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The compressive strength of crumpled matter
Andrew B. Croll 1,2, Timothy Twohig 1 & Theresa Elder2

Crumpling a sheet creates a unique, stiff and lightweight structure. Use of crumples in

engineering design is limited because there are not simple, physically motivated structure-

property relations available for crumpled materials; one cannot trust a crumple. On the

contrary, we demonstrate that an empirical model reliably predicts the reaction of a crumpled

sheet to a compressive force. Experiments show that the prediction is quantitative over 50

orders of magnitude in force, for purely elastic and highly plastic polymer films. Our data does

not match recent theoretical predictions based on the dominance of building-block structures

(bends, folds, d-cones, and ridges). However, by directly measuring substructures, we show

clearly that the bending in the stretching ridge is responsible for the strength of both elastic

and plastic crumples. Our simple, predictive model may open the door to the engineering use

of a vast range of materials in this state of crumpled matter.
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It is not uncommon to take out the stress caused by an
unpleasant letter by crushing the paper into a tight ball. Such
action, while perhaps stress relieving, causes a problem for the

eventual trash collection because the letter now takes up more
volume than it needs to and is not easily compacted further (after
hand crushing, a paper ball is estimated to be 75% air)1. From an
alternate point of view, the low-density crumpled letter is now a
potentially useful material with properties comparable to those of
a solid foam or engineered lattice2–5. What is truly remarkable is
the ease with which the crumpled material is produced. From
films of materials, such as metals, natural or synthetic polymers
and graphene, to systems as complex as thin electronic circuits
can all be readily produced and crumpled1,6–11. Unfortunately,
crumpled matter is rarely used because it is still so poorly
understood in comparison with engineered structures and foams.
For example, it remains unclear how much load, F, can be sup-
ported by a square sheet of dimensions L × L × h crumpled into
an approximately spherical ball of radius R.

Despite the complexity, crumpled sheets (as well as origami
structures) are comprised of only a handful of building block
structures. The four most dominate, the bend, the fold, the d-
cone, and the stretching ridge are shown below in Fig. 1 below.
Slender systems are easily bent due to the tiny energetic cost of
bending when compared to stretching. The ratio of energies is
reflected in the high Föppl-von Kármán numbers typical of sheets
(γ= L2/h2, where h is the film thickness). If the radius of cur-
vature of a bend is decreased to the scale of the sheet thickness,
the result is called a fold12–14. Folds are primarily a result of
plasticity, meaning energy loss has occurred and memory has
been created in the sheet (typically required for origami). Con-
fining a sheet in three dimensions (as in crumpling a ball) leads to
constraints on the sheet that can no longer be satisfied by bending
alone. Confinement forces a sheet to stretch. Stretching comes at
a high cost, so the system minimizes the total amount of
stretching present. In thin, marginally confined systems,
stretching is typically localized to a (near) singular point known
as a developable cone (d-cone)15–18. Finally, if confinement is
increased and two d-cones are created in a sheet, they are linked
by a structure known as a stretching ridge19. In this case, the sheet
cannot join the two d-cones and remain developable; it must also
stretch along the ridge. Intuitively, theoretical models of crum-
pling are often developed from these simple structural building
blocks; however, such models have not yet delivered quantitative
prediction (See Supplemental Discussion)1,8.

In this manuscript, we discuss experiments designed to
unambiguously determine the force response of crumpled mate-
rials and to clarify which underlying structures dominate. The
experiments use thin films created with a range of thicknesses
(from 100 nm to 1 mm) from two very different but well-
characterized polymeric materials, namely, polycarbonate (PC), a
glassy polymer with a modulus of 1.6 GPa and poly-
dimethylsiloxane (PDMS), an elastomer with a modulus of 1.69
MPa20. To simplify the results presented here, the PDMS is
additionally treated to reduce its adhesion. Additional sample
preparation detail can be found in the Methods section. The
result is access to a vast range of γs (104–1012) and, more
importantly, to vastly different material response (plastic or
elastic). The films are crumpled by hand and loaded between two
parallel glass plates, which comprise the compression cell. The
film is observed with laser scanning confocal microscopy, leading
to direct observation of the internal crumple structure during the
entire test cycle. Single ridges are also tested in compression and
observed with confocal microscopy. Remarkably, we find that the
compressive forces on both crumples and ridges are well descri-
bed by a similar power law function. We conclude that ridges are
minimal crumples and serve only to divert energy into sharper
bending as they are compressed.

