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Background: Early studies have demonstrated the potential of deep learning in bringing revolutionary 
changes in medical analysis. However, it is unknown which deep learning based diagnostic pattern is more 
effective for differentiating malignant and benign breast lesions (BLs) and can assist radiologists to reduce 
unnecessary biopsies.
Methods: A total of 506 malignant BLs and 557 benign BLs were enrolled in this study after excluding 
incomplete ultrasound images. 396 malignant BLs and 447 benign BLs were included in the training cohort 
while 110 malignant and 110 benign BLs were included in the validation cohort. All BLs in the training 
and validation cohort were biopsy-proven. The most common convolutional neural networks (VGG-16 
and VGG-19) were applied to identify malignant and benign BLs using grey-scale ultrasound images. Two 
radiologists determined the malignant (suggestion for biopsy) and benign (suggestion for follow-up) BLs 
with a 2-step reading session. The first step was based on conventional ultrasound (US) images alone to 
make a biopsy or follow-up decision. The second step was to take deep learning results into account for the 
decision adjustment. If a deep learning result of a first-classified benign BL was above the cut-off value, then 
it was re-classified as malignant. 
Results: In terms of area under the curve (AUC), the VGG-19 model yielded the best diagnostic 
performance in both training [0.939, 95% confidence interval (CI): 0.924–0.954] and testing dataset (0.959, 
95% CI: 0.937–0.982). With the aid of deep learning models, the AUC of radiologists improved from 0.805 
(95% CI: 0.744–0.865) to 0.827 (95% CI: 0.771–0.875, VGG-16) and 0.914 (95% CI: 0.871–0.957, VGG-19). 
The unnecessary biopsies decreased from 10.0% (11/110) to 8.2% (9/110) (assisted by VGG-16) and 0.9% 
(1/110) (assisted by VGG-19).
Conclusions: The application of deep learning patterns in breast US may improve the diagnostic 
performance of radiologists by offering a second opinion. And thus, the assist of deep learning algorithm can 
considerably reduce the unnecessary biopsy rate in the clinical management of breast lesions.
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Introduction

Early diagnosis is key to controlling the second leading of 
death disease, breast cancer (BC), in women. Early detection 
of BC could reduce over 40% of mortality (1). The common 
examination methods include mammography, ultrasound 
(US), tomography, and biopsy, among others (2). Among 
them, US is applied world-wide for early BC screening due 
to advantages such as being radiation-free and cost-effective. 
The diagnostic performance of US has been continuously 
improved through substantial technological breakthroughs. 
However, by nature, it is inevitable that the clinician’s 
experience, operating skills, and US machine parameters 
will affect the US results. Thus, diagnostic opinions may 
vary between doctors, leading to misdiagnosis and missed 
diagnosis (3). A dilemma in breast US is the prevalence of 
false-positive findings, resulting in unnecessary biopsies 
in benign breast lesions (BLs). Berg et al. (4) determined 
that among 20% BLs that were classified as Breast Imaging 
Reporting and Data System (BI-RADS) category 3 (5), 
only around 10% were finally confirmed as malignant by 
biopsy. Cai et al. (6) also pointed out that 90% of patients 
undergo unnecessary invasive biopsies due to a biopsy 
recommendation having been made to avoid misdiagnosis 
of BC in 10% of patients. Thus, a non-invasive and reliable 
diagnostic method with a good performance is highly 
desirable to reduce unnecessary biopsies considering the 
low prevalence of biologically significant malignancy.

The success of deep learning (DL) signals a new epoch in 
terms of object detection and classification, imaging analysis, 
and pattern recognition; an unprecedented enthusiasm for 
computer-aided diagnosis (CAD) in medical imaging has 
been witnessed (7,8). Therefore, DL-based CAD could be 
expected to evolve to a level where certain processes can be 
automated, such as differentiating malignant and benign 
cases in US to assist radiologists in improving efficiency and 
accuracy. In terms of object classification, DL was shown to 
perform better than traditional machine learning patterns (9).  
In particular, DL methods using convolutional neural 
networks (CNNs) have displayed noticeable strengths in 
medical imaging analysis (10). The research community has 
applied CNN architectures in liver disease classification (11),  
brain tumor detection and classification (12), and thyroid 
cancer classification (13). Early studies conducted the 
investigation of DL values in evaluating breast cancers 
(14,15). Nevertheless, the diagnosis of BLs using DL 
algorithms needs substantial improvement and thus further 
studies are necessary. Therefore, the aim of this study was 

to evaluate whether the proposed CNN model can increase 
the accuracy for classifying BC and minimize unnecessary 
biopsies. We present the following article in accordance 
with the STARD reporting checklist (available at https://
gs.amegroups.com/article/view/10.21037/gs-22-473/rc).

