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ABSTRACT

We have achieved recognition of all 4 bp by triple helix
formation at physiological pH, using triplex-forming
oligonucleotides that contain four different synthetic
nucleotides. BAU [20-aminoethoxy-5-(3-aminoprop-1-
ynyl)uridine] recognizes AT base pairs with high affin-
ity, MeP (3-methyl-2 aminopyridine) binds to GC at
higher pHs than cytosine, while APP (6-(3-aminopro-
pyl)-7-methyl-3H-pyrrolo[2,3-d]pyrimidin-2(7H)-one)
and S [N-(4-(3-acetamidophenyl)thiazol-2-yl-aceta-
mide)] bind to CG and TA base pairs, respectively.
Fluorescence melting and DNase I footprinting dem-
onstrate successful triplex formation at a 19mer oli-
gopurine sequence that contains two CG and two TA
interruptions. The complexes are pH dependent, but
are still stable at pH 7.0. BAU, MeP and APP retain con-
siderable selectivity, and single base pair changes
opposite these residues cause a large reduction in
affinity. In contrast, S is less selective and tolerates
CG pairs as well as TA.

INTRODUCTION

Triplex-forming oligonucleotides (TFOs) are sequence-
specific DNA-binding agents that can be exploited for the
recognition of unique DNA sequences (1–4), and several recent
reports have emphasized their therapeutic potential (5–8).
These oligonucleotides bind in the major groove of double-
stranded DNA, forming hydrogen bonds with exposed groups
on the base pairs, generating a three-stranded structure.
Pyrimidine-rich oligonucleotides bind parallel to the purine
strand of the target duplex, forming T.AT and C+.GC triplets
(the notation X.ZY refers to a triplet, in which the third strand
base X interacts with the duplex ZY base pair, forming

hydrogen bonds to base Z). Recognition of pyrimidine residues
is much harder to achieve as C and T have only one H-bond
donor or acceptor site available for binding in the major groove.
Recognition of the T of a TA base pair is also hampered by
steric clash of the 5-methyl group. Therefore, there are cur-
rently several major limitations to this approach: (i) there are no
stable means for recognizing TA or CG base pairs (pyrimidine
inversions) using natural DNA bases; (ii) formation of the
C+.GC triplet requires conditions of low pH (<6.0), necessary
for protonation of the third strand cytosine; (iii) the binding of
the third strand may not be strong, due to electrostatic repulsion
between the three polyanionic DNA strands. Therefore, there
is a need for combinations of nucleoside analogues that can
overcome all these limitations (2,9,10).

A wide variety of approaches have been employed to over-
come each of these problems. The pH dependency of the
C+.GC triplet has been partially alleviated by using more
basic analogues of cytosine or by using non-protonated cyto-
sine mimics (11–21). Some success has also come from the
attachment of charged moieties at the N4-position of cytosine
(22,23). The recognition of pyrimidine inversions is much
harder to achieve, as these bases offer only the formation
of a single hydrogen bond within the major groove. The
best combinations for recognizing TA and CG using natural
bases are G.TA and T.CG (24,25), though these are much less
stable than T.AT and C+.GC and multiple inversions are
strongly destabilizing (26). Analogues designed to form addi-
tional unconventional hydrogen bonds and/or target substitu-
ents on both partners of the base pair have been synthesized
(27–30), often providing most benefit when incorporated
alongside sugar and/or backbone modifications (31–35). An
alternative less selective approach has been to use base
analogues or linkers that skip or intercalate at such inversions
(36–38). Attempts to increase the strength of binding of TFOs
have included the addition of positively charged groups
(39–42), increasing the base stacking (43,44) or changing
the phosphodiester backbone (2).
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Despite the substantial efforts in the synthesis and prepara-
tion of these analogues, there are very few examples in which
they have been combined to achieve high binding affinity to
mixed sequence duplex DNA targets at physiological pHs. We
have, therefore, examined the ability of a TFO containing four
different modified nucleosides (BAU, MeP, APP and S; see
Figure 1A) to selectively target a mixed sequence at physio-
logical pHs. BAU forms a very stable triplet with AT (41,42);
MeP has a pKa that is higher than cytosine and targets GC base
pairs at higher pHs (14–16); S has been proposed for recog-
nizing TA inversions (30,45), while APP recognizes CG (46).

