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Abstract

Objective

In this study, we used network pharmacology to explore the possible therapeutic mecha-

nism underlying the treatment of diabetic nephropathy with Yishen capsules.

Methods

The active chemical constituents of Yishen capsules were acquired using the Traditional

Chinese Medicine Systems Pharmacology platform and the Encyclopedia of Traditional Chi-

nese Medicine. Component target proteins were then searched and screened in the BAT-

MAN database. Target proteins were cross-validated using the Comparative

Toxicogenomics Database, and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-

way analyses of the target proteins were performed. Then, protein–protein interaction (PPI)

analysis was performed using the STRING database. Finally, a pharmacological network

was constructed to show the component-target-pathway relationships. Molecular docking

was used to analyse the interaction between drug components and target proteins.

Results

In total, 285 active chemical components were found, including 85 intersection targets

against DN. In the pharmacological network, 5 key herbs (A. membranaceus, A. sinensis, E.

ferox, A. orientale, and R. rosea) and their corresponding 12 key components (beta-sitos-

terol, beta-carotene, stigmasterol, alisol B, mairin, quercetin, caffeic acid, 1-monolinolein,

kaempferol, jaranol, formononetin, and calycosin) were screened. Furthermore, the 12 key

components were related to 24 target protein nodes (e.g., AGT, AKT1, AKT2, BCL2,

NFKB1, and SIRT1) and enriched in 24 pathway nodes (such as the NF-kappa B, AGE-

RAGE, toll-like receptor, and relaxin signaling pathways). Molecular docking revealed that

hydrogen bond was formed between drug components and target proteins.
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Conclusion

In conclusion, the active constituents of Yishen capsules modulate targets or signaling path-

ways in DN pathogenesis.

1. Introduction

Diabetic nephropathy (DN), a common and severe complication of diabetes mellitus (particu-

larly type 2 diabetes mellitus), can eventually develop into end-stage renal disease [1]. Type 2

diabetes mellitus is an underlying cause of kidney failure and tends to lead to hypertension.

Estimates show that 6.4% of the global population suffers from diabetes; this percentage is pre-

dicted to increase to 7.7% by 2030 [2]. In addition, approximately 20% ~ 40% of all diabetes

cases are accompanied by DN [3]. Proteinuria and glomerulosclerosis are the main symptoms

of DN [4], and the occurrence and development of DN are linked to metabolic disorders, oxi-

dative stress inflammation, and the pathophysiological mechanisms of fibrosis [5–7]. Clinical

treatments to delay the progression of DN focus mainly on controlling blood sugar and pres-

sure, regulating lipid metabolism, anti-oxidation, inhibiting inflammatory reactions, such as

using drugs that affect autophagy, etc. [8–10], but these methods do not always cure the

condition.

Traditional Chinese medicine has been used to treat DN for several years [11]. Yishen cap-

sules have been widely prescribed and are composed of the A. membranaceus, A. sinensis, E.

ferox, A. orientale, and R. rosea medicinal herbs. It has been reported that Yishen capsule could

reduce proteinuria, protect renal function, and delay progression of early diabetic nephropathy

[12, 13]. Additionally, Huangqi-Danggui mixtures have been shown to reduce urinary protein

within 24 h, lower urinary albumin, and improve blood glucose [14], and Huangqi capsules

have hypoglycemic and antioxidant effects, thus ameliorating DN [15]. Gaoshan-Hongjingtian

mixtures may influence the PARP-mediated regulation of NF-κB, thus acting on DN [16].

However, the exact composition and potential pharmacological mechanisms of Yishen cap-

sules remain unclear.