Methods

Participants and data acquisition

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the ethics committee of Pudong New Area 
People’s Hospital (No. 2022-131), and individual consent 
for this retrospective analysis was waived. The images 
were consecutively collected between 1 August 2020 and  
1 December 2021. A total of 557 benign and 506 malignant 
BLs from Pudong New Area People’s Hospital were 
screened, and 1,063 patients were enrolled in this work. 
For patients with multiple BLs, only the most suspicious 
or the largest diameter BL was selected. The exclusion 
criteria and enrollment process are shown in Figure 1. The 
patients were aged from 29 to 78 years. The size of each 
BL was measured as the largest diameter of each BL. All 
US images were obtained from Siemens S3000 (Siemens 
Healthineers, Erlangen, Germany), Philips Epiq 7 (Philips 
Healthcare, Amsterdam, The Netherlands), Philips IU Elite 
(Philips Healthcare), GE Voluson E8 (GE Medical Systems, 
Chicago, IL, USA), and Toshiba Aplio 400 (Toshiba, Tokyo, 
Japan).

The US image data were reviewed by 2 radiologists 
with at least 5 years of experience in interpreting breast 
US images by consensus. The radiologists were blinded 
to the pathology results. In cases of disagreement, a senior 
radiologist with more than 20 years of experience in breast 
US imaging was consulted. 

Model construction and evaluation

Pre-processing
By nature, DL requires training data on large scale, but 
medical data is known to be difficult in acquisition. Thus, 
we performed data augmentation of different kinds to 
enrich the training dataset, in an attempt to train the 
network in a much more cost-effective way with better 
robustness. We adopted the mirroring method together 
with the singular value decompositions (SVD) method in 
5, 10, and 15 degrees for data augmentation. In the end, 

https://gs.amegroups.com/article/view/10.21037/gs-22-473/rc
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the augmentation method resulted in 3,168 (396×2×4) 
malignant and 3,576 (447×2×8) benign BLs for the 
training set, together with 110 malignant and 110 benign 
unaugmented BLs for the external testing set. 

Model construction
In this research, the conventional very deep convolutional 
network (VGGNet) was used to classify US images into 
benign or malignant. The VGGNet is a CNN classifier 
that was initially proposed in 2014 (16) for object 
recognition purposes and has achieved very good results in 
the ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC; https://www.image-net.org/challenges/
LSVRC/). Our research adopted the 2 most common 
VGGNet architectures for comparative study, which are 
VGG-16 and VGG-19, named after their unique 16-layers 
and 19-layers designs, respectively. In more detail, VGG-
16 has 13 convolutional layers, whereas VGG-19 has 16. 
Both of them have 3 fully connected layers according to the 
SoftMax function.

As our study involved data on a much smaller scale 
compared to the data used in the original study (16), 
transfer learning was used with adaptations in utilizing 
our experiment under the VGGNet framework. First, in 
meeting the requirement in the input layer of the VGGNet, 

we resized our input image into a pixel size of 224×224 
with bilinear transformation and duplicated it 3 times 
in mimicking the 3 channels of the RGB input. Second, 
instead of having 1,000 nodes in the last layer of the output 
layer, we updated the number of nodes to 2 in reflecting the 
benign and malignant classes used in our study. At the last, 
all the pre-trained parameters in the convolutional layer 
were preserved and only the parameters in the output layer 
were finetuned with backpropagation in solving the task 
defined in our study (identifying benign from malignant). 
The 2 adopted VGG models were trained using a batch size 
of 10 in 40 epochs with Adam optimizer, cross-entropy loss 
function, and a learning rate of 0.01.