MATERIALS AND METHODS

Oligonucleotides

All oligonucleotides were synthesized on an Applied Biosys-
tems ABI 394 automated DNA/RNA synthesizer on the 0.2
or 1 mM scale using the standard cycles of acid-catalysed
detritylation, coupling, capping and iodine oxidation proced-
ures. Phosphoramidite monomers and other reagents were
purchased from Applied Biosystems or Link Technologies.
Phosphoramidites for BAU (41,42), MeP (16), S (30) and
APP (46) were prepared as described previously. The depro-
tected oligonucleotides were purified by reversed-phase high-
performance liquid chromatography on a Brownlee Aquapore

column (C8) using a gradient of acetonitrile in 0.1 M
ammonium acetate.

The sequences of the oligonucleotides used in this work are
shown in Figure 1B. For the fluorescence melting experiments,
the purine-containing strand of the duplex was labelled at the
50 end with 6-amidohexylfluorescein (6-FAM phosphoramid-
ite, Link Technologies), and the third strand was labelled at the
50 end with methyl red serinol. The same third strand oligo-
nucleotide was used for the footprinting experiments.

Fluorescence melting studies

The thermal melting temperature of the triplexes was determ-
ined using the fluorescence melting technique that we have
developed previously (47) and have used for assessing the
stability of triplexes that contain modified nucleotides
(41,42,45,46). The third strand oligonucleotide is labelled at
the 50 end with a quencher (methyl red), while the 50 end of the
purine-rich strand of the duplex is labelled with a fluorescent
group (fluorescein). These are in close proximity when the
triplex is formed and the fluorescence is quenched. When
the triplex melts these groups become separated and there
is a large increase in fluorescence. In this manner, the disso-
ciation of the third strand is observed directly, without inter-
ference from dissociation of the duplex. By placing the
quencher on the third strand, the TFO can be added in excess,
thereby facilitating triplex formation, without increasing the

A

B

TFO-2 5’-Q-TCTTTGTTCTCTTGCTCTT
TFO-1 5’-Q-BMBPBSBTMTMPTSMTMBT
Duplex 1 5’-F-AGACATAAGAGCATGAGAA

 3’-TCTGTATTCTCGTACTCTT

Oligo-1 3’-Q-TCTGTATTCTCGTACTCTT
Oligo-2 3’-F-AGACATAAGAGCATGAGAA
Oligo-3 3’-F-AAGAGTACGAGAATACAGA

Duplex 2 5’-F-AGACA1AAGAGCATGAGAA
 3’-TCTGT2TTCTCGTACTCTT

Duplex 3 5’-F-AGACAT3AGAGCATGAGAA
 3’-TCTGTA4TCTCGTACTCTT

Duplex 4 5’-F-AGACATAA5AGCATGAGAA
 3’-TCTGTATT6TCGTACTCTT

Duplex 5 5’-F-AGACATAAGAG7ATGAGAA
 3’-TCTGTATTCTC8TACTCTT

Figure 1. (A) Chemical structure of the four base triplets employed in this work. (B) Sequences of the oligonucleotides used in the fluorescence melting experiments.
The duplexes are boxed and are labelled with fluorescein (F) at the 50 end of the purine strand, whereas the TFOs are labelled with methyl red serinol (Q) at the 50 end.
Oligo 1 was used to estimate the melting temperature of duplex, whereas oligos 2 and 3 were used to verify the orientation of TFO binding. Duplexes 2–5 are identical
to duplex 1, except that single base pair changes are introduced at different positions, opposite one of the modified third strand bases; positions 1.2, 3.4, 5.6 and 7.8
correspond to each base pair (A.T, T.A, G.C and C.G) in turn.
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total fluorescence signal. These experiments are performed in
the Roche LightCycler, which permits the determination of up
to 32 melting profiles in parallel.

