence of focal major lesions (de Bruïne
et al. 2011; Mürner-Lavanchy et al. 2019).

However, capturing abnormal brain maturation at an individ-
ual level in this vulnerable cohort is a considerable challenge
(Batalle et al. 2018). To address this, we adopted a nonparametric
model estimation technique, Gaussian process regression (GPR),
to define normative microstructural development on a voxel
level using diffusion MRI. This method produces a “mapping”
of normal development and allows a comparison of each brain
voxel in individual infants to normative values. The approach
is analogous to pediatric growth charts where individual obser-
vations are compared in reference to a normative distribution
(typical variation) and presented as a standardized deviation
(Z-score) from the expected mean given the age and sex of the
individual.

Using a large sample of term-born infants, we estimated a
normative model which provided normal ranges for a number
of diffusion measures at every voxel in the brain. We then quan-
tified the voxel-level variation in brain microstructural devel-
opment for individual preterm infants at term-equivalent age.
We predicted that preterm infants would show a high degree of
heterogeneity in the extent and spatial distribution of deviations
from typical development and exhibit higher overall proportion
of brain voxels deviating compared with term-born infants.
To ensure that any extreme deviations are relevant to brain
development and function, we related a summary measure of
abnormality, an atypicality index, to the degree of prematurity
and neurodevelopment at 18 months.

Material and Methods
Participants

Infants were recruited and imaged for the developing Human
Connectome Project (http://www.developingconnectome.org/),
approved by the National Research Ethics Committee (REC:
14/LO/1169). Informed written parental consent was obtained
prior to imaging. Infants were scanned during natural unsedated
sleep. Pulse oximetry, respiratory rate, electrocardiography,
and temperature were monitored throughout the scan. Ear
protection included earplugs molded from a silicone-based
putty (President Putty, Coltene Whaledent) placed in the
external auditory meatus and neonatal earmuffs (MiniMuffs,
Natus Medical Inc.).

The final study sample consisted of 352 (270 term-born)
infants (Table 1) scanned after 37 weeks postmenstrual age
(PMA). All MRI images were examined by neonatal neurora-
diologists, and no infants with major brain lesions (cerebral
infarctions) or congenital abnormalities were included in the
term-born group. While the incidence of punctate white matter
lesions (PWMLs) and their relation to later neurodevelopment
have been studied in preterm infants (Tusor et al. 2017), the
occurrence and the long-term consequences of PWMLs in
healthy term-born infants remains unknown, due to the lack of
large cohort studies in this population. Therefore, the presence
of PWMLs was not an exclusion criterion. There were no
exclusion criteria for the preterm sample.

The Bayley III Scales of Infant and Toddler Development
(BSID-III; Bayley 2006) collected at 18 months were available for
257 (210 term) infants. The BSID-III assesses motor, cognitive,
and language development. Here we used the composite scores
of all three scales, ranging between 40 and 160 with a mean/
standard deviation (SD) of 100/15. Assessments were carried
out by developmental pediatricians/psychologists experienced
in administering neurocognitive assessments in toddlers.

Diffusion MRI Acquisition and Preprocessing

dMRI data were acquired on a 3T Philips Achieva scanner
equipped with a dedicated 32-channel neonatal head coil and
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Table 1 Perinatal and neurocognitive characteristics of term and preterm infants

Term-born n = 270 Preterm-born n = 82 P value

Gestational age (weeks), median (IQR) 40 (39–40.9) 32.6 (29.6–35.1) —
Postmenstrual age (weeks), median (IQR) 40.8 (39.4–42) 41 (39.6–42.3) P = 0.53
Female sex, no. (%) 133 (49%) 40 (49%) P > 0.99
Scan HC (cm), mean ± SD 34.7 ± 1.5 34.9 ± 1.8 P = 0.36
Birth HC (cm), mean ± SD 34.3 ± 1.5 29.5 ± 3.6 P < 0.005
Birth weight (kg), mean ± SD 3.31 ± 0.5 1.8 ± 0.76 P < 0.005
APGAR score 1 min, median (IQR) 9 (8–9) 7 (5–9) P < 0.005
APGAR score 5 min, median (IQR) 10 (9–10) 9 (8–10) P < 0.005
PWMLs, no. infants (%) 36 (13%) 32 (39%) P < 0.05
BSID-III, no. infants (%) 210 (78%) 47 (57%) —

