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Abstract: Partial discharge (PD) is a common indication of faults in power systems, such as generators
and cables. These PDs can eventually result in costly repairs and substantial power outages. PD
detection traditionally relies on hand-crafted features and domain expertise to identify very specific
pulses in the electrical current, and the performance declines in the presence of noise or of superposed
pulses. In this paper, we propose a novel end-to-end framework based on convolutional neural
networks. The framework has two contributions: First, it does not require any feature extraction and
enables robust PD detection. Second, we devise the pulse activation map. It provides interpretability
of the results for the domain experts with the identification of the pulses that led to the detection of
the PDs. The performance is evaluated on a public dataset for the detection of damaged power lines.
An ablation study demonstrates the benefits of each part of the proposed framework.

Keywords: partial discharges; power distribution lines; temporal CNN; fault detection

1. Introduction

Many critical services in our society, such as healthcare, transportation, and security,
require a robust, reliable, and undisrupted supply of electricity. This requires on the one
hand a reliable and redundant infrastructure, and on the other hand, the ability to maintain
the performance of the infrastructure. As such, the ability to detect faults and to act
accordingly is of critical importance for maintaining a high availability of the network [1].
Many components of the power generation and distribution network can be directly
monitored with specific sensors. However, it is not possible nor cost efficient for all the
components and all the fault types. Therefore, for some of the components, the monitoring
can only be performed indirectly through the behavior of the electrical current. For example,
insulation damages in power systems, such as generators or defects in medium-voltage
cables [2], can be monitored by detecting localized pulses in the electrical current, namely,
partial discharges (PD).

According to the IEC 60270 international standard, partial discharges are “localized
electrical discharges that only partially bridge the insulation between conductors”. In
fact, the presence of PD can be indicative of anomalies in many electrical systems and
can cause further degradation of the insulation. The high-voltage discharges deteriorate
the insulation materials and can have impacts on the entire system. Their detection is,
therefore, of utmost importance to assess the condition of electrical components and has
been a long-standing challenge [3]. As such, the literature is extremely vast. PD detection
has been studied in many systems such as in transformers [4], gas-insulated high-voltage
switchgear [5], power plants [6], and power lines [7]. The main challenge in PD detection
lies in the detection of extremely short and temporally localized events: their wavelength
is at the micro-second scale. It requires, therefore, extremely high-frequency data (several
tens of MHz). In addition, only few pulses can occur per period of the current utility
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frequency (usually 50 or 60 Hz) [3]. In brief, PD signs in the electrical current represent
roughly 1/20,000-th of the data. Until the very recent development of technologies able
to capture and store such vast amount of data, the detection of PD patterns had to be
performed online.

Among the traditional approaches, a group of approaches takes advantage of the
property that for some systems, PD always occurs at the same phase in the electrical
current. These approaches are also referred to as the phase-resolved partial discharge
(PRPD) detection methods [8]. They consist in detecting pulses in the electrical current,
whereby the simplest method to detect a pulse is to apply a maximum filter. Subsequently,
the detected rate of occurrence (n) of pulses is plotted as a function of their voltage
amplitude (Q) and of their phase value (φ). It can be implemented online and experts can
inspect PRPD graphs to recognize the patterns generated by the different types of PD [9].
However, to obtain meaningful occurrence rates, these methods require the aggregation
of pulses over several hundreds or thousands of periods. Overall, these methods are
expensive, as experts need to constantly monitor the φ-Q-n diagrams. The interpretation of
the diagrams also becomes difficult in the presence of noise or of superimposed pulses.

As all types of PD are not necessarily resolved in the phase domain, statistical ap-
proaches are also frequently used [10]. They aim at characterizing the pulses with engi-
neered features. The features become a multidimensional space where decision boundaries
are established, for example with traditional classifiers such as random forest [7], support
vector machines (SVM) [11,12], or deep learning methods such as artificial neural networks
(ANN) [13], convolutional neural networks (CNN) [14,15], autoencoders [16], and recurrent
neural networks (long short-term memory networks (LSTM)) [17–19]. For a more exhaus-
tive overview, the reader is referred to the literature reviews in [20,21]. These methods
are time consuming and expensive due to the difficulty of extracting and engineering the
relevant features. It requires years of domain expertise for a profound understanding of
the system. Additionally, the methods suffer from degradation performances when pulses
are superimposed.

