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Abstract

Background—Inbreeding can be associated with a modification in disease risk due to excess 

homozygosity of recessive alleles impacting a wide range of phenotypes. We estimated the 

inbreeding coefficient in Caribbean Hispanics and examined its effects on risk of late-onset 

Alzheimer's Disease (LOAD).
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Methods—The inbreeding coefficient was calculated in 3392 subjects (1451 LOAD patients and 

1941 age-matched healthy controls) of Caribbean Hispanic ancestry using 177,997 nearly 

independent SNPs from genome-wide array. The inbreeding coefficient was estimated using the 

excess homozygosity method with and without adjusting for admixture.

Results—The average inbreeding coefficient in the Caribbean Hispanics without accounting for 

admixture was F=0.018 (±0.048) suggesting a mating equivalent to second cousins or second 

cousins once removed. Adjusting for admixture from 3 parent populations, the average inbreeding 

was found to be 0.0034 (±0.019) or close to third cousin mating. Inbreeding coefficient was a 

significant predictor of AD when age, sex and APOE genotype was used as adjusting covariates 

(p=0.03).

Conclusions—The average inbreeding in this population is significantly higher than the general 

Caucasian populations in North America. The high rate of inbreeding resulting in increased 

frequency of recessive variants is advantageous for the identification of rare variants associated 

with LOAD.

Introduction

Inbreeding can lead to rare heritable illnesses conferred by homozygous recessive alleles. 

Reduced early survival of children from first cousin marriages and similar observations in 

other organisms emphasize the presence of an increased number of homozygous deleterious 

alleles in the genome
1,2. Inbreeding is highly prevalent across the world and differences in 

disease prevalence between populations can be partially attributed to extent of inbreeding
1,3.

Conservative estimates of prevalence of consanguineous marriages (defined as a union 

between individuals related as second cousins or closer) range between 1-10% among 2,811 

million people studied globally. 
3
 Previous studies have seen a strong association between 

extent of inbreeding and reproductive health as well as childhood mortality and rare 

Mendelian disorders
1,2,4,5. However a multi-population meta-analysis found only a moderate 

1.1% increase in the infant death rate of 1.1% in the progeny of first cousins
6
. Biological 

consequences of inbreeding are known to get worse with aging in non-human species
7,8. 

Studies examining the effects of inbreeding on late-onset complex diseases have found 

conflicting trends. Longer stretches of homozygosity have been observed in patients of 

breast, prostate, head and neck and colorectal cancer
9,10

 but these findings have not been 

consistently replicated
11-14

. A recent study examining the concordance of AD raised the 

possibility that as much as 90% of early-onset cases with AD are likely the result of 

autosomal recessive inheritance
15

. Multiple risk loci for AD
16

 were detected in a 

consanguineous Israeli-Arab community from WadiAra (Israel). Unaffected healthy controls 

were found to be more inbred than cases in the WadiAra population suggesting higher 

frequency of protective alleles as a result of inbreeding.
17

 In an autopsy-confirmed AD 

dataset comprised of subjects from the Saguenay region of Quebec (Canada) subjects with 

late-onset AD and having at least one APOE ε4 allele were observed to have higher levels of 

inbreeding (equivalent to first cousin genomic sharing) compared to healthy controls
18

. 

Recent studies have found the presence of long runs of homozygosity (ROHs) in Caribbean 

Hispanic LOAD patients compared to healthy controls
19

. In contrast, two ROH studies of 

outbred Caucasian populations did not yield any significant associations with LOAD
20,21

. In 
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current study we estimated the level of inbreeding in the Caribbean Hispanic families that 

are known to have higher rates of LOAD
22

; and investigated the association between 

inbreeding and risk of LOAD. Potential association between inbreeding and risk of LOAD 

may aid next-generation sequencing studies in mapping of disease-related genes.

Methods

Study Population

Study participants were identified from two source populations of Caribbean Hispanic 

ancestry. The two-parent studies include: the Washington Heights-Inwood Columbia Aging 

Project (WHICAP)
23

 and the Estudio Familiar Influencia Genetica en Alzheimer (EFIGA) 

family study
24

 . The WHICAP study is a longitudinal cohort study that has examined a 

multi-ethnic cohort of elderly residing in northern Manhattan, New York. We recruited 

Medicare recipients who were at least 65 years of age, without dementia, and lived in three 

contiguous ZIP codes in northern New York City. The EFIGA study is a family-based study 

comprising Dominican families with multiple persons affected with LOAD and a case-

control study that included unrelated patients with LOAD and similarly aged unaffected and 

unrelated controls. Study participants were recruited from multiple sources including clinics 

in the Dominican Republic, as well as the Alzheimer's Disease Research Center Memory 