The triplexes were prepared in either 50 mM sodium acetate
buffer (pH 5.0, 5.5 or 6.0) or 50 mM sodium phosphate (pH 6.5,
7.0 and 7.5) containing 200 mM NaCl. Melting experiments
were performed in a total volume of 20 ml and contained
0.25 mM duplex and 3 mM third strand. These complexes
were first denatured by rapidly heating to 95�C and left to
equilibrate for 10 min. The complexes were then cooled to
30�C at a rate of 0.2�C/min by decreasing the temperature in
1�C steps, leaving the samples to equilibrate for 5 min before
each fluorescence reading. After 10 min, the complexes were
then heated again to 95�C at 0.2�C/min in the same manner.
Recordings were taken during both the heating and cooling
steps to check for hysteresis and no significant hysteresis was
observed. The LightCycler has one excitation source (488 nm)
and the changes in fluorescence emission were measured at
520 nm. Tm values were determined from the first derivatives
of the melting profiles using the Roche LightCycler software.
Each value was recorded in triplicate and usually differed by
<0.5�C.

DNase I footprinting

DNA fragments for the footprinting experiments were pre-
pared by cloning synthetic oligonucleotides into the BamHI
site of pUC19. These contained the same target sites as used
for the fluorescence melting studies. Radiolabelled fragments
were produced by digesting each plasmid with EcoRI and
HindIII and labelling at the 30 end of the EcoRI site using
reverse transcriptase and [a-32P]dATP. Each fragment was
separated from the remainder of the plasmid DNA on an
8% (w/v) non-denaturing polyacrylamide gel. After elution,
the fragment was dissolved in 10 mM Tris–HCl (pH 7.5)
containing 0.1 mM EDTA to give �10 c.p.s./ml as determined
on a hand held Geiger counter (<10 nM).

DNase I footprinting was performed by mixing radiola-
belled DNA (1.5 ml) with the TFO (3 ml) dissolved in the
appropriate buffer. Experiments at pH 5.0 were performed
in 50 mM sodium acetate, at pH 6.0 in 10 mM PIPES con-
taining 50 mM NaCl and at pH 7.0 in 10 mM Tris–HCl con-
taining 50 mM NaCl. The final oligonucleotide concentrations
varied between 0.03 and 30 mM. The complexes were left to
equilibrate at 20�C overnight. DNase I digestion was carried
out by adding 2 ml of DNase I (typically 0.01 U/ml) dissolved
in 20 mM NaCl containing 2 mM MgCl2 and 2 mM MnCl2.
The reaction was stopped after 1 min by adding 4 ml of 80%
formamide containing 10 mM EDTA, 10 mM NaOH and 0.1%
(w/v) bromophenol blue. The products of digestion were sep-
arated on 12% polyacrylamide gels containing 8 M urea. Sam-
ples were heated to 100�C for 3 min, before rapidly cooling on
ice and loading onto the gel. Polyacrylamide gels (40 cm long
and 0.3 mm thick) were run at 1500 V for �2 h and then fixed
in 10% (v/v) acetic acid. These were transferred to Whatman
3MM paper and dried under vacuum at 86�C for 1 h. The dried
gels were subjected to phosphorimaging using a Molecular
Dynamics Storm PhosphorImager.

The intensity of bands within each footprint was estimated
using ImageQuant software. These intensities were then nor-
malized relative to a band in the digest, which is not part of the

triplex target site and which was not affected by the addition of
the oligonucleotides. Footprinting plots (48) were constructed
from these data and fitted using simple binding curves using
Sigmaplot for Windows. C50 values, indicating the TFO con-
centration that reduces the band intensity by 50%, were then
calculated from these.