Results
Crumpled polymer films. Typical data are shown in Fig. 2 below,
where the force response of the two materials differs as one might
expect. The elastic PDMS data show a smooth indentation and
retraction curve, with little hysteresis. On the other hand, the PC
film shows significant hysteresis. Such hysteresis is often attrib-
uted to plastic losses, which occur during compression. The
contrast between the two materials is also clear post experiment.
The PDMS films recover their flat initial state and the PC films
remain crumpled (as does paper).

When initially crumpled, films take on an approximately
spherical shape. However, when confined by the parallel plates of
the cell, the crumpled sheet assumes the shape of a rough cylinder
of radius R and height H (Fig. 2b.). An effective modulus can be
determined from the force data and the cylindrical geometry, and
an effective engineering strain can be determined from the plate
displacement. The data can then be meaningfully summarized in
Fig. 2f. Individual experiments show very different trajectories,
but the average forms a trend that is continuous through both
plastic and elastic crumples. To guide the eye, curves for ideally
stretching structures (red) and ideally bending structures (black)
are shown. The latter forms a limiting value for crumpled matter
regardless of specific material properties, strongly suggesting that
bending is important regardless of γ.

To understand the origin of the behaviour shown in Fig. 2f, we
return to the force measurement itself, which is free of any geometric
assumptions (Fig. 2e). Force measurements for both materials are
well fit by a power law of the form F ¼ F0H

�α, in agreement with
many other experiments and simulations1,6–10,21–24. With PDMS,
the exponent α converges to an average of 2.8 though the error is not
insignificant (the standard deviation is Δα= 0.5). PC, though well fit
with a power law, yields a wide range of exponents (α= 7.7 ± 5 upon
compression and α= 14.0 ± 13.6 during retraction). Clearly, α is not
well defined by a single value and needs to be considered statistically
(see Fig. 3). We note that the PDMS exponents appear to follow a
normal distribution, whereas the PC exponents appear similar to a
log-normal distribution. It is likely the exact value of the exponent is
related to the underlying statistical distribution of rigid elements in
the structure11,25–27.

The resistance of the crumple to compression was initially
suggested to be directly related to the forced stretching occurring

a b

c d

Fig. 1 Four fundamental building blocks of origami and crumpled matter. a A
bend. b A fold. c A developable cone. d A stretching ridge formed between
two developable cones
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in the many ridges within the crumple1,19. Using energy scaling
arguments developed for the ridge and neglecting any other
interactions (including self-avoidance of the sheet), it was
predicted that F0 � Eh8=3L16=3R�10=3 and α ~−8/3 where E is
the film’s Young’s modulus, h is the film thickness, and L and R
are defined above. Simulations were developed to test this
hypothesis with mixed results. Vliegenthart and Gompper using a
mesh of spring-linked nodes and a dimensional argument found
an exponent of ~14/9 with phantom sheets (matching the ridge
model) but a value of ~2 with more realistic self-avoiding
sheets22. It is interesting that the exponents measured for the
simulated self-avoiding sheet, when input into the dimensional
scaling, implies that a single effective bend is dominant (as a
single bend scales as F � Eh3L=H2)20.

The experimental measurements reported in this letter do not
agree with the ridge model predictions. The exponents measured
for PDMS films do closely match the ridge-model exponent of 8/
3; however, comparing the amplitude (F0) yields only weak
correlation and several orders of magnitude error in scale (see
Supplementary Discussion). The disagreement in the PDMS data
may be due to the lower Föppl-von Kármán numbers accessed by
the experiments γ � 104 � 107ð Þ, as the asymptotic scaling on
which the model is based is only valid above γ= 108. The PC
films are well within the asymptotic limit γPC � 105 � 1012

� �
but

give exponents that are far too large. Experimental F0 values are
also off by several orders of magnitude with PC crumples.