Disorders Clinic at Columbia University in New York City. To augment family recruitment, 

we advertised in local newspapers and media in Dominican Republic and New York. In 

addition, we recruited probands from the WHICAP study when the informant reported 

family members with dementia. Families were recruited as follows: once probands were 

identified, structured family history interviews were conducted to determine whether 

siblings and more distant relatives were affected with dementia. When probands had AD and 

also had other family members with dementia, we interviewed and neurologically evaluated 

all siblings and more relatives. We assessed and corrected for cryptic relatedness by using 

genetic markers. The Caribbean Hispanic case-control study complements the EFIGA study 

in that the sampling frame was the same as the EFIGA study; however, recruitment was 

restricted to affected and unaffected persons who were unrelated and did not have family 

history of dementia. For these participants, we performed the same extensive medical, 

neurological, and neuropsychological evaluations at each visit. Clinical diagnoses were 

made in a consensus diagnostic conference by a panel of neurologists, neuropsychologists 

and psychiatrists. The presence of LOAD was assessed based on NINCDSADRDA 

criteria
25

. Additional demographic and epidemiological information was available for all 

genotyped individuals. For estimating inbreeding in Caribbean Hispanics in this study, we 

selected age-matched unrelated cases and controls from the WHICAP and the EFIGA 

studies and one case per family from the EFIGA study.

Genotyping

Previously, a HumanOmni-650Y SNP chip was used for genome wide association study 

(GWAS) of 1,094 Caribbean Hispanics
26

. This study consisted primarily of samples from 

whole blood with 0.16% samples from saliva. Blood samples were extracted using the 

Qiagen method and saliva samples were extracted using the Oragene method. Samples were 

genotyped in batches corresponding to 96-well plates. Each plate contained one or two 
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HapMap controls, as well as an average of two study sample duplicates. The DNA samples 

were genotyped at the Center for Inherited Disease Research (CIDR) using the Illumina 

HumanOmni1-Quad Quad v1 0 H array (http://www.illumina.org) and using the calling 

algorithms GenomeStudio version 2011.1, Genotyping Module 1.9.4 and GenTrain version 

1.0. The genome build is 37/hg19. We combined the previously published GWAS data with 

the samples genotyped on Illumina HumanOmni1-Quad chip to create a large dataset for 

estimating the degree of inbreeding in the Caribbean Hispanic population.

GWAS Quality Control

We used the QA/QC described by Laurie et al
27

 to ensure consistency of the data. We 

excluded from the analyses the samples missing 2% of the SNPs from the GWAS panel and 

SNPs with genotype missingness rate of 5% or SNPs with minor allele frequency <0.05.

Statistical Analyses

: We pruned the genome-wide SNP data based on linkage disequilibrium (LD) to retain 

177,997 tagging SNPs from GWAS data at pairwise r2<0.3 using PLINK
28

. We estimated 

the inbreeding coefficient in the sample set using the GCTA software 
29

. GCTA gives two 

estimates for the relationship between haplotypes within an individual: one based on the 

variance of additive genetic values (diagonal of the SNP-derived GRM) and the other based 

on SNP homozygosity (implemented in PLINK)
28

. Here we report the second measure of 

inbreeding (the two metrics on average gave similar results). In the context of inferring 

relatedness in GWAS with population structure, relatedness-estimation methods that assume 

population homogeneity can give extremely biased estimates. We used the Relatedness 

Estimation in Admixed Populations (REAP) software
30

 to estimate the average inbreeding 

in the Caribbean Hispanic population by adjusting for their admixed ancestry. REAP takes 

as input the proportion of parental populations for each sample and estimates autosomal 

kinship coefficients and identity-by-descent (IBD) sharing probabilities using SNP genotype 

data in samples with admixed ancestry. We estimated proportion of ancestry from each 

parental population using ADMIXTURE software
31

 by assuming that the admixture in the 

Caribbean Hispanics is conferred by 2, 3, 4 and 5 parent populations. . This software 

provided a maximum likelihood estimation of individual ancestries from multi-locus SNP 

genotype datasets. We then used the estimates of parental population proportions and allele 

frequencies for each sample as input to the REAP software to compute admixture adjusted 

inbreeding coefficients.