Age (months), median (IQR) 18.4 (18–18.7) 18.4 (18–19) P = 0.87
Gestation age (weeks), median (IQR) 40 (39–40.9) 31.9 (29.1–35.9) —
Postmenstrual age (weeks), median (IQR) 41.1 (39.4–41.8) 41.1 (39–42.6) P = 0.61
Female sex, no. (%) 106 (50%) 24 (51%) P > 0.99
BSID-III motor, mean ± SD 101.6 ± 9.8 99.3 ± 11.5 P = 0.2
BSID-III cognitive, mean ± SD 100 ± 11 101 ± 12.7 P = 0.3
BSID-III language, mean ± SD 96.3 ± 15 98.5 ± 16.4 P = 0.23
IMD score, median (IQR) 26.9 (17–36.4) 17.4 (10–29.6) P < 0.005
PWMLs, no. infants (%) 33 (16%) 19 (40%) P < 0.005

Notes: IQR, interquartile range; APGAR, appearance, pulse, grimace, activity, and respiration. Missing data: scan HC (2 term/2 preterm), birth HC (17 term/9 preterm);
birth weight (1 term); APGAR score (32 term/7 preterm); IMD (13 term/3 preterm).

baby transportation system (Hughes et al. 2017). A total of 300
volumes were acquired sampling b-values of 400, 1000, and
2600 s/mm2 spherically distributed in 64, 88, and 128 directions,
together with 20 b = 0 s/mm2 images. Acceleration of multiband
4, SENSE factor 1.2, and partial Fourier 0.86 were used, acquired
resolution 1.5 × 1.5 mm, 3 mm slices with 1.5 mm overlap,
TR/TE of 3800/90 ms, and 4 phase-encoding directions. Total
acquisition time for the dMRI protocol was 20 min. Protocol
optimization for the dMRI data collected as part of the dHCP is
described in details in Hutter et al. (2018).

dMRI data were preprocessed with denoising (Veraart et al.
2016), Gibbs ringing removal (Kellner et al. 2016), and B0 field
map estimation (Andersson et al. 2003) and reconstructed using
a slice-to-volume motion and distortion correction with slice-
level outlier rejection using a multishell spherical harmonics
and radial decomposition signal representation (Christiaens
et al. 2019). This resulted in images with isotropic resolution of
1.5 mm. Visual inspection confirmed that motion correction and
outlier rejection were successful, and data of insufficient quality
were excluded. A summary motion metric was quantified using
the total infant translation, rotation, and the ratio of detected
outliers following the procedure described in Christiaens
et al. (2019) (see Supplementary Materials). The tensor model
was fitted to the b = 400 and b = 1000 s/mm2 shells. Scalar
maps of fractional anisotropy (FA), quantifying the degree of
anisotropy within a voxel, and mean diffusivity (MD), in μm2/ms
(10−3 mm2/s), reflecting the overall magnitude of diffusion, were
calculated using MRtrix3 (Tournier et al. 2019).