RESULTS

Duplex 1 (Figure 1) contains an oligopurine.oligopyrimidine
tract that is interrupted by two CG and two TA base pairs.
TFO-1 was designed to form a specific triplex with this target
generating BAU.AT, MeP.GC, S.TA and APP.CG triplets as
well as the conventional T.AT triplet. In contrast, TFO-2 is
designed to recognize this target generating the best triplets
using only natural DNA bases (T.AT, C.GC. G.TA and T.CG).
The interaction of these oligonucleotides with this target site,
and several others that differ by single base pair substitutions,
was analysed by fluorescence melting and DNase I footprint-
ing experiments.

Fluorescence melting studies

Representative melting profiles showing the interaction of
TFO-1 with duplex 1 are shown in Figure 2. In these experi-
ments, the fluorophore and quencher are in close proximity
when the triplex is formed and the fluorescence is quenched.
On increasing the temperature, the strands separate and there
is a large increase in fluorescence. The melting profiles clearly
demonstrate successful triplex formation with Tm values
>60�C at low pHs. As expected, the Tm is pH dependent,
due to the presence of the MeP.GC triplet; there is no difference
in Tm between pH 5.0 and 6.0, though Tm decreases at higher

Figure 2. Fluorescence melting curves for the interaction of TFO-1 with duplex
1 at different pHs. Open squares, pH 7.5; open circles, pH 7.0; filled triangles,
pH 6.5; filled squares, pH 6.0; filled circles, pH 5.5, open triangles, pH 5.0. In
each case, the duplex concentration was 0.25mM and the third strand was 3 mM.
All oligonucleotides were prepared in an appropriate buffer containing 200 mM
NaCl. The y-axis shows the normalized fluorescence (arbitrary units), whereas
the x-axis shows the temperature (�C). The samples were heated at a rate of
0.2�C/min. The apparent relative fluorescence for the triplex is higher at pH 7.0
and 7.5 as the affinity of the third strand is weaker and there is a significant
amount of unbound fluorescent duplex in the equilibrium.
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pHs, presumably because the pKa of MeP is between 6 and 7 in
this system. In contrast, TFO-2, which only contains natural
nucleotides, failed to generate a stable triplex, even at pH 5.0.
The Tm values, calculated from the first derivatives of these
profiles, are highlighted in Table 1. There was no hysteresis
between the heating and melting curves at this rate of heating
and cooling (0.2�C/min), though significant hysteresis was
observed at faster rates of temperature change (0.1�C/s). This
is consistent with the known slow rates of triplex formation.
Stable triplex formation normally requires the addition of
divalent metal ions to screen the charge interaction between
the three polyanionic backbones. This was not required for the
formation of these triplexes, presumably due to the presence of
multiple positive charges within the TFO on the BAU residues.

The data clearly show that TFO-1 forms a stable triplex at
pH 7 with this mixed sequence duplex target containing four
pyrimidine inversions and four GC base pairs. This compares
with the unmodified TFO-2, where triplex formation is not
observed even at pH 5. Although formation of the triplex with
TFO-1 is still pH dependent, the complex is stable under
physiological conditions. The stability of the underlying
duplex was assessed by similar melting experiments replacing
the unlabelled pyridine-rich strand of duplex 1 with oligo 1
(bearing a 30-methyl red) and showed Tm values between 58.5
and 62.5�C, depending on the pH, and between pH 5 and 6 the
triplex formed with TFO-1 is more stable than the duplex
alone.

Several other oligonucleotides were also prepared, with
appropriately positioned fluorophores and quenchers, to ensure

that parallel triplex formation was being observed. Addition of
TFO-1 to the purine strand of the duplex, which could theor-
etically generate a parallel Hoogsteen duplex, failed to show
the formation of a complex. The formation of an antiparallel
duplex was assessed by combining TFO-1 with oligo-2 and
this also showed no complex formation. Finally, oligo-3 cor-
responds to the opposite orientation of the purine strand of the
duplex, and this showed no interaction with TFO-1.