More recently, Deboeuf et al. suggested an alternative model
based on energy storage in the irrecoverable plasticity occurring
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Fig. 2 Compression measurements of crumpled matter. a Confocal microscopic image of a crumpled (69.5 mm × 46.1 mm × 79.4 μm) polydimethylsiloxane
(PDMS) sheet in index-matching glycerine/water mixture. b Basic geometry of crumple compression experiment. c A three-dimensional rendering of the
confocal data from the 1.3 mm× 1.3 mm red square indicated in a, in this case H= 2.8 mm. d Same location as c. under a compression of H= 1.8 mm.
e Force displacement data for a 43mm× 40mm× 86.5 μm PDMS film (black triangles) and a 16mm× 22mm× 2 μm thick polycarbonate film. Inset
shows the same data on a log/log axis. Both data sets are well fit by the power law F ¼ F0H

α, where F0 and α are fit constants. f Normalized modulus data
from several different crumpled polycarbonate (PC) (red—various symbols) and PDMS (black—various symbols) films plotted as a function of normalized
density. Specifically, E ¼ ðF=πR2Þ=½ðH� H0Þ=H� and ρ ¼ L2h=HπR2, where L is the average length and width of the crumpled sheet, and H0 is the cell gap at
the beginning of compression. The normalization constants E0 and ρ0 refer to the Young’s modulus and density of the material making up the film (bulk PC
or PDMS), respectively. The two solid lines are the ideal stretching (dashed) and ideal bending (solid) limits2
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Fig. 3 Histograms of measured power law exponents. a Polydimethylsiloxane (PDMS) exponents (black) and b polycarbonate (PC) exponents (red). PDMS
data approximate a normal distribution, whereas PC data does not. N= 38 for PDMS and N= 34 for PC
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in sharp folds8. The model allows several different values for α,
ranging from 1 to 4 depending on the underlying structure and
type of compression. Additionally, the model predicts an
amplitude of F0 ¼ Eh2Lα. The fold model was validated
experimentally through the crushing of cylindrically bent
(rolled-up) sheets and sheets confined in three dimension by a
wire mesh. Exponents were found to depend on geometry and
material properties8,10. The fold model applied to our data shows
qualitative agreement, but once again, a quantitative error of
several orders of magnitude is revealed (see Supplementary
Discussion). Furthermore, the exponents measured for PC are
beyond what is allowed by this model and confocal observation of
PDMS shows very few sharp folds.

Interestingly, a similar relationship,

F ¼ Eh2
2R0

H

� �α

; ð1Þ

provides an excellent fit to the data. To be clear, Eq. 1 is an
empirical model that is not necessarily related to folds. We will
discuss possible origins of this scaling below. The model is best
demonstrated in Fig. 4 where F0 is plotted against h2ð2RÞα, and
the slope of a straight line is the material’s Young’s modulus. The
plot shows that both PDMS and PC data fall along separate linear

trends, the slope of each is 2.6 ± 0.03MPa and 3.9 ± 0.3 GPa,
respectively. Given the independently measure modulus of these
materials is 1.7 ± 0.05MPa and 1.6 ± 0.1 GPa, and the linearity
spans 50 orders of magnitude, Eq. 1 seems reasonably reliable.

It is important to note that no attempt to create a repeatable
crumple was made in the experiment, suggesting that the wide
range of exponents observed is simply related to the wide range of
configurations explored. The exponent must then be related to
the network structure of rigid elements, not all of which are
initially load-bearing. What the rigid elements are is not yet clear,
because both ridge- and fold-based scaling models arrive at
different relationships than Eq. 1.

