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Abstract: During the last few decades, the role of B cells has been well established and redefined in
neuro-inflammatory diseases, including multiple sclerosis and autoantibody-associated diseases. In
particular, B cell maturation and trafficking across the blood–brain barrier (BBB) has recently been
deciphered with the development of next-generation sequencing (NGS) approaches, which allow
the assessment of representative cerebrospinal fluid (CSF) and peripheral blood B cell repertoires.
In this review, we perform literature research focusing on NGS studies that allow further insights
into B cell pathophysiology during neuro-inflammation. Besides the analysis of CSF B cells, the
paralleled assessment of peripheral blood B cell repertoire provides deep insights into not only the
CSF compartment, but also in B cell trafficking patterns across the BBB. In multiple sclerosis, CSF-
specific B cell maturation, in combination with a bidirectional exchange of B cells across the BBB, is
consistently detectable. These data suggest that B cells most likely encounter antigen(s) within the CSF
and migrate across the BBB, with further maturation also taking place in the periphery. Autoantibody-
mediated diseases, such as neuromyelitis optica spectrum disorder and LGI1 / NMDAR encephalitis,
also show features of a CSF-specific B cell maturation and clonal connectivity with peripheral blood.
In conclusion, these data suggest an intense exchange of B cells across the BBB, possibly feeding
autoimmune circuits. Further developments in sequencing technologies will help to dissect the exact
pathophysiologic mechanisms of B cells during neuro-inflammation.

Keywords: B cells; B cell repertoire; CSF; NGS; next-generation sequencing; multiple sclerosis; MS;
NMOSD; limbic encephalitis

1. Introduction
1.1. Neuro-Inflammatory Diseases—Cerebrospinal Fluid (CSF) Findings, Including Routine
Diagnostics, Autoantibodies and B Cells

B cells are an essential part of the adaptive immune system and play important roles
in the pathogenesis of several neuro-inflammatory diseases. The functional properties of B
cells are manifold and not only include antigen recognition through B cell receptors (BCR)
and specific antibody production, but also antigen presentation to other immune cells
and the secretion of cytokines [1]. Central nervous system (CNS) inflammation is often
modulated or even initiated by B cells. The priming of these B cells can either occur in the
peripheral compartment, followed by trafficking into the CNS, or by a compartmentalized
B cell reaction within the CNS [1]. There are several pathways by which B cells could
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enter the CNS, including the blood–brain barrier (BBB), blood–cerebrospinal fluid (CSF)
barrier or barriers at the surface of the human brain [2]. Critical questions regarding B
cell pathophysiology within the CNS include immune-tolerance, the location of antigenic
stimulus and antigenic stimulation itself, the composition of migratory B cell populations,
intrathecal B cell maturation and the re-circulation of B cells into the periphery.

B cells are consistently found in the CSF during neuro-inflammation in both infectious
and autoimmune diseases but are largely absent under non-inflammatory conditions [3–5].
Among autoimmune CNS disorders, MS is the most common disease and patients present
with various neurological deficits. The initial disease phase is often characterized by re-
lapses, and in a substantial proportion of MS patients, is followed by a progressive disease
phase [1,6]. It is believed that an orchestrated T and B cell reaction leads to inflammation
in the CNS, resulting in demyelination and neuronal damage; this disease phase is often
followed by compartmentalized CNS inflammation and neuro-degeneration [1]. The pres-
ence of oligoclonal bands (OCBs) as a consequence of an intrathecal B cell activation has
been described since the 1940s and still serves as a diagnostic hallmark [7,8]. Furthermore,
B cell percentages are elevated in the CSF of MS patients; CSF plasmablasts represent the
most frequent antibody-secreting B cell subset correlating with intrathecal IgG produc-
tion and disease activity [9]. Nevertheless, a defined antigen target for CSF antibodies
has not been consistently identified in MS yet. In contrast to MS, NMOSD constitutes a
B cell-mediated neuro-inflammatory disease that has been characterized by pathogenic
antibodies targeting the water channel aquaporin 4 (AQP4-IgG) [10–12]. NMOSD mainly
affects the spinal cord and optic nerves, which can lead to similar clinical presentations,
as in MS patients [13,14]. AQP4-IgG has been shown to target astrocytes, which show a
high expression of AQP4 channels, subsequently leading to astrocyte injury and demyeli-
nation [14]. Disease-relevant AQP4-IgG antibodies are detectable in serum [10,15] as well
as CSF [16]; however, the level of intrathecal IgG synthesis is low, transient and mostly re-
stricted to acute relapses [17]. CSF oligoclonal IgG bands have been infrequently observed
in NMOSD [17]. Regarding CSF white cell counts, more than 50% of CSF samples show an
elevated cell count with mostly lymphocytes and monocytes [18]. The effectiveness of B
cell-depleting therapies in NMOSD and MS [19–26] has underlined the importance of B
cell-mediated autoimmunity in both diseases. Concerning other autoantibody-mediated
encephalopathies, numerous antibodies targeting neuronal or glial cells have recently been
described in neurological diseases. In this context, the anti-N-methyl-d-aspartate receptor
(NMDAR) and leucine-rich, glioma-inactivated 1 (LGI1) autoantibody-mediated encephali-
tis is one of the best-characterized disease entities [27]. Although CSF LGI1 antibodies are
detected in around 90% of patients, there is an infrequent association with CSF lympho-
cytosis and OCB in LGI1 encephalitis [28,29]. Regarding NMDAR encephalitis, NMDAR
autoantibodies are consistently detectable within the CSF compartment while around 14%
of the patients are serum-negative [30]; an elevated CSF cell count is found in around 74%
and positive OCBs in approximately 70% of the patients [31]. From a clinical perspective,
patients with autoantibody-mediated encephalitis often present with new-onset psychosis,
amnesia, hyperkinesia or vegetative dysfunction. With the discovery of anti-neuronal
antibodies, these patients now receive causal therapies, including B cell depletion and
antibody removal, instead of solely symptomatic treatments [27].