Prior to voxel-wise analysis, we applied a customized pro-
cessing pipeline specifically developed for the neonatal dMRI
data collected as part of the dHCP described in detail in Pietsch
et al. (2019). In summary, for each infant, the diffusion-weighted
signal was decomposed into isotropic fluid and anisotropic
tissue (GM-WM) components (see Supplementary Fig. 1) using
subject-specific response functions estimated from CSF and
WM via multishell multitissue constrained spherical deconvo-
lution (MSMT-CSD; Jeurissen et al. 2014). For each infant, the

estimated orientation distribution functions (ODFs) were subse-
quently intensity normalized and bias field corrected (mtnor-
malise, MRtrix3). The tissue and fluid ODFs were registered
to the age-matched (PMA at scan—37.1, 38.1, 39.1, 40.1, 40.9,
42.0, 42.8, and 44.1 weeks) and coaligned templates (Pietsch
et al. 2019; visualization of one of the weekly templates is
provided in Supplementary Fig. 1) using a multicontrast affine
and nonlinear transformation model that takes the appropriate
reorientation of the ODFs into account (mrregister, MRtrix3).
Similar to other state-of-the-art registration algorithms such as
DTI-TK (Zhang et al. 2006), the multicontrast ODF registration
framework applied here benefits from taking into account the
underlying orientation structure in every voxel. This approach
has been shown to provide higher registration accuracy and
“sharper features” in spatial/angular domain (Pietsch et al. 2017).
The templates will be available from http://brain-development.
org/brain-atlases/.

The resulting deformation fields were used to transform the
scalar tensor maps into the common space. Satisfactory spatial
alignment to template space with no gross misalignments was
confirmed by a visual examination of the transformed maps.
After subject-wise concatenation, this resulted in two sets of 4D
images (one per tensor metric per group) which served as input
to the GPR.

Gaussian Process Regression

To characterize normative microstructural development, we
used multioutput GPR (Alvarez et al. 2012), implemented
in GPy, a Gaussian processes framework in python (https://
sheffieldml.github.io/GPy/). GPR is a Bayesian nonparametric
model estimation technique that simultaneously provides
coherent measures of predictive confidence in addition to point
estimates. The predictive confidence is used as an uncertainty
measure that represents the deviation of each infant from the
normative group mean on a voxel level. This can be statistically
quantified as a Z-score by computing the difference between the
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predicted and the observed value normalized by the uncertainty
of the prediction (Marquand et al. 2016).

First, we estimated the normative variation within the term-
born (training) sample using FA and MD maps as inputs and PMA
at scan and sex as predictors. The GPR was estimated separately
for every voxel, simultaneously modelling FA and MD to take
advantage of the shared information between the measures.
The accuracy of the model was estimated under 5-fold cross-
validation, where folds were stratified so that each subset cov-
ered the whole range of PMA in the study, ranging from 37 to 45
weeks. The association between brain microstructure and the
model predictors was estimated with a combination of radial
basis function and white noise covariance kernels. Model hyper-
parameters were optimized using log marginal likelihood. The
voxel-level prediction performance of the model was evaluated
using the mean absolute error (MAE) between the predicted
and the observed values from the leave-one-out 5-fold cross-
validation.

The final model, trained on the whole term sample, was sub-
sequently applied to the preterm (holdout) sample. Individual
Z-score maps were computed for both metrics. Extreme devi-
ations from the normative model were calculated by applying
a threshold of |Z| > 3.1. Extreme positive deviations, hereafter
also referred to as FA+/MD+, indicated that the observed value
was lying more than 3.1 SD above the predicted mean for the
age and sex of the infant, while extreme negative deviations,
henceforth FA−/MD−, indicated that the observed value was
more than 3.1 SD lower than the predicted mean. The spatial
overlap of extreme deviations within the groups was assessed
by calculating a voxel-wise percentage map of extreme deviation
(number of subjects with |Z| > 3.1 divided by the total number of
subjects). We examined the voxels where more than 4% of the
preterm group showed extreme deviations from the normative
model and assessed normal extreme variability by defining
voxels with extreme deviations in more than 4% of the infants
in the term group.

The python code used to run voxel-wise GPR as applied in
this work is available at (http://www.github.com/jonnyomuir).