Network pharmacology, an emerging discipline, integrates systems biology and pharmacol-

ogy to facilitate drug innovation and development and clarify drug treatment mechanisms

[17]. In particular, network pharmacology focuses on the complex “drug–gene–target–disease”

interactive network [17]. Thus, network pharmacology is a promising approach that can be

used to explore the molecular basis of diseases from a multi-dimensional perspective and pre-

dict the pharmacological mechanisms of drugs at the molecular and systematic levels. In the

present study, the composition of Yishen capsules was analyzed, the effective components

were screened, and the component target proteins were identified and cross-validated. Then,

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of cross-validation tar-

gets were conducted. Protein–protein interaction (PPI) analysis was used to identify key target

proteins. Finally, pharmacological networks were constructed.

2. Materials and methods

2.1. Identification of candidate Yishen capsule components

The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database (http://lsp.nwu.

edu.cn/browse.php?qc=herbs) was used to acquire data on the chemical components of the

five Chinese medicinal herbs found in Yishen capsules, including molecule name, drug half-
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life, oral bioavailability, molecular mass, and drug likeness. Yishen capsules was composed of

A. membranaceus, A. sinensis, E. ferox, A. orientale, and R. rosea in a ratio of 3:2:3:2:1 [18].

Then, the Encyclopedia of Traditional Chinese Medicine (ETCM) database (http://www.

tcmip.cn/ETCM/index.php/Home/Index/index.html) was used to retrieve small drug mole-

cule information that could not be found in the TCMSP database.

2.2. Identification of effective components in Yishen capsules

ADME from the TCMSP database was used to screen Yishen capsules for possible small drug

molecules. ADME is the study of the body’s absorption, distribution, metabolism, and excre-

tion process of exogenous compounds. The parameters used included oral bioavailability,

drug likeness, and drug half-life. The components were then screened based on the following

thresholds: oral bioavailability�30% and drug likeness�0.18. The ETCM database was used

to obtain small molecule information that did not exist in the TCMSP database.

2.3. Prediction of Yishen capsule drug targets

After the ADME parameters screening in the last step, the obtained effective components were

first converted into PubChem CIDs through the PubChem database (https://pubchem.ncbi.

nlm.nih.gov/), and then used as the input items of the Bioinformatics Analysis Tool for Molec-

ular mechANism of Traditional Chinese medicine (BATMAN) (http://bionet.ncpsb.org/

batman-tcm/). Default parameters were selected. The target protein gene of each component

and the corresponding score were calculated, and the component-target protein relationship

pair with score� 5 was screened for further analysis.

2.4. Cross-validation of small drug molecule target proteins

The Comparative Toxicogenomics Database (CTD) (updated 2018, http://ctdbase.org/) pro-

vides information on the associations between chemicals/genes and diseases to help develop

disease mechanisms. The phrase “Diabetic, nephropathies” was used as a keyword based on

inference scores to identify genes associated with DN in the CTD database. Then, targets scor-

ing >50 were combined with the targets predicted in the previous step. Following logarithmic

transformation, inference scores were acquired to assess the functional relationships among

targets in the protein-protein interaction (PPI) network.

2.5. Pathway enrichment analysis for DN-related targets of Yishen capsules

Using The Database for Annotation, Visualization and Integrated Discovery online bioinfor-

matics resource (Version 6.8, https://david-d.ncifcrf.gov/) [19], KEGG pathway analysis was

conducted on genes that were both target proteins of effective components and disease-related

genes. The relevant biological processes were selected with p adjusted to�0.05 and counts�2

being considered significant enrichment results. The most significantly associated top 20 sig-

naling pathways were shown using the bar graph.

2.6. Protein–protein interaction (PPI) analysis

Using the Metascape online tool (https://metascape.org/gp/index.html#/main/step1), the PPI

network of genes that were both target proteins of effective components and disease-related

genes were explored. Then, the BioGrid [20], InWeb_IM [21], and OmniPath [22] interaction

databases were used with the following default suggestive values: Min Network Size = 3, Max

Network Size = 500. Cytoscape software [23] (Version 3.4.0, http://chianti.ucsd.edu/cytoscape-

3.4.0/) was used to construct the PPI network. Further, the Metascape tool performed module
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mining on the PPI network based on the Molecular Complex Detection (MCODE) algorithm

[24]. Finally, after getting PPI modules, KEGG pathway analysis was performed using the

‘clusterProfiler’ (version:3.8.1,http://bioconductor.org/packages/release/bioc/html/

clusterProfiler.html) in R package [25]. The Benjamini & Hochberg (BH) method was used to

adjust the p values, and p< 0.05 was considered the threshold. The most significantly associ-

ated top 10 signaling pathways were selected for bubble chart display.