Accordingly, there are multiple lines of evidence indicating that B cells modulate or
initiate inflammatory diseases in the CNS in several cases with defined antigen targets.
Although inflammatory antibody-mediated cascades have been defined, the initial events
that lead to B cell autoimmunity, the place of initial B cell priming and further B cell
trafficking/maturation, must be fully determined. With the development of new high-
throughput sequencing techniques, there have been huge advances in tracking B cell
development and migration through the assessment of B cell repertoires in the CSF and
peripheral blood (PB) compartment on the transcriptome level. The aim of this review
is to summarize these developments and extract the major findings on B cell maturation
and migration in neuro-inflammatory diseases. We first provide a short background on
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the biological context of B cell sequencing and the approach of repertoire sequencing, and
then we explain the methods of this review. Next, we summarize major studies on B
cell receptor sequencing in a chronological order and discuss the major findings of the
studies mentioned.

1.2. B Cell Repertoires—The CDR3 Region as a Molecular Fingerprint of B Cell Maturation

B cells develop from hematopoietic stem cells in the bone marrow, where various steps
in the assembly and expression of functional B cell receptor (BCR) genes take place [1].
During this maturation process, a primarily huge diversity of B cells is generated by somatic
recombination of the variable (V), diversity (D) and joining (J) gene segments (variable
heavy (VH) and light (VL) chain immunoglobulin loci) that form the CDR3 antigen-binding
region. At this immature B cell stage, cells are first tested for tolerance to self-antigens
(central tolerance); if cells are non-reactive, they leave the bone marrow. In the periphery,
B cells become activated through antigen binding of the B cell receptor in addition to
stimulating signals. At this stage, BCR genes can be further diversified through somatic
hypermutation (SHM) in germinal center reactions and/or by undergoing a class switch
recombination [1]. Somatic hypermutations occur by introducing point mutations in the
variable region, which lead to affinity maturation towards a defined target and changes in
the CDR3 [32]. Contrastingly, these mutations can drive the formation of auto-reactive B
cells into the periphery. However, mechanisms including deletion of auto-reactive B cell
clones and suppression of B cells through anergy and immunomodulation with regulatory
T and B cells can further prevent auto-reactivity (peripheral tolerance). Altogether, these
maturation steps lead to an exceptional diversity of the peripheral B cell repertoire and offer
the possibility to trace back B cell maturation according to SHM patterns. In the context of
neuro-inflammation, B cell maturation and trafficking in and out of the inflamed CNS can
be studied by analyzing the CDR3 region of BCR repertoires [33]. With the development of
next-generation high-throughput sequencing methods, it is possible to assess up to millions
of immunoglobulin/BCR transcripts, including the CDR3 region, and to actually sequence
representative B cell repertoires, not only from the CSF but also from peripheral blood B
cells. Therefore, Ig gene transcripts, including the CDR3 section of heavy chain variable
regions (Ig-VH), provide molecular fingerprints that permit temporal and spatial tracking
of clonally related B cells [34].

1.3. Next-Generation Sequencing of B Cell Repertoires—Methods and Data Analysis

The development of next-generation sequencing technologies has made an impact
on all fields of genomics, including BCR repertoire sequencing (Rep-seq). Departing from
Sanger sequencing protocols, technologic progress has evolved to sequencing millions of
BCR sequences in parallel [35]. B cell repertoires can be generated from PBMCs or CSF
cells by whole RNA extraction. By adding a sorting step via flow cytometry prior to RNA
extraction, different B cell populations can be distinguished within a repertoire. In current
high-throughput methods, the specific amplification of the BCR genes can be achieved
by PCR of the genomic DNA (gDNA) or immunoglobulin mRNA. Several protocols can
be used for amplification, including multiplex PCR with primer pairs for the different
VH and constant regions, and 5’ rapid amplification of cDNA ends (RACE) PCR [36].
The incorporation of unique molecule identifiers (UMI) as part of the sequencing primers
allows for PCR sequencing error and amplification bias correction [37]. Barennes et al.
recently showed that UMI-based methods are more accurate in quantifying the abundance
of specific clonotypes, whereas non-UMI 5’RACE methods show a higher sensitivity [38,39].

With the possibility of sequencing up to several million Ig transcripts in parallel, a need
for bioinformatics pipelines evolved in order to handle the high-throughput data analysis.
The approach for an immunoglobulin repertoire data analysis generally involves filtering
the sequencing reads according to quality criteria, building a consensus sequence to mini-
mize errors introduced during library preparation and amplification, assigning V(D)J gene
segment alleles by aligning to germline BCR databases and clonotyping and characterizing
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the repertoire [40]. Multiple bioinformatics tools and comprehensive pipelines have been
developed to process B cell repertoire data [41,42].

