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Sorting-free metabolic profiling uncovers the
vulnerability of fatty acid β-oxidation in in vitro
quiescence models
Karin Ortmayr1,2 & Mattia Zampieri1,*

Abstract

Quiescent cancer cells are rare nondiving cells with the unique
ability to evade chemotherapies and resume cell division after
treatment. Despite the associated risk of cancer recurrence, how
cells can reversibly switch between rapid proliferation and quies-
cence remains a long-standing open question. By developing a
unique methodology for the cell sorting-free separation of meta-
bolic profiles in cell subpopulations in vitro, we unraveled meta-
bolic characteristics of quiescent cells that are largely invariant to
basal differences in cell types and quiescence-inducing stimuli.
Consistent with our metabolome-based analysis, we show that
impairing mitochondrial fatty acid β-oxidation (FAO) can induce
apoptosis in quiescence-induced cells and hamper their return to
proliferation. Our findings suggest that in addition to mediating
energy and redox balance, FAO can play a role in preventing the
buildup of toxic intermediates during transitioning to quiescence.
Uncovering metabolic strategies to enter, maintain, and exit quies-
cence can reveal fundamental principles in cell plasticity and new
potential therapeutic targets beyond cancer.
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Introduction

Cellular quiescence (G0) is a fundamental operating principle in cells

to enable long-term survival in a reversible nondividing state follow-

ing cell cycle arrest in G1 phase (Hua & Thompson, 2001; Coller

et al, 2006; Liu et al, 2007; Valcourt et al, 2012; Cheung & Rando,

2013). Essential functions in the human body, such as the immune

response (Hua & Thompson, 2001; Chapman et al, 2020), hemato-

poiesis (Pietras et al, 2011), tissue repair, and regeneration (Li &

Clevers, 2010; Cheung & Rando, 2013; Cho et al, 2019) rely on the

ability of cells to enter a quiescent, nondividing state, and subse-

quently switch back to proliferation. Paradoxically, nonproliferating

cells can be found also among tumor cells (Jackson, 1989; Aguirre-

Ghiso, 2007; Giancotti, 2013; Zeuner, 2015). While rare, quiescent

cancer cells exhibit increased radio- and chemoresistance (Dembin-

ski & Krauss, 2009; Chen et al, 2012; Brown et al, 2017), and when

reactivated from their dormant state can be responsible for cancer

recurrence and metastasis (Mellor et al, 2005; Chen et al, 2012; Sosa

et al, 2014; Ramirez et al, 2016; Brown et al, 2017), posing a major

challenge in cancer therapy.

Environmental signals indicating unfavorable conditions, includ-

ing nutrient limitation (Zhang et al, 2015), stress (Yang et al, 2020),

cell–cell contact, or the absence of growth factors (Coller et al,

2006; Mitra et al, 2018), can trigger the entry into quiescence. A key

feature of quiescent cells is the ability to maintain cellular home-

ostasis in a nondividing state for long periods (i.e., years). Despite

their apparent dormancy, quiescent cells remain viable and have

the ability to rapidly switch back to fast proliferation. It is hence not

surprising that metabolism in quiescence is more active than previ-

ously thought. However, while rewiring of metabolism has become

a hallmark of rapidly proliferating cancer cells (Vander Heiden et al,

2009; Hanahan & Weinberg, 2011; DeBerardinis & Chandel, 2016;

Keibler et al, 2016; Pavlova & Thompson, 2016; Vander Heiden &

DeBerardinis, 2017; Fendt et al, 2020), a similar description of the

metabolic characteristics in quiescent cancer cells is lagging behind.

Mounting evidence suggests an involvement of metabolism in

mediating cellular quiescence across multiple cell types. Quiescent

fibroblasts, endothelial cells, adult stem cells, and B-lymphocytes

reportedly exhibit active energy generation and homeostasis-related

metabolic processes (Lemons et al, 2010; Coloff et al, 2016; Lee

et al, 2017; Kalucka et al, 2018) like fatty acid degradation (Ito et al,

2012; Knobloch et al, 2017; Kalucka et al, 2018), TCA cycle, and

oxidative phosphorylation. However, most studies relied on

genomic or proteomic measurements, and systematic and direct

characterization of the metabolic features of quiescence is missing.