To address the aforementioned challenges, we propose to take advantage of the
recent advances in Deep Learning (DL) applied to time series (TS) anomaly detection.
For example, DL has already been successfully applied to identify cardiac abnormalities
in electrocardiography (ECG) data [22]. In particular, convolutional neural networks
(CNN) have recently demonstrated very good performances for TS classification [23,24],
forecasting [25], and anomaly detection [26]. In fact, temporal convolutions are able to learn
meaningful filters in the time domain, adjusted to the signature of the analyzed events,
and are, thus, often compared to learnable spectral features [27].

In this paper, we propose an end-to-end learning framework for partial discharge
detection in time series. The framework comprises two parts: (1) the automatic PD detection
without any feature engineering and (2) the subsequent extraction of pulse activation maps
that provide the domain experts a possibility to interpret the results. The difficulty met by
previous research in the detection of partial discharges lies in the discrimination between
PD and non-PD related pulses. Therefore, we propose here to extract a collection of
pulses for each period of the utility frequency. We train a temporal convolution neural
network with the binary information of whether PD are present in the original time series
or not. Since all pulses of the collection are processed with the same temporal filters,
a well-performing model should be able learn the PD pulse signatures. Learning these
signatures is, in fact, particularly valuable for the experts to potentially distinguish between
different types of PD. Therefore, we design our framework to provide both competitive
results in terms of partial discharge detection, and a visualization of the neural network
processing of the inputs through the pulse activation maps. These activation maps provide
interpretability and explainability of the results and allow the experts to diagnose for each
time series, which pulses and which part of the pulses where dominant in the final score
of the network. It gives an extremely fine interpretation of the network decision. We
demonstrate the performance of the proposed approach by achieving rank 4 on private
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leaderboard of the Kaggle VSB Power Line Fault Detection competition. The aim is
to identify damaged power lines from the observed PD in the electrical voltage [2,28].
Furthermore, we also demonstrate the added value of each part of the proposed framework
with an ablation study.

The paper is organized as follows. Section 2 presents each step of the framework,
including the preprocessing, network architecture, and pulse activation map devising.
Section 3 details the experiments we performed to quantify the results presented in
Section 4. The final results are discussed in Section 5.

2. Methodology

An overview of the proposed framework is presented in Figure 1. For each measure-
ment (1), each phase is handled independently. Low frequencies, in particular the utility
frequency, are filtered first (2). Pulses are identified and ranked with a simple maximum
filter and extracted into a pulse collection (3). Each phase is estimated independently by
the same neural network (4). The final decision on the power line takes the results from the
three phases into account and applies a global threshold (5). Last, a pulse activation map (6)
is computed to understand which part of the input led to the networks classification results.

Figure 1. Graphical Abstract: (1) The raw data: three phases over one period. (2) For each phase, the signal is filtered to
remove the utility frequency fut. (3) Extracted w samples of pulses identified with a maximum filter. The windows start
1/8th before the identified peak. (4) For each phase, the pulse collection is fed to a deep 1D convolution neural network.
(5) The outputs of the three phases are considered together to label the powerline. (6) Thanks to the Global Average Pooling
(GAP) Layer, the Pulse Activation Map can be displayed for further diagnostics.

2.1. Preprocessing

The main assumption of the proposed framework relies on the inherent definition of
a PD signature as a pulse in the electric current. Thus, inspired by the PRPD analysis, in
the very first step, we identify and extract the pulses with a simple maximum filter. This
requires first the removal of the low frequencies.