2.7. Construction of pharmacological networks and analysis

To further explore the molecular action of Yishen capsules in DN treatment, herbal medicine–

component–target proteins–pathway networks were created in Cytoscape. Briefly, drug-effec-

tive components, effective components-target protein, and target protein-pathway relationship

pairs were input into Cytoscape for network construction. In addition, the module genes iden-

tified by the molecular complex detection algorithm in the PPI analysis were selected used to

construct a pharmacological network. Nodes of different colors represented the compounds,

proteins, or pathways in the pharmacological networks, respectively, and compound–target or

target–pathway relationships were presented as edges.

2.8. Molecular docking

Four of the target protein nodes in the pharmacological network (AKT1, AKT2, NFKB1,

SIRT1) and the small drug molecules beta sitosterol and Stigmasterol targeting them were ran-

domly selected for molecular docking analysis. Information on complexes of target proteins

bound to other ligands was downloaded from the Protein Data Bank (PDB) database (http://

www.rcsb.org/) [26] and used for subsequent studies. The criterions for screening conforma-

tions included the following: (1) Protein structure obtained by x-ray diffraction method; (2)

The resolution of the protein structure is less than three; (3) POLYMER ENTITY TYPE is Pro-

tein; (4) Ranked first in descending order of score. Then, pymol (Version 2.0 Schrödinger,

LLC.) software was used to remove other ligands and water molecules, and the target protein

was isolated for subsequent molecular docking. The molecular structure files of small mole-

cules were downloaded from the PubChem Compound database (https://pubchem.ncbi.nlm.

nih.gov/) in SDF format and converted to PDB format by pymol for subsequent molecular

docking. Then, based on Lamarckian GA algorithm, Autodock software (Version 4.2.6) [27]

was used to study the possibility of molecular docking between small drug molecule and

targets.

3. Results

3.1. Composition and component screening

Based on the TCMSP and ETCM databases, the chemical constituents of Yishen capsules were

as follows: A. membranaceus (87), E. ferox (26), R. rosea (6), A. sinensis (126), and A. orientale
(46). Then, after screening the chemical components of the five medicines through a pre-set

threshold, 38 of the original 285 chemical components were finally identified as important

chemical components and were used for subsequent analysis(Table 1). Specifically, after

screening, A. membranaceus, E. ferox, R. rosea, A. sinensis, and A. orientale were retained with

20, 2, 6, 2, and 8 effective components, respectively.

3.2. Prediction, screening, and cross-validation of target proteins

After analysis of BATMAN database, component-target protein pairs were screened according

to threshold (scoring�5). The relationship pairs included 13 components and 1283 target
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proteins. Then, these targets were compared with the results for the 214 genes associated with

DN with inference scores of more than 50 in the CTD database. Finally, 85 intersected targets

of the 1283 targets and 214 genes were obtained (Fig 1A).

3.3. KEGG pathway analyses

In total, 102 pathways, including 33 signaling pathways, were identified upon pathway analy-

sis. Moreover, the 20 most significant pathways, such as the hsa04151:PI3K−Akt (23 genes),

hsa04152:AMPK (23 genes), hsa04066:HIF−1 (18 genes), hsa04068:FoxO (16 genes), and

hsa04668:TNF (15 genes) signaling pathways, are illustrated in Fig 1B. In addition, the

hsa04064:NF-kappa B signaling pathway, which contains 9 genes (VCAM1, TNF, PTGS2,

BCL2, IL1B, NFKB1, IKBKB, CXCL12, CHUK), was among the top 20 pathways.