Whole Brain Atypicality Index

Four whole brain atypicality indices were calculated to cap-
ture the extreme deviations in both directions separately, FA+,
FA−, MD+, and MD− for each infant, computed as the per-
centage of voxels with extreme deviations (|Z| > 3.1) relative
to the total number of intracerebral (Wolfers et al. 2018, 2019).
We investigated the association between prematurity and this
atypicality index by 1) calculating the correlation with GA at
birth (Spearman rho, ρ) and 2) investigating whether the group-
average atypicality index is higher in preterm compared with
term infants (Mann–Whitney U; Vargha and Delaney’s A effect
size estimate (Vargha and Delaney 2000); Supplementary Materi-
als). Multiple comparison correction was applied using the Bon-
ferroni–Holms method (Holm 1978). Analyses were performed in
R 3.4.4 (www.r-project.org) and visualized in python 3.7 (www.
python.org).

Association Between Neonatal Microstructure and
Later Neurodevelopment

The association between the atypicality index and Bayley’s
scores was assessed using Spearman ρ. To further examine
significant associations, we tested whether atypicality indices

were predictive of behavior when entered into multiple
regression models together with GA at birth, sex, the aggregate
measure of head motion, and socioeconomic score, captured
by the English Index of Multiple Deprivation (IMD). The IMD
provides a summary measure considering 38 different factors
including income, employment, education, health, and crime
for every area in England, using national census data. Higher
IMD score relates to higher level of deprivation. Assessment of
the assumptions of the linear model were carried out by testing
the normality of the models’ residuals and using the glvma
package in R (Peña and Slate 2012), assessing global statistics
is the relationship between the predictors and the outcome
linear, skewness, kurtosis, link function, and heteroscedasticity.
Furthermore, for every model we generated bootstrapped 95%
confidence intervals (CI, 1000 replications using boot package
in R (Davison and Hinkley 1997) for the adjusted R2 and used
bootstrap resampling (n = 100) to evaluate the accuracy of
the prediction by using the adjusted R2 averaged across all
resamples.

Results
Sample Characteristics

There were no differences in PMA at scan, the proportion
of male/female between term and preterm infants, nor
did the two samples differ in head circumference (HC)
at scan (Table 1). As expected, preterm infants had lower
birth weight and smaller birth HC compared with full-term
infants. PWMLs were more frequently observed in the preterm
sample but were present in 13% of the term-born infants.
Out of the 82 preterm infants included, one had a major
incidental finding of cerebellar hemispheric parenchymal
loss accompanied by brainstem atrophy, one had two small
focal hemorrhages in the left cerebellar hemisphere, and one
had small focal hemorrhages in the cerebellar hemispheres
bilaterally.

Between the term and preterm infants with available
neurodevelopmental follow-up at 18 months, group differences
were evident in incidence of PWMLs and IMD scores, with
preterm infants showing significantly lower deprivation
(Table 1). Association between neurodevelopment and GA at
birth was found only in the preterm sample, indicating higher
GA at birth is associated with better cognitive score (ρ = 0.38, pcorr

< 0.05; see Supplementary Table 1). Higher IMD score, or higher
deprivation, was related to lower cognitive performance in the
term group alone (ρ = −0.26, pcorr < 0.005) and no association
between deprivation and neurodevelopment was found in the
preterm sample (see Supplementary Table 2).

Modelling the Developing Neonatal Microstructure
Using GPR

Figure 1 depicts example images of the observed and predicted
individual infant FA and MD maps. Qualitatively, the effects of
PMA were most noticeable in the periventricular white matter
(WM), where FA increased (dark to bright) and MD decreased
(bright to dark). Prediction was sharper in the subcortical and
central WM tracts and blurrier in the cortex, a problematic area
due to the thin nature of the structure and the high intrasubject
anatomical variability (Dubois et al. 2016; Bozek et al. 2018),
posing a significant challenge for image registration. Examples
of the normative model for three randomly selected voxels
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Figure 1. Modelling the developing brain microstructure using Gaussian process regression. Observed and predicted individual infant fractional anisotropy (A) and
mean diffusivity (B) maps for eight full-term infants randomly selected to represent every week between 37 and 44 weeks PMA. The effect of PMA is best seen in the
frontal periventricular WM, highlighted by the white arrows. The predicted developmental trajectories are plotted for three randomly selected brain voxels (C) located

in the cerebellum (i), deep GM putamen (ii), and frontal periventricular WM (iii). The relative location of the voxels is highlighted with blue squares on the observed
mean FA and MD maps. Plots show the model mean (thick black) ±1 (dark gray), ±2 (light gray), and ±3 (lighter gray) standard deviations from the predicted mean and
the diffusion values extracted for these voxels for all 82 preterm infants.