Data filtering—Figure 1 (2). PDs are due to insulation failures and typically occur at
very specific voltage changes. Their frequency is much higher than the utility frequency fut.
Thus, we first implement a high-pass filter with cut-off frequency fc > fut. In this work,
we apply a Butterworth filter of order 5 [29]. However, other filters could be explored.
An example before and after the filtering of an electric current recording over one period
is shown in Figure 1 (2), where the sampling frequency fs = 40 MHz, fc = 20 kHz and
fut = 50 Hz. Low frequencies such as the underlying sine wave are eliminated after the
high-pass filter, while the high frequency pulses remain unchanged.
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Pulse extraction—Figure 1 (3). As the partial discharge signature is inherently a pulse
in the electric potential, we propose as a second step to extract a large collection of pulses
from the recordings that will be used as inputs to the neural network (NN). The goal of the
NN is to learn to recognize if there is a PD pulse signature within the input collection. Due
to the nature of partial discharge, we can expect some periodicity in the occurrence of the
pulses with respect to the utility frequency. We create therefore, for each period of the utility
frequency, a 2D array where each row represents a single pulse. The columns represent
the time dimension. The number of columns corresponds to the number of timestamps w
collected for each pulse.

The pulses are identified with a maximum filter on the absolute value of the electric
potential. The filter extracts the local maximal values which are further apart than a given
window size. For simplicity purposes, we set this window to w. We extract in the filtered
data, the w timestamps around each of the Np largest local maxima, with an offset of
1/8 · w. That is, if the i-th local maximum is localized at timestamp ti, we extract the
interval [ti − w

8 , ti +
7w
8 ]. The collection of pulses is, therefore, a 2D array of shape Np × w.

Figure 1 (3) illustrates the pulse extraction and the resulting collection for one period and
phase of the utility frequency.

Np and w are hyperparameters of the proposed approach. Expert domain knowledge
could help to identify relevant values for these hyperparameters. The selected values
would primarily depend on the noise level for the selection of Np (some noise pulses may
dominate the PD pulses), and on the expected frequency of the pulses for the selection
of w. Yet, if this knowledge is not available, as in our case, these hyperparameters can be
selected based on cross-validation.

2.2. Temporal Convolutional Neural Network

Convolutional neural network (CNN). Inspired by the recent advances in computer
vision and more recently also in time series classification tasks, using CNN architectures,
we propose to apply a CNN for this PD detection task. For the applied architecture, we
propose a deep learning neural network architecture with a similar structure to VGG neural
networks [30]. Yet, the architecture requires several adaptations to the high-frequency time
series data as used in this case study. Unlike in images, where the neighborhood of a pixel
has a clear meaning in both the X and the Y dimensions, in the extracted pulses, only the
temporal dimension contains a physically meaningful neighborhood relationship. The
pulses have been ordered by decreasing amplitudes and not by their relationships in the
signal. We, therefore, apply 1D convolutions instead of 2D kernels. This also means that
the temporal filters are applied identically to each pulse, performing operations similar to
spectral analysis.

Global Average Pooling (GAP). A limitation when using CNN is that the convolutional
layers preserve the dimensionality of their inputs. Therefore, as predictions are usually
vectors (with one element per class), it is necessary to flatten the latent space in order to
transition toward fully connected layers. A consequence is an explosion in the number
of model parameters, often leading to overfitting effects and harming the generalization
ability of the network. We propose, therefore, to use the Global Average Pooling (GAP) as
a structural regularizer [31,32]. GAP takes the average over the feature maps channel-wise
and thus shrinks the size of the last latent space before its vectorization.

Proposed CNN Architecture. The proposed network architecture takes advantage of
1D CNN and the GAP layer. It contains 2 blocks comprising 2 successive convolutional
layers and a max pooling layer. The 2 blocks are followed by a GAP layer, a fully connected
(FC) layer, and a single neuron layer for binary classification.

2.3. Pulse Activation Maps (PAM)

To provide more interpretability and more insights on the network decision to classify
a collection of pulses as belonging to a damaged line or not, we propose to devise the Class
Activation Maps (CAM) of our network [33]. Following the methodology in [33], we devise
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in this section the pulse activation map (PAM) for the proposed network architecture. The
PAM enables to interpret which part of the pulse has contributed most to the classification
result (in this case, PD, or non-PD). There are two differences to the original contribution.
First, our network has a binary output. We devise a single PAM per input, instead of a
per-class activation map. Second, our network contains a fully connected layer between
the GAP and the output. In the following, we demonstrate that the CAM (or here, the
PAM) can still be computed in such cases, as long as the activation functions used by the
intermediate fully connected layers are piece-wise linear.