Reading sessions
The malignant (suggestion for biopsy) and benign 
(suggestion for follow-up) BLs were determined by 2 
radiologists with a 2-step reading session. The first step 
was based on conventional US images alone to make a 
biopsy or follow-up decision. The second step was to take 
DL results into account for the decision adjustment. We 
used the receiver operating characteristic (ROC) curve area 
under the curve (AUC) to determine the optimal cut-off. 
The Youden index was used to determine the best cut-off 
value. Therefore, if a BL was firstly assessed as benign and 
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Figure 1 Study sample selection process.
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received a DL model result higher than the cut-off value, 
then the benign BL would be re-classified as malignant (for 
biopsy). In other words, if a BL was defined as malignant in 
the first step reading session and received a DL model result 
lower than the cut-off value, then it would be re-classified 
as benign (for follow-up) (Figure 2).

Statistical analyses

The statistical analysis was performed using SPSS 25.0 
(IBM Corp., Armonk, NY, USA). We adopted the AUC to 
compare the diagnostic performance among radiologists 
and DL models, using Delong’s test. The agreement of 
2 different DL models was evaluated by using intraclass 
correlation coefficients (ICCs). We used the pathology 
report as the gold standard. A 2-sided P value <0.05 was 
considered indicative of significant differences. 

Results 

Characteristics of the enrolled data sample

The mean age of malignant patients and benign patients were 
57.48±12.31 and 57.83±13.11, respectively (P=0.688). Most 
benign BLs (70.7%) showed a size between 1.1 and 2.0 cm,  
whereas the most malignant BLs showed a size between 1.1 
and 3.0 cm (1.1–2.0 cm, 43.7%, and 2.1–3.0 cm, 27.8%) 
(P<0.001). Most malignant cases showed irregular shape 
(61.4%), absent with halo signs (70.5%), not circumscribed 

margin (93.4%), and hypoechoic (92.7%) (Table 1).

Comparison of the diagnostic performance and the 
unnecessary biopsy between the CNN model and radiologists

The VGG-19 achieved a better diagnostic performance 
in the training dataset in terms of AUC [0.939, 95% 
confidence interval (CI): 0.924–0.954], compared to VGG-
16 (0.919, 95% CI: 0.901–0.938) (ICC =0.559) (Figure 3).

Among the external dataset, VGG-19 also yielded the 
best diagnostic performance in terms of AUC (0.959, 
95% CI: 0.937–0.982), followed by VGG-16 (0.903, 
95% CI: 0.864–0.942), and radiologist (0.805, 95% CI: 
0.744–0.865) (Figure 4). Based on the results of DL 
models, we further adjusted radiologists’ interpretation 
of malignant and benign BLs. Both adjustments showed 
higher specificity (Radiologist + VGG-16: 92.73%, 
and Radiologist + VGG-19: 99.09%) and equivalent 
(Radiologist + VGG-16: 72.73%) or higher sensitivity 
(Radiologist + VGG-19: 83.64%) (Table 2). Figure 5 
summarizes 6 cases of this study.

The Youden index of VGG-16 model was 0.6455, 
which meant when a benign BL received a VGG-16 
result higher than 0.6238, then it would be re-evaluated 
as malignant and recommended for biopsy. The Youden 
index of VGG-19 model was 0.8364, which meant when 
a benign BL received a VGG-19 result higher than 
0.6669, then it would be re-evaluated as malignant and 
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VGG-16/VGG-19 

VGG-16/NGG-19 
result
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2 radiologists reviewed gray-scale breast ultrasound
images of each breast lesion

Malignant
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VGG-16/VGG-19
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(suggestion for biopsy)
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(suggestion for follow-up)

Malignant
(suggestion for biopsy)
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Figure 2 A 2-step reading session on making a biopsy or follow-up decision.
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Table 1 Gray-scale ultrasound features of malignant and benign 
breast lesions

Features Malignant (n=396) Benign (n=447) P value

Age, years 57.48±12.31 57.83±13.11 0.688

Size <0.001

>3 cm 62 (15.7) 16 (3.6)

2.1–3 cm 110 (27.8) 54 (12.1)

1.1–2.0 cm 173 (43.7) 316 (70.7)

≤1 cm 51 (12.9) 61 (13.6)

Shape <0.001

Oval 23 (5.8) 209 (46.8)

Round 21 (5.3) 31 (6.9)

Lobulated 109 (27.5) 127 (28.4)

Irregular 243 (61.4) 80 (17.9)

Margin <0.001

Circumscribed 26 (6.6) 205 (45.9)

Not 
circumscribed

370 (93.4) 242 (54.1)

Halo sign <0.001

Present 117 (29.5) 3 (0.7)

Absent 279 (70.5) 444 (99.3)

Echo patterns <0.001

Anechoic 0 (0.0) 0 (0.0)

Hypoechoic 367 (92.7) 376 (84.1)

Isoechoic 24 (6.1) 67 (15.0)

Hyperechoic 5 (1.3) 4 (0.9)

Data are shown as mean ± standard deviation or number (%).