Two popular tools used for aligning the reads to germline references are IgBlast [43]
—based on the Blast algorithm—and IMGT/HighV-Quest [44], based on the Smith–
Waterman algorithm. These are typically used to align to the ImMunoGeneTics (IMGT)
germline database [45] and are included in several frameworks and pipelines [46] as well
as individual alignment algorithms [47].

Clonotyping is another critical step in the repertoire analysis process, and the choice
of tool has a big impact on the downstream repertoire characterization. Whereas some
tools define a clonotype as identical sequences [48] that will generate a unique antibody,
others allow clonotype grouping of similar (but not identical) sequences [46], typically by
calculating nucleotide or amino acid sequence similarities or employing specific substi-
tution models [46]. Once the sequence data is processed and the clonotypes defined, a
quantitative characterization of the repertoires (e.g., repertoire diversity [49]) is needed to
allow comparisons among individuals and experimental conditions.

2. Methods of Systematic Review

We performed a systematic database search in accordance with the preferred reporting
items for systematic reviews and meta-analyses (PRISMA) guidelines. All published
reports and articles were searched and accessed in May 2021 on the pubmed database.
The following search terms were used: ((“cerebrospinal fluid” NOT “CSF-GM”) AND(“B
cell repertoire” OR (“BCR” NOT “BCR-ABL”)) OR ((“cerebrospinal fluid” NOT “CSF-
GM”) AND (“NGS” OR “next-generation sequencing”) AND “B cell”) OR((“cerebrospinal
fluid” NOT “GM-CSF”) AND “B cell” AND “sequencing”). Papers were first screened
on titles and abstracts (n = 135) to exclude papers with non-neurological purposes such
as lymphoma, glaucoma or leukemia. Preselected articles (n = 75) were read in full-text.
Articles were included in the systematic review using the following criteria: (1) the study
included data on human research and not animal research, (2) the study displayed original
data and did not report previously published data, or was a review of previous work or
case report (reported patients n = 1) and (3) the study methods stated sequencing of the B
cell receptor. This search and inclusion criteria are described in the flowchart (Figure 1) and
resulted in 38 articles selected for further analysis for the comprehensive review. In addition,
we examined papers cited in the selected articles and included additional references based
on their relevance regarding the scope of this paper. Due to the very inhomogeneous
methodological approach between various studies (e.g., sequencing methods/platforms,
CSF B cell subtypes studied and bioinformatics data processing used, patient selection)
and limited sample sizes in the studies mentioned, no statistical meta-analysis could
be conducted.
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Figure 1. Workflow for the identification of studies. ** Records excluded after screening of abstract
due to non-neurological purposes such as lymphoma, glaucoma or leukemia.

3. Results

In order to learn more about B cell maturation and trafficking in neuro-inflammatory
diseases, we performed the aforementioned search strategy and found several studies on
B cell repertoire mass sequencing in multiple sclerosis and single studies on NMOSD as
well as LGI1 and NMDAR autoantibody-mediated encephalitis. Early studies in MS with
conventional B cell repertoire sequencing in the CSF compartment were also included
in the analysis, in order to compare between the different methods and complete the
picture of B cell pathophysiology in MS. B cell repertoire mass sequencing results in
complex datasets; for this reason we ordered the results according to findings from basic
repertoire analysis, clonal expansion within the CSF, B cell trafficking across the BBB
and—if available—longitudinal CSF studies on single MS patients.

3.1. CSF B Cell Repertoires in Multiple Sclerosis

The presence of oligoclonal bands (OCBs) still serve as important criteria in estab-
lishing the diagnosis of multiple sclerosis [8]. Furthermore, OCBs and an intrathecal Ig
synthesis have consistently been associated with elevated CSF B cell counts [9]. During the
last few decades, numerous studies further examined the role of CSF B cells by assessing
B cell repertoires within the CSF, in lesions of MS patients [50] and—more recently—in
draining cervical lymph nodes [51]. Although studies have not provided defined targets of
CSF antibodies in MS yet, a deeper understanding of B cell trafficking, B cell maturation
and compartmentalized B cell reactions could be accomplished.

3.1.1. Enrichment of VH4 Family Usage in CSF B Cell Repertoires

The basic analysis of B cell repertoire properties in the CSF of MS patients indicates
that the VH germline usage of CSF B cells differs from the expected germline prevalence.
Most studies on CSF B cell repertoires show a consistent shift towards an increased VH4
family usage (Table 1). In particular, the VH4 family members VH4-31, VH4-34, VH4-39,
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IGHV4-59 and IGHV4-61 [52–56], have been utilized in CSF B cell clones. In this context,
CD138+ plasmablast/-cells show a more pronounced bias towards VH4 family usage than
CD19+ B cells [52]. An over-representation of VH4 in combination with VH2 families
has been discussed in clinically isolated syndromes [57]. These findings are in line with
results from B cell repertoires derived from CNS MS lesions, which also found an over-
representation of VH4 families [50,58–61], including VH4-34 and VH4-39 [51,58] family
members. In addition, an over-representation of some VH1 family member shifts in VHD
and VHJ segments has also been reported occasionally in MS lesions [58]. It has been
suggested, that the CSF VH4 family bias might be applied to distinguish multiple sclerosis
from other neuro-inflammatory diseases [62] as well as predict the development of MS in
patients with clinically isolated syndrome (CIS) [57].