3.4. PPI analysis

As shown in Fig 2A, in total, 77 proteins and 287 edges were identified in the constructed PPI

network. MAPK1 (degree = 28), APP (degree = 23), AKT1 (degree = 23), NOS3 (degree = 22),

PRKCA (degree = 19), FOXO1 (degree = 18), PPARG (degree = 17), AKT2 (degree = 16),

CDK2 (degree = 16), and CAV1 (degree = 16) were identified as potential proteins and were

also the top 10 proteins with degree>10. The molecular complex detection algorithm was

used to identify the significant modules (Fig 2B), and PARP1 and INS were determined to be

the hub proteins. Module 1 contained 13 targets (i.e., APP, AKT1, NOS3, PRKCA, and

AKT2), and Module 2 included 10 nodes in addition to MAPK1, FOXO1, PPARG, BCL2, and

SIRT1. Moreover, there were four targets in Module 3 (MTOR, PRKCD, IKBKB, and CHUK).

In addition, KEGG analysis revealed that 111, 73, and 56 KEGG pathways were enriched in

Modules 1, 2, and 3, respectively (Fig 3). Proteins in Modules 1 were mainly enriched in

Table 1. Significant herbal components of Yishen decoction after screening.

Ingredients Before (number) After (number) Source

A. membranaceus 87 20 TCMSP

E. ferox 26 2 TCMSP

R. rosea 6 6 ETCM

A. sinensis 125 2 TCMSP

A. orientale 46 8 TCMSP

Total 285 38

https://doi.org/10.1371/journal.pone.0273498.t001

Fig 1. (A) Venn diagrams of Yishen capsules and cross-validation targets. Blue represents targets, pink represents genes

relevant to DN with inference scores>50 according to the Comparative Toxicogenomics Database, and red represents cross-

validation targets (B) The top 20 pathways of the cross-validation targets. The bar represents the number of enriched genes,

and the black line represents -log10 (p value).

https://doi.org/10.1371/journal.pone.0273498.g001
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adipocytokine signaling pathway and AGE−RAGE signaling pathway in diabetic complica-

tions. Proteins in Modules 2 were mainly involved in AMPK signaling pathway. For the pro-

teins in Modules 3, C−type lectin receptor signaling pathway and adipocytokine signaling

pathway were the two important enriched pathways.

3.5. Construction of the pharmacological network

The compound–compound target network of the cross-validation targets is shown in Fig 4A,

and it includes 91 nodes and 384 edges. There were 5 herbal medicine nodes (A. membrana-
ceus, E. ferox, R. rosea, A. sinensis, and A. orientale), 13 chemical component nodes (beta-sitos-

terol, beta-carotene, stigmasterol, alisol B, mairin, quercetin, caffeic acid, 1-monolinolein,

kaempferol, kaempferol, jaranol, formononetin, and calycosin), 53 target protein nodes (such

Fig 2. Protein–protein interaction (PPI) network and Molecular Complex Detection (MCODE) components

identified related to cross-validation targets. (A) PPI network of proteins encoded by cross-validation targets. (B)

Modules selected from the PPI network using MCODE. Red represents MCODE1, blue represents MCODE2, and

green represents MCODE3.

https://doi.org/10.1371/journal.pone.0273498.g002
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Fig 3. The top 10 signaling pathways in the PPI network. The size of the dot represents the proportion of the number of enriched genes to the total number

of genes, with larger dots representing larger proportions; the redder the dot color, the more significant the p value.

https://doi.org/10.1371/journal.pone.0273498.g003

Fig 4. The pharmacological networks for (A) cross-validation targets; (B) cross-validation targets in the protein–protein interaction network. The green

rhombus represents herbal medicine; the pink square represents components; the blue dots represent targets; the red hexagon represents the pathways.

https://doi.org/10.1371/journal.pone.0273498.g004
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as ADIPOQ, AKT1, AKT2, APAF1, BAX, BCL2, CASP1, CAT, CCL2, and CCND1), and 20

pathway nodes (such as AMPK signaling, adipocytokine, prolactin, MAPK, and Ras signaling

pathways) (Fig 4A).