Moreover, to what extent does metabolism play a role in the adapta-

tion of nondividing cancer cells to microenvironmental challenges

(Hu et al, 2011; Carmona-Fontaine et al, 2017; Lyssiotis & Kimmel-

man, 2017; Kumar et al, 2019) or treatment-induced stress and drug
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tolerance (Dembinski & Krauss, 2009; Chen et al, 2012; Ramirez

et al, 2016; Brown et al, 2017; Yang et al, 2020) have remained key

open questions.

Here, we monitored metabolic changes in six largely different cell

types, including cancer cells, transitioning from rapid proliferation

into a quiescent state induced by three different environmental stim-

uli. To overcome technical limitations in preserving and profiling

the metabolic state of quiescent cells, we developed an original

methodology that allows differentiating metabolic signatures of cell

subpopulations without the need for physical separation (i.e., cell

sorting). This approach allowed us to generate an unprecedented

compendium of metabolic profiles of quiescent cells in six different

cell lines and three quiescence-inducing conditions. Remarkably, we

found direct evidence for a common metabolic adaptation to quies-

cence that is shared among different cell types and is largely inde-

pendent of the quiescence stimulus. Consistent with previous

findings (Ito et al, 2012; Knobloch et al, 2017; Kalucka et al, 2018),

our metabolome-based analysis revealed a key difference in fatty

acid degradation in quiescence. We show that fatty acid β-oxidation
(FAO) becomes a vulnerability in quiescence-induced cells and sug-

gest that beyond its roles in mediating energy and redox balance,

FAO can also prevent the accumulation of toxic intermediates in

cells transitioning to quiescence.

Results

Quiescent cells rapidly exit growth arrest and
resume proliferation

A reversible cell cycle exit in G1 phase and the ability to resume

proliferation are defining characteristics of quiescent (G0) cells

(Jackson, 1989; Coller et al, 2006; Coller, 2011; Zeuner, 2015;

Cho et al, 2019). However, whether these abilities depend on the

cell type or specific quiescence-inducing stimuli remains unclear.

Here, we monitored the transition between rapid proliferation and

quiescence in a diverse set of adherently growing human cell

lines and under quiescence-inducing conditions (Fig 1A). We

chose six human cell lines exhibiting different proliferation rates,

i.e., doubling times between 20 and 58 h (Fig 1A). Specifically,

we included four cancer cell lines of different tissue origins (i.e.,

A549 lung, HCT116 colon, MCF7 breast, and SKOV3 ovarian

cancer cells, Fig 1A) with largely different genetic backgrounds

(i.e., mutations (Ikediobi et al, 2006)) and basal metabolic states

(Ortmayr et al, 2019) (Appendix Fig S1), and two nontransformed

fibroblast cell lines (i.e., CCD1070Sk (Liu et al, 2007) and HFL1

(Coller et al, 2006)) previously used to model cellular quiescence

in vitro (Coller et al, 2006; Liu et al, 2007). As environmental

stimuli inducing a transition from proliferation into a quiescent

state, we selected two that are well-established: serum starvation

(Coller et al, 2006; Liu et al, 2007; Mitra et al, 2018) and contact

inhibition (Coller et al, 2006; Leontieva et al, 2014; Mitra et al,

2018), and a less conventional stimulus that is more directly

linked to cellular metabolism, i.e., glutamine limitation. All three

conditions also mimic in vivo shifts in the cancer environment

(Carmona-Fontaine et al, 2017; Lyssiotis & Kimmelman, 2017),

i.e., the lack of growth signals in a foreign niche, space limita-

tions in an intact tissue or solid tumor, or nutrient gradients in

tissue regions secluded from blood vessels, respectively. To

induce quiescence, we exposed the cell lines separately to each of

the three quiescence stimuli for 96 h. Cells were seeded and

maintained at confluence (contact inhibition), or subconfluent

cells were incubated with media lacking fetal bovine serum

(serum starvation) or glutamine (glutamine limitation), respec-

tively. We quantified the end-point fraction of quiescent (G0) cells

in each condition using a previously established flow cytometry-

based assay (Kim & Sederstrom, 2001) (Fig 1B, Dataset EV1).