Compression of isolated ridges. In order to clarify what (if any)
underlying structure is dominant, we have conducted compres-
sion experiments on isolated ridges. The experiment is once again
conducted under the confocal microscope, and once again com-
plete structural information is recorded during the experiment.
Figure 5 shows typical experimental images collected during
compression of PDMS (Fig. 5a–c) and PC (Fig. 5d–f) thin films
configured in the ridge geometry. During compression a PDMS
ridge smoothly shrinks in length, whereas the PC ridge does not
observably change until it catastrophically buckles (Fig. 5e–f). In
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Fig. 5 Confocal microscopy of the compression of a stretching ridge. a Geometry of a 58.5-μm-thick polydimethylsiloxane ridge confined to a X= 11.3 mm
gap. Scale bar represents 2 mm. b, c show the effects of additional compression where X= 6.3 mm and X= 2.8 mm, respectively. d–f show similar
compression of a 9.3-μm polycarbonate film at X= 11.7 mm, X= 11.0mm and X= 7.7 mm, respectively. In this case, the ridge buckles, forming two new d-
cones as it is compressed. Again the scale bar represents 2 mm
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this work, we limit our discussion to data collected prior to the
buckling of the ridge.

Arranging a coordinate, s, along the ridge’s crest, the ridge
height and curvature as a function of position can be determined
(Fig. 6a–d). PDMS shows a smooth change in height and
curvature during compression and PC shows little change before
buckling. Force as a function of plate separation, H, is shown in
Fig. 6e. PDMS shows a smooth monotonic trend and little
hysteresis. PC shows an increasing monotonic trend similar to
PDMS before buckling and a dissipative regime as two additional
d-cones form during buckling28.

The energy stored in a ridge is theorized to be primarily stored
in the stretched material along the ridge peak19. This is evident in
Fig. 6a, where the ridge crest drops below the horizontal, meaning
its length is longer than is needed to directly connect the two d-
cones. Using the strain determined geometrically, the total
(stretching plus bending) energy can be minimized to yield the
curvature, κ ¼ h1=3X�2=3, and total energy Uridge � Eh8=3X1=319.
Here X is the total distance between the two d-cones
(approximately the plate separation, H). The curvature prediction
is directly verified by the measurement as we show in Fig. 6f,
where we plot curvature (directly measured by confocal
microscopy) against h8=3X�2=3. The linear trend shown in the
figure is the prediction with no free parameters. The compressive
force can be found by comparing the total energy with the work
done compressing the structure, Fridge ¼ Eh8=3X�2=3. Despite the
geometry being correct, the predicted force does not match
measurements for either material.

Compression pushes the two d-cones together. In PDMS, this
occurs smoothly and one d-cone is eventually annihilated. This
means that the retraction curve is the mechanical response of a
sheet with a single d-cone and no ridge. The low hysteresis shows
that the measurement is not significantly probing the ridge; the
bending in the rest of the structure is more important (reflecting
the low Föppl-von Kármán numbers accessed by the PDMS
experiments). On the other hand, in PC the d-cones are fixed at
the location they are initially created; the d-cones cannot move

rendering the ridge’s minimal energy irrelevant to the overall
energy storage during compression. This means that, once again,
the bending in the structure is all that changes until the ridge
buckles. In both crumples and ridges, the experiment primarily
probes bending near the d-cone cores.

The ridge force–displacement data are reminiscent of the
crumples and is likewise well fit by a power-law relationship

Fridge ¼ F0H
�α

� �
. Again, variation is observed in the power law

exponents themselves (α= 2.4 ± 1.7 for PDMS ridges and α= 9.3
± 6.1 for pre-buckling PC ridges). Given the similarities, we
propose that Eq. 1 can also be used to describe the ridge
mechanics. Replacing the initial crumple size (R0) with the initial
ridge length (X0), the relation can be expressed as:

F ¼ Eh2ðX0

H
Þα: ð2Þ

We demonstrate the validity of Eq. 2 in Fig. 7 where we plot F0
against h2Xα

0 . Both PC and PDMS data show linear trends and
have slopes of 1.2 ± 0.1 GPa and 6.2 ± 0.1 MPa respectively. While
the data only spans 40 orders of magnitude in F0 in this case, the
agreement is still quite sound. Apparently, the ridges serve as a
minimal crumple.