Results

The average inbreeding coefficient in the Caribbean Hispanics without accounting for 

admixture (computed using GCTA software) was 0.018 (±0.048) suggesting significant 

inbreeding. 1372 (40.4%) out of the 3392 subjects had an inbreeding coefficient greater than 

0.02 (Supplementary Figure 1). We computed the inbreeding coefficient accounting for 

admixture conferred to Caribbean Hispanics from 2, 3, 4 and 5 parent populations 

(Supplementary Figure 2). Traditional methods assume homogeneity of population which 

can significantly inflate inbreeding estimates. By using REAP, we adjust for sub-population 

frequencies at sites to calculated admixture-adjusted inbreeding coefficients. It can be 
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argued that Caribbean Hispanics are derived from Caucasians, Africans, Asians and 

American Indian ancestries and exact number of parental populations is unknown. Hence we 

used 3 to 5 ancestral populations as input to adjust for admixture in the Caribbean Hispanics 

(Supplementary Table 1). Adjusting for admixture the average inbreeding coefficient 

decreased ranging from 0.0034 (±0.019) for 3 parent populations to 0.002 (±0.018) for 5 

parent populations. 329 out 3392 samples (9.7%) were highly inbred with an inbreeding 

coefficient F>0.02 assuming admixture from 3 parent populations. Supplementary Figure 3 

shows the admixture in the Caribbean Hispanics originating from Caucasian, African and 

Asian ancestry. We used the admixture-adjusted inbreeding coefficient values for samples 

obtained from REAP software in subsequent analyses. 47.4% of the samples in the dataset 

have a predominantly Caucasian ancestry (Supplementary Figure 3). The mean inbreeding 

coefficient was highest among those of Caucasian ancestry (F=0.0066; equivalent to second 

cousin once removed mating), followed by those with African ancestry (F=0.0014) (Table 

2). Supplementary Figure 4 shows the overall distribution of the inbreeding coefficients in 

the samples by computed ancestry. Samples with African ancestry were less inbred than 

individuals having a significant proportion of the other two ancestries. Among those of 

Caucasian ancestry 14% had a high inbreeding coefficient of >0.02 compared to 4.8% for 

individuals of Asian and 4.8% individuals of African ancestry.

We then tested the association of the inbreeding with age LOAD status and age at onset of 

the disease using logistic and linear regression models wherever suitable (Table 3). For each 

sample we used the proportion ancestry from Asian and African parent population 

(Caucasian ancestry was the reference value) as covariates. Age was weakly inversely 

correlated with the inbreeding coefficient but not statistically significant.

Inbreeding was a significant predictor of LOAD adjusted for age and sex and population 

covariates (p=0.034) (Table 3). The presence or absence of the APOE ε4 allele when used as 

a covariate in the model strengthens the association of inbreeding coefficient with LOAD 

(p=0.03). This could possibly imply that of the level of inbreeding is correlated with APOE 

ε4 status and the residual effect of inbreeding level on LOAD risk after adjusting for APOE 

genotype could be attributable to other recessive loci. To test the relationship of APOE with 

inbreeding and its association with AD, we regressed inbreeding coefficient on APOE ε4 

status on cases and controls separately. Inbreeding is associated with number of ε4 alleles in 

unaffected subjects (Supplementary Table 2) but not in affected subjects. Also the direction 

of effect was in the opposite direction in cases vs controls. Alternatively, extent of 

inbreeding tended to increase the ε4 copies in cases but decrease ε4 in controls. This 

prompted us to test an interaction model between APOE and inbreeding with LOAD status. 

We found significant association between the interaction term of inbreeding and APOE with 

LOAD status (p=4.04e-03).

Higher inbreeding was associated with an increased risk of LOAD, which is consistent with 

findings in other complex diseases including Coronary Heart Disease, Stroke, Cancer, 

Depression, Asthma, Type-2 diabetes and Gout 
32

. Contrary to the study in other complex 

diseases, inbreeding, doesn't significantly affect the age at onset of the LOAD but tendency 

for lower age at onset was observed with increased inbreeding in the dataset (Table 3 and 4).
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DISCUSSION

Our findings of the extent of inbreeding in Caribbean Hispanics were consistent with 

previous reports in this population
19

. Accounting for admixture we show that the true extent 

of inbreeding is less than second cousin mating but greater than outbred populations where 

consanguineous marriages occur at a low frequency. Range of inbreeding rates in Canada 

(Roman Catholics) is 0.00004-0.00007, in the US (Roman Catholics) it is 0-0.0008, in Latin 

America it is 0-0.003, in southern Europe 0.001-0.002, and in Japan approximately 0.005
33

. 