VGG-16 AUC: 0.919 (95% CI: 0.901−0.938)

VGG-19 AUC: 0.939 (95% CI: 0.924−0.954)
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Figure 3 ROC curves and the AUCs of 2 deep learning models in 
the training dataset. AUC, area under the curve; CI, confidence 
interval; ROC, receiver operating characteristic.
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Figure 4 ROC curves and the AUCs of 2 deep learning models, 
radiologists, and radiologists with the assist of 2 deep learning 
models in the external dataset. AUC, area under the curve; ROC, 
receiver operating characteristic.

recommended for biopsy. Thus, with the aid of VGG-19 
result, the unnecessary biopsy [false positive/(true negative 
+ false positive)] was drastically decreased from 10.0% 
to 0.9%, whereas with the assist of VGG-16 results, the 
unnecessary biopsy rate was decreased to 8.2% (Table 3). 

Discussion

Our study revealed that the DL models yielded a 
satisfactory performance in classifying BC, with an AUC of 
0.919 (VGG-16 model) and 0.939 (VGG-19 model) for the 
validation dataset and an AUC of 0.903 (VGG-16 model) 
0.959 (VGG-19 model), a sensitivity of 72.73% (VGG-16 
model) and 85.45% (VGG-19 model), and a specificity of 
91.82% (VGG-16 model) and 98.18% (VGG-19 model) 
for the independent test dataset. In addition, our results 
show that DL models, especially, VGG-19 model, can 
significantly outperform than the radiologists in terms of 
diagnosing BC.

Compared to previous research that adopted CAD 
patterns to differentiate malignant and benign BLs (17), 
our DL models were designed to assist radiologist to 
determine which BL warrants biopsy. Wang et al. (17) used 
a commercially available software (S-Detect; Samsung 
Medison, Seoul, South Korea) to evaluate the added value 
of an artificial intelligence system adjunct to breast US 
regarding reducing unnecessary biopsies. The DL models 
presented superior performances in terms of specificity, 
offering a substantial decrease trend of unnecessary biopsy. 
The reduction of unnecessary biopsy would help to free the 
financial burden of the healthcare system to some extent as 
well as relief the financial cost and anxiety borne by patients. 
Their research results gave a positive answer. Wang et al. (17)  
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Table 2 Diagnostic performance comparison among deep learning models and radiologists

Diagnostic model AUC (95% CI) Sensitivity, % Specificity, % Accuracy, %

VGG-16 0.903 (0.864–0.942) 72.73 91.82 82.27

VGG-19 0.959 (0.937–0.982) 85.45 98.18 91.82

Radiologist 0.805 (0.744–0.865) 70.91 90.00 80.45

Radiologist + VGG-16 0.827 (0.771–0.875) 72.73 92.73 82.73

Radiologist + VGG-19 0.914 (0.871–0.957) 83.64 99.09 81.36

AUC, area under the curve.

A B C

D E F

Figure 5 Images of the 6 cases of this research. (A) A fibroadenoma of a 55-year-old female patient. All radiologists, the VGG-16 model, 
and VGG-19 model classified this as benign. (B) A fibroadenoma of a 42-year-old female patient. Radiologists and VGG-19 model classified 
this as benign, whereas VGG-16 classified as malignant. (C) A fibroadenoma of a 60-year-old female patient. Radiologists classified it as 
malignant, whereas the VGG-16 model and VGG-19 model classified it as benign. (D) An invasive ductal carcinoma of a 59-year-old female 
patient. All radiologists, the VGG-16 model, and VGG-19 model classified it as malignant. (E) An intraductal papillary carcinoma of a 
62-year-old female patient. Radiologists classified it as benign, whereas the VGG-16 model and VGG-19 model classified as malignant. (F) 
A medullary carcinoma of a 43-year-old female patient. All radiologists, the VGG-16 model, and VGG-19 model classified it as benign.