As the first two blocks of our network use 1-D convolution filters, the latent space M
after the last block can be written as M =

(
mplj

)
p∈J1,NpK,l∈J1,NlK,j∈J1,N f K

, where Np is the

number of pulses used as input to the network, Nl is the resulting size after the successive
max-pooling (here Nl = bw

4 c), and N f is the number of filters of the last convolution. In
the following, we denote the size of M as Nm = Np · Nl

The j-th neuron of the GAP layer performs the operation:

∀j ∈ J1, N f K, GAPj =
1

Nm

NP×Nl

∑
p,l

mplj (1)

The GAP layer is connected to a fully connected layer of size NFC with the weights
and bias (wFC

ij , bFC
i )i∈J1,NFCK,j∈J1,N f K, we have for the i-th neuron, before activation:

∀i ∈ J1, NFCK,

FCi= bFC
i +

N f

∑
j=1

wFC
ij ·

1
Nm

Np×Nl

∑
p,l

mplj

=
1

Nm

Np×Nl

∑
p,l

bFC
i +

N f

∑
j=1

wFC
ij ·mplj

 (2)

After the piece-wise linear activation function, the i-th activated neuron AFCi is
given by

AFCi= ReLU
(

FCi
)

= δi · FCi (3)

where

δi =

{
1 if FCi > 0
0 otherwise

(4)

Note that the definition of δ can be generalized to any piece-wise linear activation func-
tion. Under this assumption, it is also worth noticing that Equation (3) can be generalized
to as many successive fully-connected layers as required.

Last, the activated neurons are combined into a last dense layer of output size 1.
Denoting its weights and bias by (wOut

i , bOut)i∈J1,NFCK. The final score before the sigmoid
is obtained as

Score = bOut +
NFC

∑
i=1

wOut
i ·AFCi

=
1

Nm

Np×Nl

∑
p,l

[
bOut +

NFC

∑
i=1

wOut
i δi

bFC
i +

N f

∑
j=1

wFC
ij mplj

] (5)
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Finally, the pulse activation map PAM for each input is a collection of Np vectors of
size Nl and is defined as

∀(p, l) ∈ J1, NpK× J1, NlK,

PAM(p, l) = bOut + ∑NFC
i=1 wOut

i δi

(
bFC

i + ∑
N f
j=1 wFC

ij mplj

) (6)

As the decision of the network is taken after applying the sigmoid operation to the
Score value Equation (5), we can interpret the PAM as follows. A map whose average is
positive corresponds to a score above 0.5 after the sigmoid operation, and is thus originating
from pulses containing PD. On the contrary, a map whose average is negative corresponds
to a non-PD pulse. The activation maps can be used by domain experts to further evaluate
the pulses and possibly to distinguish between different types of PD.

3. Experiments
3.1. Datasets

To demonstrate the benefit of our approach, we apply the proposed methodology on
the VSB dataset, generated and released by the Technical University of Ostrava [28]. The
goal of the case study is to detect damaged three-phase, medium-voltage overhead power
lines [2]. According to the dataset description, damaged power lines can be identified
through the observed PD patterns [28]. To this end, the electric voltage is recorded over
one period of the grid utility frequency, 50 Hz, for the three phases simultaneously. The
sampling frequency is 40 MHz such that each recording contains 800,000 values. An
example signal is shown in Figure 1 (1).

The VSB dataset contains two sets of measurements. The training set contains
8712 samples with 3 labels: the measurement ID, the phase, and whether the power
line insulation was damaged at the time of recording. Damaged power lines should contain
PD, however no additional information is provided on the PD types, shapes, or location.
In this set, 575 samples are labeled as damaged power lines.

The second set contains 20,037 samples with two labels: the measurement ID and
the phase. No ground truth is provided with respect to the presence of PD. However, the
predictions of the health state can be evaluated online through the Matthew Correlation
Coefficient (MCC).

To the best of our knowledge, no other published study outside of the competition
leaderboard reported results on the second test dataset. In [12,18,19], the reported results
are computed on a subset of the labeled dataset. In [12], results are reported on the full
training set and might therefore be overfitted. In [18], results are reported on an artificially
augmented set containing 807 non-PD signals and 935 signals with PD, which might also
therefore suffer overfitting. We report anyway their results in Table 2, where we recompute
the value of the metrics they would achieve on our set, assuming constant sensitivity and
specificity of their model. This cannot be done for the work in [19], as the numbers of
tested samples with and without PD are not reported.