Table 1. B cell repertoires analysis in MS patients.

Study Diagnosis/Number of
Patients

Compartment of
B Cell Analysis Methods

VH Family Bias
(within CSF)

Towards:

CSF Clonal
Expansion (in MS

Patients)

Clones between
CNS/CSF and Periphery

(Qin et al., 1998) MS/n = 12
OND/n = 15 CSF tRT-PCR

IgVH-PCR VH4
• Dominant clone(s)
(10/12 MS patients)
• Numerous SHM

N/A

(Colombo et al.,
2000)

MS/n = 10
OND/n = 10 CSF/blood tRT-PCR

IgVH-PCR
VH3
VH4

• Oligoclonal B cell
accumulations (10/10

MS patients)

CSF B cells hardly
represented in PB,

compartmentalized
clonal expansion within

the CSF

(Owens et al.,
2003)

MS/n = 4
Viral meningitis/n = 2 CSF ScRT-PCR,

IgH/L-PCR N/A
• B cell clonal IgG
expansion (3/4 MS

patients)
N/A

(Owens et al.,
2007)

MS/n = 15
OND/n = 2 CSF/blood ScRT-PCR

IgH/L-PCR

VH4-39
VH4-31
VH4-59

• 64% of CSF CD138
Cells in clonal
populations

N/A

(Bennett et al.,
2008) CIS/n = 10 CSF/blood ScRT-PCR

IgH/L-PCR

VH4
VH2
(70%)

• Expanded B and
plasma cell clonal

populations
N/A

(H.-Christian von
Büdingen et al.,

2012)

MS/n = 6
OND/n = 7 CSF/blood NGS

IGHV4-39
IGHV4-59
IGHV4-61

• CSF-restricted B cell
activation in MS

patients

• Bidirectional exchange
across the BBB in a
restricted pool of

clonally related B cells
• Clusters undergo

active diversification
primarily in the CNS, in
the periphery or in both
compartments in parallel

(Palanichamy
et al., 2014) MS/n = 8 CSF/blood NGS

IGHV4-39
IGHV4-59

VH4-61

• B cells belonging to
bicompartmental
clusters may have
been exposed to

antigen-stimulation in
the CSF or PB

• SM: most frequent
immune axis between

PB and CSF
• Class-switched DN B

cells: also clonally
related to CSF Ig

repertoires
• PB plasma cells: few

bicompartmental
clusters

(Beltrán et al.,
2014)

MS/n = 12
OND/n = 7 CSF/blood

High-
throughput

pyrosequenc-
ing

VH4-34, 4-39;
VH4-59; VH4-4,

4-61; VH4-31

• Extensive SHM in
CSF IgM antibodies

• AICDA expressed in
CSF IgM-producing B

cells

Clonal tracking/lineage:
• Ancestors of CSF B cell

clones reside in PB
• Maturation continues

in CSF
• No isotype switching
from IgM to IgG in CSF
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Table 1. Cont.

Study Diagnosis/Number
of Patients

Compartment of B
Cell Analysis Methods

VH Family Bias
(within CSF)

Towards:

CSF Clonal
Expansion (in MS

Patients)

Clones between
CNS/CSF and

Periphery

(Stern et al., 2014) MS/n = 5 CNS tissue, CLN SSC/NGS

IGHV4
(CNS vs. CLN)

IGHJ usage biased
toward IGHJ4 in
CNS and CLNs

• Class switched,
acquired SHM and
expanded clones in

CNS B cells

• Both less mature
and more experienced
offspring observed in

the CNS and CLN
• Maturation steps not

restricted to a single
compartment

• Clonal expansion of
B cells possibly occurs

in multiple
compartments

(Johansen et al.,
2015)

MS/n = 10
OIND/n = 6 CSF/blood NGS IGH-V4

• Higher frequency of
IGHV4 genes and
more replacement

mutations in CSF of
MS patients

Dominant B-cell
clones

• produce CSF IgG
• are present at both

sides of BBB
• Go through several
rounds of mutations

in the CSF

(Eggers et al.,
2017)

MS = 11
(bulk NGS) CSF/blood NGS N/A

• ASC are clonally
expanded in the CSF
• ASC participate in
production of clonal

CSF IgG

• Clonal relationships
between CSF and PB B

cells
• Migration of B cells
and activation in the

CNS in active MS
• Clonal relationships
between CSF and PB

suggest influx of
functionally diverse

B cells

(Greenfield et al.,
2019)

RRMS = 8
PPMS = 2 CSF/blood NGS N/A

• Exclusive CSF
IgG-VH clusters
(10/10 patients)
• Exclusive CSF
IgM-VH (9/10)

• mixed IgM and IgG
clusters (5/10)

• Clonal connections
between PB and CSF

in 10/10 patients

(Kowarik et al.,
2020) MS = 8 CSF/blood NGS VH4 (at baseline)