Further, the module genes identified by the molecular complex detection algorithm in the

PPI analysis were selected and a pharmacological network containing 65 nodes and 195 edges

was constructed. In detail, the network contained 5 herbal medicine nodes (A. membranaceus,
E. ferox, R. rosea, A. sinensis, and A. orientale), 12 chemical component nodes (beta-sitosterol,

beta-carotene, stigmasterol, alisol B, mairin, quercetin, caffeic acid, 1-monolinolein, kaemp-

ferol, jaranol, formononetin, and calycosin), 24 target protein nodes (including AGT, AKT1,

AKT2, BCL2, NFKB1, and SIRT1), and 24 pathway nodes (including the NF-kappa B, AGE-R-

AGE, toll-like receptor, and relaxin signaling pathways) (Fig 4B).

3.6. Molecular docking of target protein and compounds

The results of molecular docking showed that, in beta sitosterol, hydrogen bond was formed

between the ligand and ARG-407 of AKT2 and LYS-292 of NFKB1 (Fig 5A and 5B). There was

a hydrogen bond between the ligand of beta sitosterol and GLU-496 of SIRT1 (Fig 5C). In

addition, hydrogen bond was formed between the ligand of stigmasterol and GLU-200 of

AKT2 (Fig 5D). Fig 5E showed that hydrogen bonds were formed between the ligand of stig-

masterol and LYS-437 and ARG-436 of NFKB1. (Results for target proteins and compounds

that do not form hydrogen bonds were not shown.)

4. Discussion

Diabetic nephropathy increases morbidity and mortality in both type 1 and type 2 diabetes

mellitus [28] and is the second most-common cause of chronic kidney disease after chronic

glomerular disease [29]. Clinically, microalbuminuria is used as an important index to evaluate

DN progression [30]. Hyperglycemia, increased blood pressure, and genetic predisposition are

all well-known risk factors of DN [31]. In the present study, following network pharmacology

analyses based on PPI targets, a total of 5 key herbs (A. membranaceus, A. sinensis, E. ferox, A.

orientale, and R. rosea) and 12 key components (beta-sitosterol, beta-carotene, stigmasterol,

alisol B, mairin, quercetin, caffeic acid, 1-monolinolein, kaempferol, jaranol, formononetin,

and calycosin) were identified in Yishen capsules. These 12 key components were associated

with 24 target protein nodes (e.g., AGT, AKT1, AKT2, BCL2, NFKB1, and SIRT1) and 24

pathways.

Network pharmacology analyses indicated that beta-sitosterol, beta-carotene, stigmasterol,

alisol B, mairin, quercetin, caffeic acid, 1-monolinolein, kaempferol, jaranol, formononetin,

and calycosin play key roles in the progression of DN. Clinical and experimental studies have

reported β-sitosterol (24-ethyl cholestene-3-ol) as a naturally occurring plant sterol that pos-

sesses antihyperlipidemic and antihyperglycemic properties [32, 33]. Further, Saravanan et al.

concluded that the role of β-sitosterol in antidiabetic activity was mainly the result of antioxi-

dant enzymes in the liver [34]. He et al. indicated that kaempferol, stigmasterol, and beta-sitos-

terol constituted the central node of the compound–compound target network of Liu Wei Di

Huang pills in the treatment of type 2 diabetes mellitus [35]. Meanwhile, prior evidence has

shown that quercetin inhibits oxidative damage in various tissues of streptozotocin-induced

diabetic rats [36, 37]. Oxidative stress has been suggested to be the pathophysiological mecha-

nism underlying DN progression, and quercetin may have antioxidant properties that attenu-

ate DN [38]. Furthermore, quercetin has been shown to reduce the renal fibrosis induced by

diabetes [39]. In contrast, a caffeic acid derivative was utilized to protect against renal damage