At 96 h after exposure to quiescence stimuli, cell populations

consisted for the vast majority (~90%) of cells in either G1 or G0

phase (2n DNA content) (Fig 1B and C, and Appendix Fig S1,

Dataset EV1). The fraction of G0 phase cells in the population

increased in all tested conditions, on average 2.25-fold, reaching

between 30 and 60% G0 cells (Fig 1C). Next, we asked whether

the dynamics of the transition between rapid proliferation and

quiescence is affected by the diversity in cell types and physiol-

ogy (i.e., basal growth rates), as well as quiescence-inducing con-

ditions. After inducing quiescence by either serum starvation or

glutamine limitation, we observed a rapid reduction in growth

rates (Fig 1D and Appendix Fig S1, Dataset EV2), and a near-

complete growth arrest after approximately 72 h. To probe the

ability to spontaneously resume proliferation, after 96 h of quies-

cence induction we restored normal growth conditions (i.e., full

growth media containing both glutamine and serum). Remark-

ably, we observed an almost instantaneous exit from growth

arrest and a return to a rapid proliferation in all cancer cell mod-

els (Fig 1E, Dataset EV2), with the two fibroblast cell lines

exhibiting a slight delay and resuming growth within 24 h.

Hence, our in vitro model allows reliably probing key functional

▸Figure 1. A collection of in vitro models for cellular quiescence in diverse human cell types.

A Schematic illustration of the experimental setup for the induction of quiescence in six different adherently growing cell types using three quiescence stimuli (i.e.,
serum starvation, contact inhibition, or glutamine limitation) for 96 h. Cell-type and basal growth characteristics of the six cell lines are reported in the table.

B Flow cytometry-based stratification of cells in different cell cycle phases and in G0 (quiescence, 2n DNA, and low RNA content), shown for SKOV3 cells in serum starva-
tion conditions at 8 and 96 h, respectively. Cells were detached, fixed with ethanol, and stained with Hoechst 33342 and Pyronin Y prior to flow cytometry analysis.

C Distribution of cell cycle phases in six cell lines exposed to quiescence-inducing conditions (see Panel A) for 8 and 96 h, respectively. Each stacked bar plot reports the
fraction of cells in G0, G1, S, and G2/M phases, estimated using the assay depicted in panel B.

D Cell confluence of adherent cell cultures in quiescence-inducing conditions (i.e., serum starvation and glutamine limitation) was monitored using time-lapse micro-
scopy in a plate reader (TECAN Spark 10M) in 1.5-h intervals. Contact-inhibited cells no longer grow in monolayers and could not be accurately imaged with this
approach. Data points and shaded areas indicate mean � standard deviation (SD) over three biological replicates. Approximately 9,500, 4,500, 19,500, 6,700, 19,500,
and 9,500 cells/well were seeded for glutamine limitation and serum starvation of A549, CCD1070Sk, HCT116, HFL1, MCF7, and SKOV3 cells, respectively.

E Dynamic changes in cell confluence (as described in panel D) after restoring normal growth conditions (at 0 h, i.e., fresh growth media containing both fetal bovine
serum and glutamine) after 96 h of quiescence induction. Data points and shaded areas indicate (mean � SD) over three biological replicates.
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characteristics of quiescent cells, and the collected growth pheno-

typic data uncovered largely similar growth dynamics upon entry

and exit from quiescence. This similarity hinted at adaptive pro-

cesses that are largely independent of cell types and quiescence-

inducing stimuli and potentially, not only mediate the switch

from proliferation to quiescence but can also prepare for regrowth

(Fig 1E and Appendix Fig S1).