• In CSF 80% of VH
sequences within

clonal populations at
baseline

Lineage analyses of
clonal groups:
• Bidirectional

exchange across the
BBB

• M, DN and
plasmablasts from PB

contribute 30% to
clonal groups

emanating from PB,
naïve B cells < 10%

Abbreviations: tRT-PCR, RT-PCR from total RNA from CSF cells; scRT-PCR, single-cell RT-PCR from CSF cells; IgVH-PCR, PCR amplification of Ig heavy
chains variable region; IgH/L-PCR, PCR amplification of Ig heavy/light chains; Ig-VH region, Ig heavy chains variable regions; SM, class-switched
memory B cells; M, memory B cells; DN, double negative (germinal center-like) B cells; ASC, antibody secreting cells; PB, peripheral blood; CSF,
cerebrospinal fluid; CLN, cervical lymph node; NGS, next-generation sequencing; SSC, single-cell next-generation sequencing; BBB, blood–brain barrier.

3.1.2. Clonal Expansion of B Cells within the CSF Compartment

As outlined above, B cell receptors (BCR) show a high variability due to the recombi-
nation of V-(D)-J segments, affinity maturation and class-switch recombination as well as
somatic hypermutations (SHM). As a consequence, B cell immunoglobulin (Ig) transcripts
that contain the same V-(D)-J segments as well as highly similar SHM-profiles, notably in
the CDR3 region, are considered to be clonally related. Utilizing the CDR3 region as a clonal
marker, the patterns of SHM in related B cells can be further examined and their maturation
trees assessed in order to follow B cell maturation steps. Furthermore, the abundance of
different clones, diversity and degree of the SHM of the acquired B cell repertoires provide
further evidence for compartmentalized maturation processes [46,63–67].

Clonal expansion and somatic hypermutations of CSF B cell repertoires are consistent
features that have already been reported in early MS studies [52,53,57,68–72] and did
not include a sufficient analysis of peripheral blood (PB) B cell repertoires. Additional
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analyses on the clonal overlap between B cell receptor sequences in MS brain parenchyma,
meningeal lymphoid follicles and CSF further indicate an immunological continuum in-
side the CNS/CSF [72–74]. With the availability of high-throughput sequencing, it is
now possible to assess representative B cell repertoires from peripheral blood and to test
whether B cell clones are CSF specific (Table 1). Several studies have shown that CSF
lineage trees exist exclusively in the CSF without clonal connection to the peripheral
blood [33,54,56,62,75–77], indicating that B cell maturation and expansion is indeed occur-
ring in the CSF compartment. This finding is indirectly supported by the disproportionate
increase of all B cells during active MS and the overall increased number of antigen-
experienced B cells in the CSF, assessed by flow cytometry [9,76]. When looking at B
cell subsets within CSF clones in general, it could be shown that memory B cells, Ig27-
IgD-double negative (DN) B cells and especially plasmablasts, contribute to CSF clonal
groups [33]. Another study found alterations in the SHM profiles of CSF B cell subsets [56].
While the SHM profiles of CSF IgG transcripts appear to be similar to IgG transcripts in
PB from switched memory B cells and plasma cells, SHM profiles of CSF IgM transcripts
seem to be most similar to PB IgM transcripts of naive, unswitched memory and DN B cell
subsets. Regarding Ig isotype switching in CSF clones as a feature of maturation processes,
one study could not find evidence for an intrathecal isotype switching from the IgM to IgG
subclass [55]. In contrast, another study found CSF Ig-VH clusters that were exclusively
IgG or IgM as well as mixed clusters [34].

When comparing MS B cell repertoires in the CSF with control groups, early studies
indicate that a nonrandom distribution of B cell clones in the CSF is not a distinctive feature
of MS, but also occurs in a variety of infectious or autoimmune disorders [52,55,62,68,69,78].
Furthermore, it has been proposed that CSF B cell repertoires from MS samples contain
more clonally-related sequences and significantly more SHM when compared with other
neurological controls, including inflammatory diseases [54,62]. In sum, early studies as
well as the more recent NGS studies on CSF and PB B cell repertoires both confirm that
affinity maturation of B cells occur in the CSF compartment in multiple sclerosis.

As mentioned above, clonally-expanded B cells can not only be detected in the CSF and
parenchymal infiltrates, but also in meningeal lymph-like follicles/aggregates of mainly
progressive MS patients [73]. Interestingly, the majority of expanded antigen-experienced
B cells derived from the meninges, were also present in the parenchyma. Altogether, clonal
relationships can be established between different compartments including the meninges,
inflammatory MS plaques and the CSF compartment.