3.2. Network Architecture and Training

The proposed neural network architecture as presented in Figure 1 (4) comprises
two convolutional blocks: The first block contains two temporal convolutional layers
with 16 kernels of size 15. The second block has two temporal convolutional layers with
8 kernels of size 10. Each block is followed by a 1D temporal max-pooling layer with kernel
size 2. Therefore, the input size is Np × w× 1, the latent space size after the first block
is Np × w

2 × 16, the latent space size after the second block is Np × w
4 × 8, and the latent

space size after the GAP layer is 8. In particular, we have Nl =
w
4 = 10 in Equation (6).

The fully connected layer after the GAP layer is of size 32. All layers but the last output
layer use ReLU as activation function. The hyperparameters of this architecture (number of
blocks, kernel number, and size) were inferred from a grid search with a 5-fold stratified
cross-validation.
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We implemented the network with Keras and TensorFlow. For the training, we used
the ADAM [34] optimizer with constant learning rate of 10−3, β1 = 0.9, and β2 = 0.999. We
used the binary cross entropy loss:

L = −(ylog(p) + (1− y)log(1− p)), (7)

where y is the ground truth and p is the network output.

3.3. Threshold Setting

The problem at hand is a binary classification problem. The output is, therefore,
designed as a single neuron output layer, activated with a sigmoid function such that the
output is continuous between 0 and 1. The traditional baseline consists in using a threshold
at value 0.5 on the network output value. Compared to the baseline approach, we propose
to explore two modifications: first, the inference of an optimized threshold thv based on a
validation set, and second, the consideration of the three phases as a single indicator of the
power line health. We propose, thus, to compare four different postprocessing approaches
of the network output:

(i) Baseline: Round the output (threshold th = 0.5).
(ii) ‘1=3’-Phase Classification: Round the prediction of the three phases. If one phase

is estimated as damaged, the whole power line (the three phases) is considered as
being damaged.

(iii) 1-Phase Optimized Threshold: Infer the threshold thv with cross-validation, and
consider each phase independently.

(iv) Proposed 3-Phase Global threshold: Using the threshold thv devised in (iii), apply
the 3-Phase Global threshold, Gthv = 3 · thv, to the sum of the output values for
the three phases.

Please note that in (iv), the direct inference of the Gthv with cross-validation instead of
using 3 · thv may have enhanced the performance. This is, however, not possible as in the
training set, some samples do not have all the three phases recorded as damaged. Using
5-fold stratified cross validation to maximize the MCC (defined below in Section 3.4), we
define thv = 0.28.

3.4. Evaluation Metrics

As part of the competition, a tool is provided to evaluate the test set online. It provides
an evaluation of the results with the Matthews Correlation Coefficient (MCC) [35]:

MCC =
(TP · TN)− (FP · FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(8)

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives. This metric varies from
−1 to 1, where 1 indicates an optimal solution, 0 a solution no better than a random guess,
and −1 a total disagreement with the ground truth.

To enrich our evaluation of the network performance, we propose to use in addition
three common evaluation metrics for binary classification problems, namely, Accuracy,
Precision, and Recall, as defined in Equations (9)–(11).

Accuracy =
TP + TN

N
(9)

where N = TP + TN + FP + FN is the total number of samples.

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)
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If the Accuracy can give a false sense of performance of the model in a strongly
imbalanced dataset (a naive model always classifying to the main class would have high
Accuracy), its derivatives with respect to TP and TN are identical and constant. Changes in
Accuracy are, therefore, easier to interpret than in other metrics.

4. Results
4.1. Results on the Test Dataset

We evaluated the predictions of the model on the test dataset, using the tool provided
online by the hosting platform. Table 1 summarises the MCC and the rank reported, for
the four proposed decision rules (cf. Section 3, (i)–(iv)), for Np = 200, and for Np = 150.
Note that Np represents the number of extracted pulses used as input.

Table 1. Results on the test dataset (evaluated online) for our four proposed decision rules and for
Np set to 200 and 150.