[40] and ameliorate DN by regulating the autophagy pathway in high-fat diet/streptozotocin-
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Fig 5. Molecular docking results. (A) Docking results of beta sitosterol targeting AKT2; (B) Docking results of beta

sitosterol targeting NFKB1; (C) Docking results of beta sitosterol targeting SIRT1; (D) Docking results of stigmasterol
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induced diabetic rats [41]. Therefore, beta-sitosterol, stigmasterol, quercetin, caffeic acid, and

kaempferol were the relevant components of Yishen capsules for the treatment of DN.

In the pharmacological network, AGT, AKT1, AKT2, BCL2, SIRT1, and NFKB1 were

important target protein nodes. The production of AGT is involved in DN progression [42].

The T235 AGT polymorphism has been shown to be associated with DN [43]. In addition, a T

allele polymorphism in AGT is a genetic risk factor for DN [44]. AKT1 in the renal tubular epi-

thelium and p-Akt1 (Ser(473)) are more prevalent in diabetic patients [45]. AKT2 silencing

prevents renal protection in mice with streptozotocin-induced diabetes [46]. Diabetic patients

with poor glycemic control exhibit the downregulation of BCL2, which activates the NF-kB

pathway, thus leading to the development of nephropathy [47]. The regulation of beclin1/

UVRAG/BCL2 could be involved in the cell apoptosis and cell autophagy observed in DN

[48]. Therefore, AGT, AKT1, AKT2, and BCL2 may be crucial proteins in the action of Yishen

capsules against DN.

SIRT 1 regulates the Bax and Bcl-2 apoptotic proteins in DN [49], and a NFKB1 gene poly-

morphism (rs28362491) is associated with DN [50]. NFKB1 variations contribute to the devel-

opment of type 2 diabetes mellitus [51], and the expression of NFκB is upregulated in diabetic

patients [52]. SIRT1 and NFKB were both present in the pharmacological network constructed

in the present study. Additionally, the NF-kappa B signaling pathway was found to play a key

role in DN in the pharmacological network. Previous studies have indicated that the NFκB sig-

naling pathways are involved in the development mechanisms of DN [53, 54]. Our previous

study confirmed that Yishen capsule promotes podocyte autophagy through regulating SIRT1/

NF-κB signaling pathway to improve diabetic nephropathy [18].

Moreover, in total, 20 pathway nodes were found to be associated with DN in the target net-

work of cross-validation targets. The AMPK signaling pathway improves DN by reducing uric

acid, serum albumin, creatinine, and kidney damage [55]. The AMPK signaling pathway has

been shown to alter fatty acid oxidation and glucose in C57BL/6 mice with type 2 diabetes

[56]. The p38 MAPK signaling pathway plays an important role in modulating cell differentia-

tion, growth, and death [57]. Elevated mRNAs in the PKC-MAPK pathway are essential in the

glomerular lesion damage observed in DN [58]. Moreover, the Ras signaling pathway has been

demonstrated to affect streptozotocin/nicotinamide mice [59] or diabetes-induced VEGF-

mediated nephropathy [60]. Thus, the AMPK and Ras signaling pathways influence the devel-

opment of DN.

5. Conclusion

In conclusion, beta-sitosterol, stigmasterol, quercetin, caffeic acid, and kaempferol were identi-

fied as key components of Yishen capsules in the treatment of DN. AGT, AKT1, AKT2, and

BCL2 may be important target proteins in the pharmacological network. Moreover, SIRT1

and NFKB1 may interact to regulate DN via the NF-kappa B signaling pathway. Furthermore,

the AMPK and Ras signaling pathways are highly important in DN. However, more research

is required to further validate these results.
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