Discussion
That a single model can simultaneously account for the com-
pression of a crumple (Eq. 1) and a ridge (Eq. 2) is strong evi-
dence that the two structures are similar. The basic hypothesis
that crumples can be considered to be a collection of ridges seems
to be correct. However, the balance of stretching and bending in
the ridge does not explain the observed scaling. We tentatively
conclude that the ridges are only involved indirectly; they funnel
energy into the available soft modes (bending), which progres-
sively stiffen until the ridge structure collapses (either by anni-
hilation or by buckling).

The curvature in the centre of the ridge is not the largest
curvature in the structure, so it is not surprising that it is not the
largest contribution to the compaction process (although it does
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still explain the local ridge shape, Fig. 6f). The leading Eh2 term in
the scaling of Eqs. 1 and 2 is another hint as to the underlying
physics. As pointed out by Deboeuf et al., this is a natural energy
scale for structures in which the radius of curvature is comparable
to the sheet thickness8. We note that we observe no folds in the
ridges of our experiment, so the premise that folds are important
is misleading. The only place curvatures approach the sheet size is
in the d-cone cores themselves.

The remaining detail necessary for understanding the observed
scaling is an estimate of the extent of the high curvature region.
Figure 6a, b (or Fig. 6c, d) show that the curvature drops smoothly
from the high values in the d-cone core over a significant distance
along the ridge, meaning that the d-cone cores are not as localized
as might be expected from current theories. In fact, the high cur-
vature appears to span the ridge, meaning the relevant length scale
in the problem must be of the order of the length of the ridge itself.
This means that a perturbation to the structure can be described in
terms of a function, f, of the unitless number X0/H, which is evi-
dently a power law f ðX0=HÞ ¼ ðX0=HÞαð Þ. A more comprehensive
model of the d-cone motion is needed to theoretically predict the
function f from first principles.

The bending-dominated crumple hypothesis is further
strengthened by the limiting behaviour observed in the normal-
ized modulus vs normalized density data shown in Fig. 2. From
this point of view, we can see that individual crumples stiffen with
compression but only up to the limit set by bending. No
experiments observed crumples reaching the stretching limit,
which would be the case if the load was being directed primarily
into stretching modes within the crumple. The structures never
breach the limit set by bending; they are structures that deform
primarily through increased bending.

Crumples are complex but are trustworthy materials. They are
structures dominated by bending at many different length scales
similar to a single stretching ridge. Importantly, they can be
described quantitatively by a power law relating force to com-
pression. The detailed prediction of the power law exponents
remains to be determined, though statistically measured values
are sufficient for predicting system behaviour. Not only can the
load held by a crumple now be quantitatively predicted, but the
model also allows a simple method of measuring modulus in
other crumpled systems. With this newly found understanding,
crumples can now be reliably designed to serve similar roles as
those traditionally filled by foams. The adoption of crumpled
matter in material science will spur the development of a host of
new, light-weight compact materials from any material (metal,

polymer, carbon, ceramic,…) or system (electronics, photo-
voltaics, microfluidics,…) that can simply be made thin.

Methods
Polycarbonate. PC was used as received from Scientific Polymer Products and was
reported to have a molecular weight of 60,000 Daltons. Solutions were created by
dissolving the polymer in chloroform (Fisher Scientific, Optima grade) to various
weight percents up to 10%. Nile red, a fluorescent dye, was often added to solution
in trace amounts. Films were created in several ways. Below ~2 microns in thick-
ness, films were created by spin coating solution on freshly cleaved mica supports.
Instabilities limit the thickness in this case. Larger thicknesses were created through
drop casting polymer solution on freshly cleaved mica supports in a chloroform-
saturated environment, which was allowed to slowly evaporate over several days.
Drop casting was limited to thicknesses above ~2 μm due to dewetting instabilities,
which occurred during the casting process.

After creation, films were annealed for ~1 h at a temperature of 453 K in order
to remove any residual stress caused by the sample preparation techniques. Films
were scored with a scalpel blade, then released on a Milli-Q water surface. Film
thickness was measured with atomic force microscopy (<2 μm) or was measured
with confocal microscopy (>2 μm). Each film was measured in several locations
and an average thickness was used. Variation was typically 12%.