Settings
Kaggle VSB Test Data

Np = 150, w = 40 Np = 200, w = 40

MCC Private Rank * MCC Private Rank *

(i) Baseline 0.580 1054 0.629 272
(ii) ‘1 = 3’ 0.656 118 0.704 4

(iii) 1-Phase Opt. 0.631 245 0.658 65
(iv) 3-Phase (our) 0.665 46 0.704 4

* Ranking on the private leaderboard of Kaggle; (First place: MCC = 0.719).

The obtained results show that, first, our proposed approach provides state-of-the-art
results. With settings (ii) and (iv), it achieves rank 4 on the leaderboard of the competition,
and this is to our knowledge the best results achieved so far with a pure deep learning
approach, without careful feature engineering. For comparison, the first place achieved
an MCC of 0.719 (+2%), using a LightGBM model on carefully designed features using
manually tuned threshold.

Second, the results demonstrate that considering Np = 200 pulses per 50 Hz period
leads to optimal results. This illustrates that the partial discharge pulses are not always the
most dominant pulses in the signal. As the pulses are selected by amplitude, selecting more
pulses increases the likelihood of capturing PD pulses. We also evaluated the performance
for a larger number of pulses. However, the performance started to decrease, this may be
explained either by the noise, or by the fact that increasing the input size also increases
the number of parameters of the model and may lead to overfitting. The training dataset
comprising around 8000 samples is rather small from a deep learning perspective.

4.2. Ablation Study

In addition to evaluating the performance of the proposed framework on the test
dataset, we performed an ablation study to evaluate the impact of the different composing
elements of the proposed network in more detail. As the test dataset does not contain any
ground truth information, we cannot perform a more detailed analysis. Thus, we decided
to split the training dataset into a new training dataset of size 6972 (6538 non-damaged
and 434 damaged power-line samples), and a new test set of size 1740, (1599/141).

Table 2 summarizes the results of the ablation study. The evaluated experiments
comprise the proposed model with the four decision rules (as discussed above) in part (1),
and the ablated versions of this model. First, without the use of the Global Average Pooling
layer (“w/o GAP”) in part (2), second, without the last fully connected layer between the
GAP layer and the output (“w/o FC”) in part (3). We only present the results for Np = 200
and w = 40 as this was the best performing parameter on the cross-validation.
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Table 2. Ablation study and impact of the decision rules on the proposed model with Np = 200 and
w = 40.

Methods MCC Acc. Precision Recall

(1)

(i) Baseline 0.710 0.959 0.772 0.695
(ii) ‘1 = 3’ 0.802 0.963 0.687 0.979

(iii) 1-Phase Opt. 0.727 0.953 0.669 0.844
(iv) 3-Phase (our) 0.817 0.967 0.726 0.957

(2)

w/o GAP-(i) 0.583 0.944 0.712 0.525
w/o GAP-(ii) 0.722 0.952 0.656 0.851
w/o GAP-(iii) 0.598 0.945 0.709 0.553
w/o GAP-(iv) 0.616 0.955 0.683 0.610

(3)

w/o FC-(i) 0.643 0.952 0.784 0.567
w/o FC-(ii) 0.751 0.959 0.702 0.851
w/o FC-(iii) 0.701 0.954 0.700 0.745
w/o FC-(iv) 0.775 0.966 0.772 0.816

(STL + SVM) † 0.779 . 0.963 . 0.73 ./0.68 * 0.88 *
(LSTM) †† 0.344 . 0.765 . 0.23 ./0.79 * 0.81 *

† Reported results on training set [12]. †† Reported results on samples drawn in the artificially augmented training
set (split: non-PD: 807 / PD: 935) [18]. * Metrics as reported. . Metrics recomputed on our own data split assuming
constant sensitivity and specificity of the model.

5. Discussion
5.1. Results Analysis

The Global Threshold provides the best results: The results both of the ablation
study and of the evaluation on the test dataset (Tables 1 and 2) show that setting (iv)
always outperforms others both in terms of MCC and in terms of Accuracy. The only
exception is the network without GAP layer. As this architecture performs worst overall,
the comparison of the settings may not be very insightful in that case.