The sequence specificity of triplex formation was examined
by determining the melting profiles of TFO-1 with a further
12 duplexes, each of which differed from duplex 1 by a single
base pair opposite one of the modified nucleotides. Duplexes
2, 3, 4 and 5 were used to assess the selectivity of S, BAU, MeP
and APP, respectively, in the context of this sequence. Each
duplex, therefore, generated a single triplet X.YZ, where X is
BAU, MeP, S or APP, and YZ is each base pair in turn. The
fluorescent melting profiles of these complexes at pH 7.0 are
shown in Figure 3, and Tm values, together with those determ-
ined at other pHs, are shown in Table 1. It can be seen that the
sequence specificity of BAU is maintained over the entire pH
range, and each single base pair mismatch decreased the Tm

by at least 10�C, an effect that was greater at higher pHs.
A similar effect is seen with MeP, which shows at least a
15�C decrease in Tm for each of the triplet mismatches.
APP always forms the most stable triplexes with CG, but its
selectivity for the other 3 bp depends on the pH. At low pH, the
next highest Tm (to GC) is 13�C lower showing a high level of
discrimination. At higher pH, the selectivity is retained but
the next best base pair is TA. The monomers BAU, MeP and
APP therefore retain exquisite sequence selectivity and the
stability of these 19mer triplexes decreases by �15�C for
single mismatches.

In contrast, nucleotide S exhibits a much lower level of
selectivity; at low pH, it recognizes CG with a greater affinity
than TA, and there is only a few degrees difference between
the best and the worst complexes. The discrimination increases
at higher pH and at pH 7.0 it produces higher Tms with TA and
CG than with GC and AT. We have previously shown that the
selectivity of S is pH dependent and have suggested alternative
hydrogen bonding arrangements for the protonated form (45).

DNase I footprinting

The affinity and selectivity of these modified oligonucleotides
was further assessed by DNase I footprinting, using DNA
fragments that contain similar target sites. For these experi-
ments the same oligonucleotides were used as in the fluores-
cence melting studies, because we find that addition of the
terminal methyl red does not significantly affect their binding
(D.A. Rusling and V.E.C. Powers, unpublished data). The
interaction of TFO-1 and TFO-2 with the perfect match target
site is shown in Figure 4. It can be seen that TFO-2, which
contains only natural nucleotides, does not affect the cleavage
pattern, even at the highest concentration (30 mM) at pH 5.0.
In contrast, clear footprints are evident with TFO-1 at the
intended target site. At pH 5.0, the footprint persists to con-
centrations <10 nM and, although higher oligonucleotide con-
centrations are required at elevated pHs, a footprint is still
evident at micromolar concentrations even at pH 7.0. C50

values derived from these data, indicating the oligonucleotide
concentration that reduces the band intensity at the target site