Polydimethylsiloxane. Elastomeric PDMS films were created with sylgard 184
(Dow Corning) mixed in a 10:1 ratio. Films were cast on glass slides, which were
covered in a thin layer of poly(acrylic acid) through spin coating a 5% by weight
water/poly(acrylic acid) solution. PDMS mixtures were degassed in a vacuum oven,
then coated through drop casting or spin coating on a poly(acrylic acid)-coated
glass slide. Films were then placed in the vacuum oven and annealed for 1 h at 353
K under vacuum. Films were cooled to room temperature before use.

Films were scored with a scalpel blade and released on a Milli-Q water surface.
Films were removed from the water surface, dried, and immersed in a toluene Nile
Red solution. After a short time (~10 min) films were removed from the toluene
solution, excess solution was removed from the films surface, and the film was
allowed to dry. Once dry, films were stored in the flat state for 24 h before use.
Thicknesses were measured in the same manner as the PC films outlined above.

PDMS films are tacky when produced in the absence of ultraviolet exposure or
dirt. To remove adhesion from the problem, we coat the PDMS films with a
randomly oriented monolayer of microparticles. Polydisperse PS colloids of average
diameter 7 μm were used, or more inexpensively, dry cornstarch particles were
used. Films were immersed in particles, then excess particles were removed with a
Kim-Wipe. Monolayers were directly observed with the confocal microscope,
ensuring that no excess of free particles were present during the experiment; all
particles adhered to the film. Films after a crumpling experiment did not have a
noticeably different surface coverage of particles.

Crumpling. Thick films were crumpled by hand, and no attempt was made to
create repeatable crumples. Gloves were worn to ensure no contaminants were
added during the crumpling process. Typically two points on the film edges are
pushed a random distance towards one another. Then one hand holds these first
two points as the second hand repeats the process in another random direction. As
these steps are repeated, the film slowly compacts into the crumpled state. Once the
approximately spherical ball reaches a desired level of compaction, it is loaded
between the parallel plates of the experimental apparatus.
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Fig. 7 Force amplitude plotted against h2ðX0Þα. All data are well fit by Eq. 2, yielding a second measured value of Young’s Modulus for each polymer. The
agreement is fair, but error in modulus is underestimated by the fit statistics
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The thinnest samples required extra care. In this case, films are first floated off
the substrate on which they were created, by immersing the substrate into a bath of
pure (Milli-Q) water. Films are then removed from the water bath on a Kim-Wipe,
in order to ensure the films do not collapse due to capillary effects. The film,
supported by a Kim-Wipe, is then placed on a stack of dry wipes, which draws the
remaining water from the supporting Kim-Wipe. Films are then delicately peeled
from the Kim-Wipe with acetone-cleaned tweezers. Finally, the (now dry) film can
be crumpled in the same manner as the thicker films, although fingers are now
replaced with tweezers.

Crumple radius. The set-up used in this experiment has no bounding walls in the
horizontal direction. This means that the definition of the lateral extent of the
crumple (R) is ambiguous without further clarification. We adopted a definition
based on the average lateral extent of the crumple as measured in images taken on
two orthogonal axis through the side of the crumple, or via a two-dimensional
projection of the crumple taken from the top with the confocal microscope. The
side images were used preferentially as the smallest radius and largest radius in the
images could easily be defined. Both smallest and largest radii were measured
independently twice, along two orthogonal axis and averaged to a single value for
R. Each image was calibrated independently ensuring no drift in scale. Typical
results are shown in Fig. 8.

The largest radius did not change significantly during compaction for any of the
materials studied. The smallest radius did often grow during compaction,
indicating that a densification of the structural network occurs during crushing of
at least some of the crumples studied. No correlation was noted between the rate of
growth of the smallest radius and scaling exponent (α in the text), force amplitude
(F0 in the text) or time constant in force relaxation experiments.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.
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