3.1.3. Spatial Tracking of B Cell Clones over the BBB—Bidirectional Exchange of B Cells

By applying NGS sequencing, it has become possible to representatively sequence
both CSF and peripheral blood (PB) B cell repertoires and thus examine B cell trafficking
across the BBB. Overall, a substantial clonal overlap between peripheral blood and CSF B
cells can be established in different studies (Table 1). While an early study found a restricted
pool of clonally-related CSF B cells (on average 6.3%) that connect with peripheral blood,
around one-third of CSF B cells showed a clonal connection with peripheral B cells in a
later study [33,54]. After further observing lineage trees and the occurrence of SHM, B
cell trafficking patterns across the BBB and the compartment of major clonal expansion
can be further approximated. Although lineage trees between CSF and peripheral blood
B cells seem to primarily undergo active diversification in the CSF compartment, B cells
clones also acquire additional mutations in PB [33,54–56,62]. Bicompartmental lineage trees
that demonstrate further maturation in the PB compartment can either represent parallel
maturation steps of a common ancestor B cell in both compartments or indicate that CSF
B cells recirculate into PB, where further maturation steps occur. A possible efflux of B
cells out of the CSF is further supported by an interesting study that established B cell
lineage trees between CNS lesions and B cells in draining cervical lymph nodes from MS
patients [51]. Moreover, this study provided evidence that B cells migrate freely across
the tissue barrier with substantial B cell maturation occurring outside of the CNS [51].
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When looking at the B cell subtypes in PB that contribute to lineage trees between PB and
CSF, switched memory B cells, double negative B cells and plasmaplasts/cells were first
identified in order to connect with CSF B cells [56]. Further studies also observed a limited
overlap between PB naïve B cells/unswitched memory B cells and CSF B cells [33,76].
Regarding treatment effects on B cell trafficking across the BBB, natalizumab diminished
the exchange of PB and CSF B cells according to its well-established mode of action, whereas
fingolimod did not seem to substantially interact with the B cell exchange [33].

In summary, these data indicate that primarily antigen-experienced PB cells enter
the CNS/CSF with further compartment-specific maturation taking place within the CSF.
Furthermore, it has been suggested that CSF B cells also recirculate in the peripheral blood,
possibly through draining cervical lymph nodes, where presumed further maturation and
interaction with other immune cells takes place.

3.1.4. Temporal Tracking of B Cell Clones within the CSF Compartment: Treatment Specific
Effects on B Cell Clones

Despite the exchange of B cells across the BBB, B cell repertoire sequencing and the
generation of lineage trees also allows us to study clonal groups over time. Limited data on
the clonal persistence of CSF B cells is available regarding untreated MS patients (Table 2);
only one out of three patients showed one persistent B cell clone over time [34]. Regarding
treated MS patients, clonal persistence was evaluated in 16 patients receiving natalizumab
(n = 7), fingolimod (n = 5), interferon-beta (n = 3) or dimethyl fumarate (n = 1) within three
different studies (Table 2). It is worth mentioning that we did not find any persistent clones
in fingolimod-treated patients in our study but did find some huge persistent clones under
the natalizumab treatment [33]. Another study reported persisting clonal populations in
one out of two individuals for the latter two treatments [34]. However, these two patients
with persistent clonal groups showed clinical and MRI activity over an observation period
of more than 12 months, which contrasts with our patients, who were all clinically and
radiologically stable over 6 months [33,34]. Regarding other treatments, no final conclusions
can be drawn from the different studies since patients showed an inhomogeneous disease
activity and studies had very low patient numbers (Table 2). In summary, these data
suggest that CSF-compartmentalized immune reactions can be partially therapy resistant
and also underline the need for further studies in homogeneous patient collectives.

3.1.5. Overlap between Ig Transcriptome and Proteome: Evidence for CSF B Cells as the
Origin of Intrathecal Ig

Intrathecal IgG synthesis is associated with disease severity and progression in mul-
tiple sclerosis [79,80]. Therefore, it appears relevant to determine whether and to what
extent CSF B cells contribute to the formation of CSF OCBs. It has been observed that the Ig
transcriptome of CSF B cells or brain lesions and Ig proteome of intrathecal OCBs show a rel-
evant overlap [7,74,81]. Furthermore, peptides derived from intrathecal Ig can be matched
to expanded CSF B cell clusters [62,75,77] and the matching IgG fraction mostly persisted in
equal amounts in a longitudinal analysis [77]. Furthermore, dominant CSF B cell clones that
match with CSF Ig peptides can consistently be identified in the PB compartment [62,75,77],
indicating that OCBs are not only the result of a targeted immune response within the CSF
but represent an active B cell immune reaction that is presumably supported on both sides
of the blood–brain barrier [75]. This finding is supported by another study [82] showing
that antibodies derived from OCB-related CSF B cells have conformational epitopes of
ubiquitous intracellular proteins that are not specific to brain tissue.
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Table 2. Clonal persistence over time.