3-phase classification improves the performance: In general, the results demonstrate
that considering the three phases together (settings (ii) versus (i) and (iv) versus (iii)) is
always improving the overall performance (MCC and Accuracy), independently of the other
parameters. This also makes sense from an application perspective as the essential infor-
mation for the operator is to know whether a power line is damaged or not. Furthermore,
some types of damage may impact all phases.

Optimising the threshold favors the Recall over the Precision: Looking at the MCC in
all setups, it appears that decreasing the detection threshold to an optimized threshold
improves the results (comparing the settings (iii) versus (i) and (iv) versus (ii)). This is in
fact due to the nonlinearity of MCC, which favors the detection of the smallest class (the
true positives, TP) strongly over the true negatives (TN). Comparing settings (iii) versus
(i) in the part (1) of Table 2 illustrates the strong impact of the revised threshold on the
Recall, while the Precision is harmed. From an application perspective, it seems indeed
more important to detect true positives, even if it increases the number of false alarms.
This is especially true in our case since a follow-up expert confirmation of positive cases
is simplified thanks to the Pulse Activation Map presented in the next section. On the
contrary, unnoticed damaged power-lines can lead to cascading damages and stronger
consequences on the power distribution system.

Single-Phase Detection also provides a good performance: An additional interesting
observation is that even though considering the detection results of three phases jointly
provides the best performance, the proposed model is still able to provide good detection
performance when the phases are considered independently (settings (i) and (iii) in Table 2).
This is especially true for setting (iii). This confirms that the proposed framework can also
be used on single phase measurements if all three phases are not available simultaneously.
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The GAP layer is essential for the performance of the proposed architecture: The
ablation study also confirms the significance of the GAP layer. Irrespective of the settings,
the MCC always decreases when the GAP layer is removed from the architecture (part (2) of
Table 2). The biggest impact of the GAP layer appears to be on the Recall, that is, the ability
of the model to correctly identify true positives. As discussed in Section 2.2, GAP improves
the generalization ability of the networks by decreasing the number of model parameters.
For the network used here with Np = 200 and w = 40, using the GAP layer instead of a
flatten layer reduces the number of parameters from 518,113 to 6369. The resulting model
is less prone to overfitting, which may explain its better performance. In addition, the GAP
layer allows us to extract the Pulse Activation Map as described in Section 5.3.

The last FC layer improves the Recall significantly: Contrary to the architectures
commonly encountered in the literature, adding a FC layer between the GAP and the
output improves the results in our case study. This can be inferred by comparing part (1)
and (3) of Table 2. The absence of the FC layer seems to harm the discriminative capacity
of the network as the Precision increases slightly while the Recall decreases strongly. In
fact, the model identifies more true negatives TN but far less TP. The Accuracy is in fact
on par with the best models. However, the MCC strongly decreases. As already discussed
above, from an application perspective, we believe that the Recall is more important than
the Precision. This is in line with the competition objective of MCC maximization.

Comparison with the state-of-the-art: The proposed network outperforms state of the
art methodologies found in the literature on both the Recall and the MCC and would be
considered as superior according to the competition objective.

5.2. Note on the MCC for Imbalanced Datatset

The results in Table 2 indicate that higher MCC are always linked to higher Recall
values, but not always to higher Precision values. This is in fact explained by the higher
partial derivative of the MCC with respect to the true detection of the smallest class (here,
true positives) compared to the detection of the largest class (here, true negatives). This
is illustrated in Figure 2, where the MCC is represented using a colormap as the function
of both TP and TN. On each side, a slice of the map MCC is represented when either
the TP-rate or the TN-rate are, respectively, set to 95%. In Figure 2, the top sub-plot and
rightmost sub-plot represent the corresponding partial derivatives. Excluding the region of
low TN, the partial derivative of the MCC with respect to the TP is always much higher
compared to the partial derivative with respect to the TN.

As only the MCC is reported for the test dataset by the online tool, it gives little insights
on the impact of the different experimental setups on the TP and TN values. Changes in
TP would dominate similar changes in TN. As discussed previously, the use of this metric
is justified from an application perspective, as it favors Recall over Precision.