(cerebellum, frontal periventricular WM, and putamen) are
shown in Figure 1C, along with mapping of preterm infants to
the normative curves (the term data are shown in
Supplementary Fig. 2). The whole brain average MAE was 0.031

for FA and 0.17 μm2/ms for MD (see Supplementary Fig. 3). The
MAE for the cerebellum was 0.0053 μm2/ms for MD and 0.0181
for FA, for periventricular WM 0.12 μm2/ms for MD and 0.0219
for FA, and for putamen 0.031 μm2/ms for MD and 0.0135 for FA.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa069#supplementary-data
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Characterizing the Heterogeneous Effect of Prematurity
on the Developing Microstructure

In preterm infants extreme FA deviations were widely dis-
tributed throughout the brain, with consistent abnormality
found only in small clusters of voxels. MD changes were also
widely distributed but with somewhat greater consistency.
Figure 2 highlights the intrasubject heterogeneity of MD+
deviations observed within the preterm sample. Individ-
ual MD+ Z-score maps for the term sample are shown in
Supplementary Figure 4. The changes were seen predominantly
in regions adjacent to the ventricles, in periventricular WM,
and in the periphery of the corticospinal projections to the
somatosensory and motor cortex and were of varying extent and
spatial distribution across infants. Clusters of MD− deviations
were seen in the cerebellum, more often in the medial and
superior portions, yet again with very little spatial overlap across
individual subjects (see Supplementary Fig. 5). MD− clusters
were found in the posterior periventricular WM indicative
of PWMLs (see Supplementary Fig. 6). On other occasions,
individual MD− deviations were scattered single or small
collection of voxels in the periphery of the brain possibly
resulting from individual differences in cortical anatomy, not
resolved by registration, voxels containing nonbrain tissue, or
partial volume effects.

Spatial Overlap of Extreme Deviations Across the
Developing Brain

The only brain regions where more than three preterm infants
(4%) showed extreme FA deviations from normative ranges were
the caudate (FA+) and the corpus callosum (FA−). In all other
voxels fewer than three infants had extreme deviations (Fig. 3A).
The spatial overall in MD+ was somewhat more spread with
extreme deviations in more than three infants found in voxels
located in the cortex and the WM, yet only regions adjacent to
the ventricles indicated an overlap in more than eight preterm
infants (>10%). Upon examination of the individual Z-score MD+
maps, we found that 13 out of the 82 preterm infants had
extreme values in voxels located around the ventricles charac-
terized by high variability in the location and the extent of the
deviations (see Supplementary Fig. 7). Very few voxels showed
spatial overlap in MD− deviations, and these were primarily
seen in the periphery of the brain. On average, term infants did
not deviate substantially from the normative model and showed
fewer extreme deviations (see Supplementary Fig. 8).

Association Between Neonatal Brain Atypicality Index
and Prematurity

There was no difference between term and preterm infants
in the FA+ (median [IQR] − 0.33% [0.22–0.62] and 0.29% [0.17–
0.54], respectively, pcorr = 0.24) and MD− atypicality indices
(0.12% [0.08–0.2] and 0.15% [0.07–0.33], respectively, pcorr = 0.15).
However, preterm infants had higher MD+ atypicality index
(2.34% [1.35–3.4]) compared with term-borns (0.47% [0.23–
0.77], pcorr < 0.005; large effect size, A = 0.9). Furthermore, FA−
atypicality index was higher in the preterm (0.08% [0.05–0.23])
than in the term group (0.04% [0.02–0.06], pcorr < 0.005; medium
effect size, A = 0.75; Fig. 4A).