Table 1. Tm values of different triplet combinations determined by fluores-

cence melting

X = BAU MeP APP S

pH 5.0 X.AT 63.5 43.9 48.3 61.5
X.TA 53.6 49.8 48.4 63.5

X.GC 53.3 63.5 50.8 60.4
X.CG 53.6 47.2 63.5 66.5

pH 5.5 X.AT 63.9 43.7 48.1 62.0
X.TA 52.8 49.5 48.3 63.9

X.GC 53.0 63.9 48.1 60.6
X.CG 51.5 46.3 63.9 66.4

pH 6.0 X.AT 62.4 40.4 45.7 60.5
X.TA 50.7 47.0 46.4 62.4

X.GC 49.0 62.4 45.3 57.7
X.CG 48.0 44.5 62.4 64.5

pH 6.5 X.AT 58.2 n.d. 38.8 54.1
X.TA 42.9 39.1 40.4 58.2

X.GC 42.6 58.2 37.3 50.3
X.CG 40.2 37.7 58.2 59.6

pH 7.0 X.AT 48.8 n.d. n.d. 43.2
X.TA n.d. n.d. n.d. 48.8

X.GC n.d. 48.8 n.d. 39.7
X.CG n.d. n.d. 48.8 49.8

pH 7.5 X.AT 37.4 n.d. n.d. n.d.
X.TA n.d. n.d. n.d. 37.4

X.GC n.d. 37.4 n.d. n.d.
X.CG n.d. n.d. 37.4 37.8

The values in bold correspond to those for TFO-1 at its intended target (employ-
ing BAU.AT, MeP.GC, APP.CG and S.TA triplets). For all the other cases, 1 bp in
the target was changed opposite one of the modified bases, as shown in Figure 1
using duplexes 2–5 (1.2 opposite S, duplex 2; 3.4 opposite BAU, duplex 3; 5.6
opposite MeP, duplex 4; 7.8 opposite APP, duplex 5). n.d. indicates that no
melting transition was detected (Tm < 30�C). Each value is the average of
three determinations, which usually differed by <0.5�C.
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by 50%, are summarized in Table 2. As with fluorescence
melting studies, divalent metal ions were not required for
binding, though these are present for a short while during
the DNase I digestion.

In order to study the selectivity of triplex formation, we
prepared four further footprinting substrates, which contained
single base pair substitutions opposite one of the novel nuc-
leotides, generating S.AT, BAU.TA, MeP.TA and APP.TA tri-
plets in turn. The results of these experiments at pH 5.0 and 7.0
are shown in Figure 5, and the C50 values, together with those
obtained at pH 6.0, are summarized in Table 2. In each case,
with the exception of the complex containing the S.AT triplet
at pH 5.0, it can be seen that the mismatch reduces the bind-
ing affinity, requiring higher oligonucleotide concentrations to
generate a footprint. The selectivity is less pronounced at the
lower pH (pH 5–6), though at pH 7.0 the single base pair
changes opposite BAU, MeP and APP abolished the footprint.
An unusual effect is seen with the combination generating an
APP.TA triplet at low pH, for which a partial footprint is
evident, covering only the upper part of the target. These
results, together with fluorescence melting studies, demon-
strate that triplex formation can be achieved at this mixed

sequence target site at pH 7.0, and that BAU, MeP and
APP are highly selective. S permits stable triplex formation
at TA inversions but shows much less discrimination between
the 4 bp.

DISCUSSION

The formation of stable triple helices at mixed sequence target
sites, at physiological pH is a major challenge for the general
use of the antigene triplex strategy. There have been many
studies investigating the effects of single nucleotides on triplex
stability, each addressing one or other aspects of the problem
(pH dependency, affinity and recognition of pyrimidined
inversions). We and others have previously demonstrated
that BAU (39,40), MeP (14–16), S (30,45) and APP (46) are
able to form stable triplets at AT, GC, TA and CG, respect-
ively. The results presented in this paper are one of the few
examples in which several different synthetic nucleotides have
been incorporated within a single TFO. These studies suggest
that, by incorporating these modified nucleotides in a single a
TFO, it is possible to form stable triplexes at a mixed sequence
duplex targets that contain four pyrimidine inversions at

Figure 3. Fluorescence melting curves showing the interaction of TFO-1 with duplexes that differ by a single base pair opposite each of the synthetic third strand
nucleotides in turn. Duplex 3 was used for BAU, duplex 2 for S, duplex 4 for MeP and duplex 5 for APP. The experiments were performed in 50 mM sodium phosphate
(pH 7.0) containing 200 mM NaCl. The y-axis shows the normalized fluorescence (arbitrary units), whereas the x-axis shows the temperature (�C). The samples were
heated at a rate of 0.2�C/min.
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physiological pH. This does not require any other stabilizing
factors, such as high concentrations of divalent metal ions or
the addition triplex binding ligands. At pH 7.0 BAU, MeP and
APP display clear selectivity, whereas S monomer, which is
designed to recognize TA inversions, also recognizes CG base
pairs with a similar affinity. Therefore, there is the need for
further development of monomers designed to recognize TA
base pairs. Although these triplexes are stable at pH 7.0, the
affinity is �100-fold lower than at pH 5.0 as a result of the pH