5.3. Pulse Activation Maps (PAM)

To provide more insights on the decision of the network and enable interpretability of
the obtained results, we propose to use the PAM as per Equation (6) as a tool for a deeper
analysis of the pulses for domain experts. Plots of some representative sample maps are
demonstrated in Figure 3.

Potentially, the most valuable information for the domain experts is the evaluation of
the activation of the pulses, as demonstrated in Figure 4, providing an information which
parts of the pulses have contributed to the respective decision of the algorithm (either
positive or negative).
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Figure 2. MCC: Colormap of the MCC. From colormap to top, TP = 95%, MCC, and its derivative as
a function of TN. From colormap to right, TN = 95%, MCC, and its derivative as a function of TP.

Figure 3. PAM: For TP (3 upper left), FN (2 upper right), TN (3 lower left), and FP (2 lower right).
The color mapping is symmetric around 0 (white), from dark-blue (strongly negative) to dark-red
(strongly positive). Note the the actual values matter little as the decision of the network only
depends on whether the map is positive or negative in average.
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Figure 4. Pulse Activation: Some typical pulses with their activation (same color-map as in Figure 3).
Upper row: pulses positively activated. Lower row left, the tail is rather considered as distinctive by
the network. Lower row, right, strongly negatively activated pulses (the last one appears to be noise).
The Y-axes are independent.

Interestingly, two types of patterns appear to influence the decision (cf. Figure 3):
Samples for which the activation has higher amplitude for the pulse tails (e.g., first TP and
first TN), and samples for which the pulse itself is the deciding factor (last TP, and the two
displayed FP). These different types of pulses are presented in Figure 4. Remarkably, it
appears that the decision to label one power line as damaged or not depends as much on
the presence of positively activated parts as on the presence of pulses that are strongly
deactivated (negative parts of the map). For example, the difference between the first TP
and the first TN maps appears to rely on the number of pulses whose tails are positively
activated. Furthermore, for the last FP, the largest pulses (the one at the top of the map)
were identified as not being an indicator of a damaged power line. However, this is
compensated on average by the rest of the map which is weakly positively activated. One
could infer that the line may have some PD. However, those PD are not strong enough
for the line to be considered as damaged. The first plotted FN in the figure can lead to a
similar interpretation. The network did find some PD pulses in the signal (upper part is
mostly red). However, they were apparently not sufficiently strong to compensate for the
second part of the map which is weakly deactivated (light blue).

Finally, Figure 4 first row, presents pulses that are only positively activated. They
could, therefore, be interpreted as representative of some typical PD pulses. An input from
domain experts could provide additional insights and evaluate the match of the learnt
patterns to the expert intuition on the type of the PD. This would guide additionally the
interpretation of the obtained results.

6. Conclusions

In this paper, we proposed a new framework for the detection of damaged power lines.
The proposed approach offers several improvements with respect to traditional power-line
diagnostics. First, the proposed framework does not require any feature engineering and is
able to handle raw measurements with extremely little preprocessing. Second, it provides
competitive detection results at the power-line level, but also at the phase level. The
proposed approach is robust and can detect damages in power lines from a single period
of utility frequency. It provides a significant speed up compared to the more traditional
PRPD approaches that require first, the processing of several hundreds of periods, and
second, an expert analysis of the diagrams.

In addition, we proposed to extract the Pulse Activation Maps to improve the inter-
pretability and to gain understanding on which part of the electrical signals are learned
by the network as being a signature of a damaged power line. PAM can be used by the
domain experts to gain more insights in the decisions of the proposed neural networks
and to perform the diagnostics. PAM provides the information on which pulses and which
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part of the pulses dominated the decision of the neural network and allows to verify the
network’s decision.

It can be pointed out that one limit of the task we tackled here is the relatively small size
of the training dataset (from a deep learning perspective). Even though very competitive
results were obtained, we believe our approach can showcase its full potential when more
and more data will be available. Training the framework with more data will allow for a
more precise tuning of the hyperparameters. Furthermore, if samples were identified per
power-line, timestamped and collected over a long time period (which was not the case in
the considered case study), the monitoring of the PAM evolution over time would be a very
promising follow-up research. We could expect that, as a power-line damage increases, the
PAM would become more and more positively activated, and such monitoring would have
a potentially large benefit for the utility operators.
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