Compared to the Samaritans (F=0.04), a 3000 year old genetic-isolate population comprising 

of only 500 people, the observed inbreeding in Caribbean Hispanics is at an intermediate 

level
34

. Despite the higher risk that inbreeding might confer in complex late onset traits
7,8, it 

has not been well studied in LOAD. In this study we demonstrate a statistically significant 

association of the extent of inbreeding on conferring AD risk. This is consistent with the 

hypothesis that a significant proportion of risk in complex diseases such as LOAD could be 

mediated through multiple causal recessive loci resulting from increased homozygosity in 

inbred subjects. This is also consistent with our earlier finding of larger and higher number 

of runs of homozygosity (ROH) in LOAD patients (n=559) vs. controls (n=554)
19

 from the 

same population. In the Caribbean Hispanic population, the authors detected an association 

between LOAD and a larger genome-wide mean ROH size (P = .0039), which was stronger 

with familial LOAD (P = .0005); while studies of Caucasian datasets have not reported an 

increased burden of ROH in AD
20,35

. A likely explanation is that the significant inbreeding 

in the Caribbean Hispanics as detailed in this report increases the likelihood of recessive of 

alleles in affected subjects resulting in longer and higher number of ROH in the genome. 

Interestingly, the authors also noted that total ROH size was twice as long in the European 

Hispanic subset vs. the African Hispanic subset which is corroborated by our observation of 

a higher inbreeding coefficient in the Caucasian subset of the data (Table 2). The higher 

inbreeding in the Caucasians is likely to render larger regions in the genome homozygous 

compared to the African subset of this population.

The high degree of inbreeding and presence of long stretches of ROH combined with higher 

frequency of AD in the Caribbean Hispanic population compared to Caucasians
36

 suggests 

that there may be one or more recessive loci mediating AD risk in this population. Low-

frequency mutations are hypothesized to confer greater risk for disease than common 

variants by collectively accounting for substantial fractions of a common disease 

heritability
37

. Inbred populations with few founders such as the Caribbean Hispanics share 

large chromosomal segments recurring among relatives and otherwise rare alleles can be 

observed repeatedly in multiple individuals. This reduces false positive findings due to 

sequencing errors that can be difficult to identify in isolated cases from outbred populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Demographic Information

Characteristics Caribbean Hispanic (n = 3392)

Age, year, mean (SD) 75.75 (9.41)

Education, year, mean (SD) 6.4 (4.99)

Women, % 68%

Cases (%) 1532 (45.4)
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Table 2

Inbreeding Coefficient by ancestry of the samples. Samples are classified as Asian, Caucasian or African if 

they showed >60% admixture from the parent population (the differences between unaffecteds and affecteds 

were not statistically significant in any of the three ethnic groups).

N Unaffected Affected Mean Inbreeding 
Coefficient in all samples

Mean Inbreeding 
Coefficient in unaffecteds

Mean Inbreeding 
Coefficient in affecteds

ASIAN 41 30 11 −0.0134 −0.0146 −0.0100

BLACK 356 153 202 0.0014 0.0018 0.0011

CAU 1520 672 847 0.0066 0.0062 0.0069

MIXED 1375 623 745 0.0005 0.0001 0.0007
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Table 3

Association of Inbreeding with age

TEST BETA SE Z P

AGE (in unaffecteds greater than 60 years) ~ F −24.17 12.86 −1.88 6.05E-02

AGE AT ONSET (in cases) ~ F −15.13 9.43 −1.6 1.09E-01

AGE AT ONSET ~ F + SEX + APOE (0,1,2) −12.28 9.24 −1.33 1.84E-01

Effects of Inbreeding on age in unaffected subjects and age at onset in affected LOAD cases were tested using a linear regression model
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Table 4

Association of Inbreeding with LOAD status

TEST BETA SE Z P

LOAD ~ F 3.88 2 1.95 5.17E-02

LOAD ~ F + AGE + SEX 4.25 2.01 2.11 3.44E-02

LOAD ~ F + AGE + SEX + APOE (0,1,2) 4.39 2.02 2.17 3.02E-02

Effects of Inbreeding on LOAD were tested using a logistic regression framework.

All tests in table 3A and 3B are adjusted for covariates measuring proportion of ancestral population (Caucasians, Asians, Africans). Proportion of 
Caucasian ancestry was used as the base and two variables were used for to specify proportion of Asian and African ancestry.

F= Inbreeding Coefficient in Tables 3 and 4
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