Source Patient Treatment between
T1 + T2

Time between T1 +
T2 (Months) Overlapping CSF-Clones T1–T2

Tomescu-Baciu et al., 2019
MS1 Natalizumab 18 37

MS2 Interferon-beta 1a 18 24

Greenfield et al., 2019

1 Fingolimod 14 8

2 Interferon 15 9

3 Dimethyl fumarate 22 1

4 Natlizumab 13 2

5 - 12 1

6 Interferon 13 -

7 Fingolimod 15 -

8 Natalizumab 9 -

9 - 15 -

10 - 13 -

Kowarik et al., 2020

S1 Natalizumab 6 1

S5 Natalizumab 6 5

S6 Natalizumab 6 5

S7 Natalizumab 6 0

S2 Fingolimod 6 0

S3 Fingolimod 6 -

S4 Fingolimod 6 0

S8 Fingolimod 6 0

3.2. CSF B Cell Repertoires in Autoantibody-Mediated Encephalitis

During the last two decades, several autoantibodies have been identified to initiate
and maintain autoimmune encephalitis. Regarding the pathophysiological mechanisms of
AQP4-IgG-mediated inflammation, clinical and experimental data indicate that AQP4-IgG
activates the classical complement cascade in NMOSD, which is believed to initiate astro-
cyte injury [83]. Different pathogenic mechanisms were proposed for NMDAR and LGI1
autoantibodies; where NMDAR autoantibodies lead to receptor cross-linking, internaliza-
tion and degradation, resulting in a reduced number of NMDARs on the neuronal surface,
LGI1 autoantibodies induce neuronal dysfunction by interrupting the trans-synaptic bind-
ing of LGI1 to its receptor ADAM22 [27]. Whether disease-relevant antibodies are produced
in the peripheral blood, leaking through the BBB or within the CNS compartment by in-
trathecal B cell clones, remains a key question in the pathophysiologic understanding of
autoantibody-mediated encephalitis.

3.2.1. Neuromyelitis Optica Spectrum Disorders

The first evidence for an intrathecal production of AQP4-IgG by CSF B cells was found
in a study applying single-cell sorting and RT-PCR in one NMOSD patient [16]. B cell
repertoire analysis in this study and a successive study including seven NMOSD patients [5]
revealed a dynamic, clonally-expanded plasma cell population with features of an antigen-
targeted response. The majority (around 65%) of produced recombinant antibodies from
clonally-related CSF B cells were AQP4 specific [5,16]. A paralleled analysis of peripheral
blood B cell populations applying next-generation sequencing revealed that CSF B cells
seem to connect with memory B cells, DN B cells and plasmablasts, with DN B cells showing
an intensive clonal relation to AQP4-specific CSF B cells [5]. By overlapping the recovered
Ig transcriptome libraries from CSF and PB with Ig proteomics in both compartments, it
could be observed that a proportion of CSF AQP4-IgG is indeed produced locally while
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serum AQP4-IgG might leak additionally through an open BBB [5,17]. Another study
in NMOSD showed that sequences derived from a common clone could be detected in
plasmablasts on both sides of the BBB [84]. In summary, multiple lines of evidence suggest
that the primary autoimmune response against AQP4 initiates with the release of AQP4-
specific memory B cells, DN B cells and plasmablasts in peripheral blood, while some B
cells undergo clonal expansion and affinity maturation in the CSF compartment [5].

3.2.2. LGI1 and NMDAR Autoantibody-Mediated Encephalitis

By applying next-generation sequencing of CSF and PB B cell repertoires, one study
found indirect evidence for a CNS-based antigen-driven response in six patients with LGI1
antibody encephalitis [28]. CSF B cell repertoires comprised a discrete number of highly
expanded clusters with intensive mutational activity, which points towards an intrathecal
maturation process. Data from another study suggest that 84% of the ASCs and 21% of the
memory B cells in LGI1 CSF encode for LGI1-reactive antibodies and display a high degree
of somatic hypermutations [85]. Regarding the connectivity of CSF clones to the peripheral
blood compartment, a marked clonal overlap between CSF B cells and switched memory,
plasmablasts and plasma cells was detectable [28].

Regarding NMDAR antibody encephalitis, one study applied a B cell single-cell ap-
proach to examine the CSF B cell repertoire with regard to a specific, targeted antibody
production [86]. Surprisingly, only around 6% of antibody-secreting cells produced NMDR
specific antibodies, although all patients showed an intrathecal synthesis of NMDAR an-
tibodies. However, most of the other CSF B cell-derived antibodies reacted against other
brain-expressed epitopes, including neuronal surface antigens in the hippocampus and
cerebellum. Both subsets of antibody-producing cells showed features of an intrathecal
clonal expansion but a relatively low number of somatic hypermutations [85,86]. An-
other study found a preferential usage of certain germline segments in CSF clones and
several shared clones between different individuals applying single-cell sequencing and
RT-PCR [87]. To the best of our knowledge, shared clones between different individuals
have not been reported in other studies and diseases, so this finding might be restricted to
NMDAR antibody encephalitis or result from methodological problems.

In summary, an intrathecal B cell maturation was evident in all autoantibody-mediated
CNS diseases examined, suggesting that a compartmentalized B reaction and clonal con-
nection with PB is a common feature of CNS-specific humoral immune responses.

4. Discussion

During the last few decades, the role of B cells has been well established and rede-
fined in neuro-inflammatory diseases, changing the pathophysiological understanding
in multiple sclerosis and other disease entities. The development of high-throughput
next-generation sequencing has further contributed to push the boundaries of B cell im-
munology and helped to representatively assess peripheral blood B cell repertoires, in
addition to the CSF compartment, thus allowing insights in B cell maturation processes
and trafficking patterns across the blood-brain barrier.