dependency of the MeP.GC triplet. Although the affinity of
complexes containing this triplet at pH 7.0 is enhanced
by the presence of the very strong BAU.AT triplet, there is
clearly still need for further derivatives with higher pK values.
These results confirm the selectivity of APP for CG base
pairs; the APP triplet contains two hydrogen bonds, one of
which is a C–H–O bond, yet this is more stable than both
T.CG and C.CG and has greater selectivity as a third strand
base than T or A, which also bind well to AT and GC base
pairs, respectively (46).

The triplexes formed at this target site, which contains four
pyrimidine interruptions, have similar Tm and C50 values to
those generated at similar length uninterrupted oligopurine
sites using third strands containing only C and T (41,42,
45,46), for which Tm values between 63 and 68�C are observed
at pH 5.0. However, since the inclusion of a single BAU
residue increases the Tm by �7�C (42,45), we might expect
the stability of the triplexes formed with this multiply modi-
fied oligonucleotide to be greater than those observed. This
emphasizes that although APP and S are selective for CG
and TA base pairs, respectively, these triplets have lower
stability T.AT and C+.GC. This is to be expected, because
these triplets are not isomorphic with each other or with
T.AT and C+.GC.

Several groups have recently suggested that the 20-amino-
ethoxy modification, which is present in BAU, can stabilize a
range of triplets, and it has been suggested that contiguous

Figure 4. DNase I footprinting experiments showing the interaction of TFO-1 and TFO-2 with the intended target site. TFO-1 generated BAU.AT, MeP.GC, S.TA,
APP.CG and T.AT triplets, whereas TFO-2 contains only natural bases and is designed to generate T.AT, C.GC. G.TA and T.CG triplet. The experiments were
performed at pH 5.0, 6.0 and 7.0 in appropriate buffers containing 50 mM NaCl. The oligonucleotide concentration (mM) is shown at the top of each gel lane. Tracks
labelled ‘GA’ are Maxam–Gilbert markers specific for purines, while ‘con’ indicates DNase I cleavage in the absence of added oligonucleotide. The filled boxes
show the position of the triplex target site.

Table 2. C50 values (mM) determined from quantitative analysis of the DNase I

footprinting experiments with TFO-1

C50 (mM)
pH 5.0 pH 6.0 pH 7.0

Perfect match <0.01 0.011 – 0.002 1.1 – 0.1
S.AT <0.01 0.020 – 0.005 4.5 – 0.7
BAU.TA 0.013 – 0.002 0.04 – 0.02 n.d.
MeP.TA 0.019 – 0.005 n.d. n.d.
APP.TA a a n.d.

The target sites differed by a single base pair within the 19mer target site,
generatinga triplex mismatchopposite one of the novel nucleotides.The identity
of the mismatch (S.AT, BAU.TA, MeP.TA or APP.TA) is indicated. The experi-
ments were performed at pH 5.0, 6.0 and 7.0 in an appropriate buffer containing
50 mM NaCl. n.d. indicates that no footprint was detected.
aFor this target, TFO-1 only produced a partial footprint that did not cover the
entire site.
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20-aminoethoxy modifications further increase triplex stability
(40,49,50). This has been attributed to its effect on the oligo-
nucleotide conformation, as well as the presence of the pos-
itive charge. The oligonucleotides used in the present study did
not contain any contiguous BAU residues, and these were all
separated by at least one other base. It is, therefore, possible
that further improvements in triplex affinity might be achi-
eved by either increasing the number of BAU modifications
or by changing their distribution within the oligonucleotide.
Further improvement might also be possible by using 20-
aminoethoxy S (45).
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