Within the preterm group, GA at birth was negatively cor-
related with FA− (ρ = −0.49, pcorr < 0.005) and MD+ (ρ = −0.44,
pcorr < 0.005) deviations. No association was observed between

Figure 2. Detecting deviations from normative development at the level of the
individual preterm infant. Individual MD+ deviations (Z-score maps thresholded

at Z > 3.1) are shown for six preterm infants depicting the unique spatial patterns
observed within the preterm sample (A). The density plots (B) indicate where is
the overall brain proportion of extreme deviations for this infant in relation to
the rest of the preterm sample. Infants were selected to show different overall

proportions of extreme deviations. Infant 1 had a relatively low atypicality index
(0.6% of voxels), while infant 6 had a relatively high index (12%) of voxels
deviating from the model. The GA at birth and PMA at scan (in weeks +days)

are also shown for each infant.

GA and FA+ (ρ = 0.006, pcorr = 0.99) or MD− (ρ = −0.25, pcorr = 0.09)
deviations (Fig. 4B). Within the term sample, we found a cor-
relation between GA and extreme FA+ (ρ = 0.28, pcorr < 0.005)
and extreme MD+ deviations (ρ = −0.20, pcorr < 0.005) and no
association with extreme FA− (ρ = 0.09, pcorr = 0.43) and MD−
(ρ = 0.04, pcorr = 0.99).

Association Between Neonatal Brain Atypicality Index
and Neurodevelopment at 18 Months

There was no significant correlation between the atypicality
indices and the Bayley scales in the term-born infants (see
Supplementary Table 3). However, in the preterm group, we
found an association between language abilities and the
overall proportion of FA− and MD− deviations (ρ = −0.46,

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa069#supplementary-data
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Figure 3. Percentage spatial overlap of extreme deviations across the developing preterm and term brain imaged at term-equivalent age. Spatial overlap in fractional
anisotropy (A) and mean diffusivity (B) maps depicting areas of the brain where more than 4% of the preterm sample or more than three infants have extreme deviations
from the model mean given their age and sex.

pcorr = 0.012, and ρ = −0.40, pcorr = 0.047; Fig. 5). Furthermore,
cognitive performance was associated with the overall propor-
tion of FA− and MD+ deviations (ρ = −0.47, pcorr = 0.011, and
ρ = −0.41, pcorr = 0.047; Fig. 5). To assess the effect of influential
datasets on these significant correlations, we converted the
atypicality indices to Z-scores and reran the analyses removing
observations of |Z| > 3.1. One infant was excluded for FA−, two
for MD+, and none for MD− atypicality indices (highlighted in
Fig. 5). While the correlations between FA− atypicality index
and neurocognition remained significant (language: ρ = −0.426,
pcorr = 0.038; cognition: ρ = −0.432, pcorr = 0.033), the correlation
between MD+ atypicality index and cognitive score did not
survive after multiple comparison correction, although it
remained of medium effect size (ρ = −0.32, pcorr = 0.37).

A linear model with FA− atypicality index (p < 0.005), GA
(p = 0.26), sex (p = 0.30), IMD (p = 0.33), and motion (p = 0.8)
explained 23% of the variance in language score (adj. R2 [95%
CI] = 0.248 [0–0.34]; F5,38 = 3.6, P = 0.009; bootstrapped R2 = 0.18). A
linear model with MD− atypicality index (p = 0.04), GA (p = 0.84),
sex (p = 0.72), motion (p = 0.35), and IMD (p = 0.50) explained
7% of the variance in language score; however, this model was
not significant (adj. R2 [95% CI] = 0.07 [−0.09 to 0.17]; F5,38 = 1.67,
P = 0.16; bootstrapped R2 = 0.068). Fifty percent of the variance in
cognitive score at 18 months was explained by FA− atypicality
index (p < 0.005), GA (p = 0.62), sex (p = 0.07), motion (p = 0.58),
and IMD (p = 0.32) (adj. R2 [95% CI] = 0.496 [0.09–0.75]; F5,38 = 9.46,
p < 0.005; bootstrapped R2 = 0.386). MD+ atypicality index (p <