Table 3 Before and after correction of breast cancer determination based on deep learning algorithms

Amendment scheme
Benign (n=110) Malignant (n=110)

True negative False positive True positive False negative

Before correction 99 11 78 32

Corrected based on VGG-16 results 101 9 80 30

Corrected based on VGG-19 results 109 1 92 18
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introduced a 2-way stratification for downgrading BI-
RADS category 4a (biopsy) BLs to category 3 (follow-up). 
The biopsy rate for BI-RADS 4a BLs decreased from 100% 
to 67.4% (stratification A) and 37.2% (stratification B), with 
4.7% of malignancies missed. However, their limitation 
was obvious, including a small study sample (78 malignant 
BLs and 95 benign BLs). In addition, with the assistance of 
S-Detect, there was no improvement in terms of sensitivity. 
Zhao et al. (18) also investigated the unnecessary biopsy 
among 82 malignant and 113 benign BLs using S-Detect. 
The biopsy rate was decreased from 100% to 25%, 
16.2%, 26.9%, 17.9%, and 23.6%, respectively, with a 
low misdiagnosis rate (0%, 9.7%, 7.9%, 6.3%, and 4.8%, 
respectively). Although they compared the sensitivity and 
specificity among the CAD system and radiologists, their 
study sample was too small to provide a solid conclusion. 
Both studies adopted BI-RADS categories when assessing 
unnecessary biopsies as BI-RADS 4a BLs are recommended 
by BI-RADS guidelines to undertake biopsy (19). It was stated 
that BI-RADS 4a BLs present a malignant rate between 3% 
and 10% with a positive predictive value of 6% (20).

In terms of the comparison of diagnostic performance 
between radiologist (AUC: 0.805) and DL models, our 
results showed better diagnostic performance, with AUCs 
of 0.903 (VGG-16) and 0.959 (VGG-16). Our results 
were similar to those of the previous publications. Fujioka  
et al. (21) retrospectively analyzed 96 benign BLs and 144 
malignant BLs for training and 48 benign BLs and 72 
malignant BLs for testing to use DL with CNN to classify 
malignant and benign BLs based on ultrasound images. 
The CNN model achieved the best AUC (0.913), followed 
by 3 radiologists (0.728, 0.841, and 0.845, respectively). 
However, they did not further evaluate the added value 
of CNN model to radiologists’ interpretation. Romeo  
et al. (22) assessed the machine learning’s value in classifying 
non-cystic benign and malignant BLs. They enrolled 135 
BLs for training and 66 for external testing. Their results 
showed an improved accuracy (82%) and sensitivity (93%) 
of the machine learning model, compared to that of the 
radiologists (accuracy: 79.4%, sensitivity: 77.8%), but a 
lower specificity (57%, radiologist: 81%). There was an 
elevation of radiologist performance when adopting the 
machine learning technique (80.2%), but with no statistical 
significance (P=0.508). The machine learning model was 
based on feature extraction, including, among others, two-
dimensional (2D) shape, gray level co-occurrence matrix 
(GLCM), and gray level size zone matrix. Machine learning 
models, such as ANN, are data-driven. In other words, 

the quality of input data can affect the generated results to 
some extent. However, CNNs are powerful tools that can 
identify and extract their own radiomic features from input 
images. Thus, CNNs can link these features to the outcome 
for better results. That maybe one of the reasons why 
Romeo et al.’s (22) results were different from ours. When 
our radiologist adjusted their interpretation based on CNN 
results, both CNN models helped improving sensitivity, 
specificity, and accuracy rate. The initial development of a 
VGG network was to offer deeper networks with smaller 
filters for a better understanding of more complicated 
image features. Consequently, a growing number of medical 
data analysis adopted VGG networks as they can provide 
“blackbox” features.

Our study had some limitations. Benign BLs that have 
not received US-guided fine needle aspiration biopsy 
(FNAB) were excluded. In our practice, such BLs are 
commonly recommended for US follow-up. Thus, sampling 
bias was inevitable. Furthermore, the malignant rate 
(46.9%) was high in our training session. The malignant 
rate and benign rate were balanced in our external testing. 
These results conflicted with the real-world data, and 
would also bring result bias. Thirdly, we adopted a manual 
cropping of regions of interest (ROIs) that may also have 
affected the results since it is operator dependent. We 
will try automatic segmentation in our future research to 
overcome this issue. 

The application of DL patterns in breast US may 
improve the diagnostic performance of radiologists by 
offering a second opinion. Adding a DL-based model, 
especially VGG-19, could reduce unnecessary breast lesion 
biopsies and minimize the radiologists’ workload.
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