Although several studies applying NGS have been performed on multiple sclerosis
with mostly redundant results, studies suffer in several methodological issues: (1) the num-
ber of studied patients is low due to the high effort and costs, (2) MS patients show partially
different disease states, which sometimes makes it difficult to compare between patients
and studies, (3) early studies failed to use a unique molecular identifier, which helps to
minimize over-amplification and sequencing errors, (4) bioinformatics sub-sampling has
not been performed in most studies, in order to minimize effects resulting from a different
inter-individual sequencing depth, and (5) mass sequencing only allows a snapshot of the
B cell repertoire at a certain time and does not fully represent the dynamic relationship
among transiting B cells. Nevertheless, the following conclusions can be drawn from the
mentioned studies:
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I. Regarding the analysis of basic B cell repertoire characteristics, a preferential usage
of the VH4 germline family within CSF B cell repertoires has been consistently
shown in several studies. These data suggest that a chronic B cell stimulation with a
common mechanism or antigen(s) might occur with epitopes that are preferentially
recognized by the hypervariable loop structure of VH4 segments.

II. These results go along with the consistent finding from both single cell and NGS
CSF B cell repertoire analyses, indicating that a substantial proportion of CSF B
cell clones undergo CSF compartment-specific maturation steps, including clonal
expansion.

III. The most striking results derived from NGS studies on CSF and PB B cell repertoires
relate to B cell trafficking across the BBB. An intense exchange of B cells across
the BBB is observed in MS and other autoimmune disorders, pointing towards an
involvement of additional compartments outside of the CNS. Studies consistently
show that B cells not only migrate into the CSF but also seem to leave the CSF
compartment to undergo further maturation in the periphery. Although a direct
proof for B cell trafficking patterns would require in vivo B cell tracking, several
studies show that B cells in various tissues, such as cervical lymph nodes [52],
connect with CNS B cells, with maturation steps occurring on both sides of the
BBB. A schematic summary of B cell trafficking is displayed in Figure 2.

IV. Combined analyses of CSF transcriptome and proteome B cell repertoires further
reveal that intrathecal Ig is indeed produced by CSF B cells/B cell clones.
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Figure 2. Schematic overview of B cell trafficking via the blood–brain barrier. Possible scenarios: (1) influx of naïve B cells,
(2) influx of antigen-experienced B cells, (3) influx of antibody-producing B cells, (4) longitudinal persistence, (5) intrathecal
activation, (6) efflux of antibody-experienced B cells and (7) efflux of antibody-producing B cells.

However, the main obstacle, in order to fully dissect MS B cell pathophysiology,
is the lack of confirmed B cell target antigens. As a possible explanation, it has to be
considered that CSF/CNS B cells are not specific for a single antigen but may target
numerous antigens exposed during tissue injury. Thus, persistent CSF B cell maturation
possibly reflects ongoing tissue injury in MS and a chronic immune response to such
immunologic stimulus. NGS data collectively suggest that B cells encounter antigen(s)
within the CSF and traffic across the BBB, with further maturation taking place in the
periphery, possibly feeding autoimmune mechanisms through the interaction with other
immune cells. Regarding autoantibody associated neuro-inflammation/encephalitis, only
a limited number of studies with low patient numbers are available yet. Nevertheless,
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these studies, in combination with control patients in MS studies, show that intrathecal B
cell maturation and B cell trafficking across the BBB also occurs in diseases outside of MS.

Altogether, NGS could be established as a powerful tool to use when studying B
cell trafficking and maturation between different compartments, which helps to under-
stand B cell-related pathologies within the CNS. One major open question regarding B
cell-mediated autoimmunity comprises the characterization of initial events that possibly
start an autoimmune cascade, as well as the mechanisms which sustain chronic inflamma-
tory processes. Finally, the assessment of treatment-specific effects on B cell repertoires
provide further insights in B cell-mediated (patho-)physiology and in return, improve our
understanding of drug-specific (side) effects and modes of action, finally leading towards
more personalized medicine.

5. Outlook

Several improvements have recently been achieved for NGS B cell repertoire genera-
tion and analysis. Unique molecular identifiers (UMIs) have been increasingly used in order
to avoid over-amplification and sequencing errors during the generation of immunoglobu-
lin transcript libraries. Ideally, the UMI is implemented during the reverse transcriptase
step to directly mark Ig transcripts, before further amplification steps are carried out. In
addition, common bioinformatics pipelines evolved during the last few years, allowing
better data quality and comparability between different studies. In addition, sub-sampling
approaches [88] have recently been applied to take into account that a different sequencing
depth might occur between samples. With the mentioned improvements, targeted NGS
sequencing has been well established for the characterization of B cell responses under
different conditions.

As another highly interesting sequencing approach, single-cell sequencing with plat-
forms similar to the 10× Genomics Chromium, is rapidly emerging [89]. This method
allows to not only sequence Ig transcripts from single B cells but also to assess the “whole
transcriptome” data from one particular cell. However, specific B cell analysis pipelines
might not be as elaborate, as in NGS platforms. Currently, only very limited data is avail-
able on CSF whole transcriptome analyses. An overall analysis of CSF lymphocytes was
recently performed in two multiple sclerosis studies [90,91] with one study also analyzing
B cell repertoires [91]; however, these studies mostly concentrated on changes in transcrip-
tional pathways. Additionally, single-cell next-generation sequencing (10X Genomics) was
also applied to study CSF signatures of COVID-19-infected patients [92]. There was a strik-
ing increase in the proportion of B cells in the CSF and monoclonal antibodies generated
from these expanded clusters that were reactive against COVID-19 antigens. As already
shown in peripheral blood and cell cultures [93], computational pipelines will also enable
deep CSF B cell clonotyping on a single-cell level in the near future.
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