0.005), GA (p = 0.42), sex (p = 0.14), motion (p = 0.40), and IMD
(p = 0.19) explained 39% of the variance in cognitive score (adj.
R2 [95% CI] = 0.387 [0.09–0.66]; F5,38 = 76.4, P < 0.005; bootstrapped
R2 = 0.28).

Discussion
This study combined a large dataset of neonatal MRI from term-
born infants with an innovative normative modelling technique
to characterize typical variation of quantitative microstructural

measurements at every brain voxel. This allowed brain images
from individual infants to be compared with the normative
range at a voxel level. Preterm infants showed significant devi-
ations from typical development, but these deviations were
heterogeneous in both their extent and spatial distribution, with
little overlap in brain regions between infants. These deviations
signal functionally significant abnormality, as more preterm
infants showed greater atypicality, and the degree of devia-
tion was related to cognitive and language performance at 18
months.

The variability in extreme deviations from normative devel-
opment was striking, with greatest deviations seen in MD+. The
maturation of brain tissue during early postnatal life comprises
an increase in cell density, complexity, and myelination together
with a reduction in tissue water content. The combination of
several or all of these factors is believed to mediate the associ-
ation between advancing age and the fall in MD. Therefore, the
higher loading of MD+ deviations seen in preterm infants could
be associated with overall more “immature” state of the brain
microstructure in preterm compared with typical development.
However, this microstructural abnormality does not occur in
similar brain regions in all infants.

The greatest consistency in preterm MD+ deviations was in
the regions adjacent to the lateral ventricles, but even in this
region only 13 of 82 infants showed significant abnormalities.
Enlargement of the ventricles and alterations to their shape
and relative position are often observed in preterm infants
imaged at term-equivalent age (Brouwer et al. 2012; Paquette
et al. 2017). These, combined with other brain morphological
alterations such as dolichocephalic head configuration (McCarty
et al. 2017), might pose a certain challenge for image registration
(Mewes et al. 2007). This pattern of MD+ deviations was only
seen in the preterm group suggesting higher variability in the
volume, shape, and relative position of the ventricles in preterm
babies.

The high spatial interindividual variability in the preterm
group means that patterns of abnormality are not easy to detect
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Figure 4. Association between prematurity and proportion of extreme deviations, captured by the atypicality index. (A) Preterm infants had higher FA− and MD+
atypicality indices compared with term-born infants (highlighted by a star). There was no difference between the two samples in the proportion FA+ and MD−. (B)
Associations between the atypicality index and GA at birth in term and preterm infants. In the preterm sample, there was a negative association between GA at birth

and FA− and between GA at birth and MD+ deviations. Note that the y-axis in B is not fixed.

on overlap maps; for example, a number of infants had signif-
icantly reduced MD (MD−) in the cerebellum which were not
identified on the overlap maps. During the last trimester, the
rapid cerebellar growth surpasses all other brain structures, and
alterations to the maturational processes involved are a recog-
nized vulnerability to neurocognitive difficulties in premature
infants (Volpe 2009). The dramatic increase in cerebellar size
is driven by the increase in cell density and their projections,
with a considerable proportion of cerebellar neurogenesis and
dendritic/axonal elaboration occurring postnatally (Ábrahám et
al. 2001; Sathyanesan et al. 2019). The premature exposure to
ex utero environment poses a significant risk for the typical
progression of these maturational events and thus might rep-
resent a contributing factor to the MD− deviations observed in
the preterm cerebellum.

Deviations in FA were less evident in both extent and spa-
tial heterogeneity but even so the only regions where atypical
values were detected in more than a few infants were in deep
gray matter and corpus callosum. Imaging studies assessing
the effect of prematurity on brain microstructure report only
small to medium effects consistent with our findings of high
interindividual variations between preterm infants. Despite that
altered microstructure in the corpus callosum is one of the
best documented findings in preterm infants (Counsell et al.
2008, 2013; van Kooij et al. 2012; Telford et al. 2017), here only
approximately 10% of the preterm group had extreme deviations
in this region. Combined with the highly variable interindividual
MD+ deviations, this emphasizes that group-level studies might
not capture fully the microstructural variation associated with
prematurity.

Identifying modifiable risks early in development offers the
potential to improve continued clinical management in preterm
infants (Ment et al. 2009). Group analysis of MRI data have shown
that microstructural disturbances in the preterm brain correlate
with neurodevelopment at 2 years of age (Counsell et al. 2008;
van Kooij et al. 2012; Ball et al. 2015; Duerden et al. 2015), and it is
clear that MRI datasets encode valuable prognostic information.
Nevertheless, the predictive power of MRI using group mean
approaches is limited at an individual level. The current study
suggests that this might be at least in part due to the extreme
heterogeneity in the way prematurity shapes the brain. GPR
might offer a tool for more precise interpretation of imaging
changes and the possibility of personalized precision medicine
for preterm infants.

Limitations and Future Directions
Despite providing sensitivity to developmental and pathological
changes in brain microstructure (Mori et al. 2002; Dean et al.
2013), the tensor model lacks specificity regarding the biological
substrate driving variation (Jones et al. 2013). Thus, caution is
essential when relating changes in tensor-derived metrics to
maturational events. Several higher-order models have been
developed to overcome some of these limitations and offer
either measures with better biological interpretability (Zhang
et al. 2012) or dealing with the complexity of the underlying
microstructural composition (Tournier et al. 2004). Yet currently
there is no model that is well suited for modelling both develop-
ing neonatal white and gray matter microstructure. Therefore,
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Figure 5. Associations between whole brain atypicality index in preterm neonates scanned at term-equivalent age and neurodevelopment at 18 months. Language

scores correlated with FA− and MD− atypicality indices, while cognitive performance was associated with FA− and MD+ atypicality indices. The higher the overall
loading of extreme deviations from the normative model, the lower the score at 18 months. The figure also shows the individual Z-score maps for three influential
observations (|Z| > 3.1, as indicated by the vertical line on the scatterplots).

more work is essential to interrogate the biological bases of
individual maturation differences in preterm neonates. Nonethe-
less, we emphasize the two main reasons why we choose DTI
over more sophisticated diffusion models in this work. First and
foremost, we sought to question the application of only first-
order statistics (mean and median) in the study of biologically
heterogeneous risk populations and to offer a novel approach,
able to characterize the effects of prematurity on an individual
infant level. Secondly, the minimal acquisition requirements
necessary for fitting DTI will allow our results to be reproduced
using datasets collected with less sophisticated acquisition
parameters/hardware (e.g., clinical datasets collected in the

past decade), and therefore we offer a method with high
generalizability.

Importantly, model prediction was more accurate in the cen-
tral gray matter and core WM tracts compared with the periph-
ery of the brain, for example, the cortical ribbon. This is expected
given the high intrasubject variability in the developing cortex.
Novel surface-based registration algorithms driven by geomet-
ric features of cortical shape have been shown to offer better
intersubject cortical alignment and lessen CSF contamination
(Robinson et al. 2014; Bozek et al. 2018) and, thus, will with no
doubt offer a powerful tool to address this challenge in future
studies. Nonetheless, the application of GPR can be extended to
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investigate if the nature of an individual’s atypicality can inform
personalized medicine, for example, the selection of educational
or behavioral interventions which target the neural systems
most affected.

Conclusion
This study suggests that the highly variable spatial alterations
seen in preterm infants needs to be accounted for in developing
imaging strategies to understand mechanisms of injury and
determine neurocognitive prognosis.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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