Cells in G0 phase display a common metabolic signature

The ability of cells to rapidly switch between proliferation and qui-

escence requires highly coordinated metabolic adaptation to main-

tain homeostasis and avoid exhaustion of essential intermediates

and/or the buildup of toxic intermediates, and at the same time

prepare to rapidly resume growth by providing the necessary energy
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and biosynthetic precursors for cell division (Vander Heiden et al,

2009; Boroughs & DeBerardinis, 2015; Keibler et al, 2016; Pavlova &

Thompson, 2016). However, despite mounting evidence for

quiescence-specific transcriptional programs (Coller et al, 2006; Liu

et al, 2007), direct and systematic evidence of universal metabolic

characteristics mediating adaptation of cells in G0 phase is missing.

Measuring metabolic differences between quiescent and prolifer-

ating cell subpopulations remains a major challenge. Like in an in

vivo context, quiescence-induced cell cultures in vitro harbor mixed

populations with co-occurring cells in G0 and other cell cycle phases

(Fig 1, Dataset EV1). While cell sorting of heterogeneous popula-

tions allows for selection of cells in different cell cycle phases (e.g.,

only G0 cells), this technique implies lengthy and invasive steps,

which, as previously shown (Llufrio et al, 2018; Binek et al, 2019),

can profoundly alter the metabolic state of cells. We found that the

necessary initial step of enzymatic cell detachment commonly used

to generate single-cell suspensions for cell sorting, induced meta-

bolic changes that can mask the differences between cell lines from

different tissues of origin (Appendix Fig S2, Dataset EV3). In addi-

tion, we noted increased technical variability in ion intensity mea-

surements of detached-cell extracts (Appendix Fig S2), presumably

arising from the multiple sample processing steps (e.g., centrifuga-

tion and washing). Thereby, while suitable for genome or proteome

profiling (Coller et al, 2006; Ly et al, 2017; Hoogendijk et al, 2019;

Herr et al, 2020) where the consequences of perturbations manifest

within minutes to hours (Sabatier et al, 2018), classical cell sorting

approaches hamper a systematic and unbiased metabolic characteri-

zation of quiescent cell subpopulations. To overcome this limitation

and enable direct metabolome profiling in quiescent cells, we sought

to develop a novel approach for the sorting-free separation of meta-

bolic signatures in distinct cell subpopulations.

In a metabolite extract from a homogeneous cell population, the

total abundance of any given metabolite is linearly dependent on

the number of cells extracted and can be measured and compared

between cell types using mass spectrometry techniques (Ortmayr

et al, 2019). Similarly, we can assume that in a mixed cell popula-

tion, the total measured metabolite abundance is a linear combina-

tion of the characteristic metabolite abundances in each individual

cell subpopulation, provided that the presence or relative abun-

dance of each distinct population in the culture does not affect the

metabolism or general cell biology of the other in a way that might

change the amount of any given metabolite per cell. Here, building

on this general principle, we conceived an experimental-

computational framework based on a series of cell extract samples

containing different relative amounts of two subpopulations of inter-

est, and a linear regression model to separate in silico the character-

istic metabolic profiles of the individual subpopulations. In brief,

the method consists of three steps (Fig 2A and B). First, metabolites

are extracted separately from two cell cultures enriched for either of

the two subpopulations. In the second step, the two cell extract sam-

ples are mixed at several defined ratios and analyzed by high-

throughput nontargeted metabolomics (FIA-TOFMS (Fuhrer et al,

2011)). In the third and final step, we solve a multilinear regression

model to obtain coefficients representative of the relative metabolite

abundance in the individual cell subpopulations (Fig 2B).

The approach relies on two key assumptions, i.e., that the key

metabolic characteristics of each subpopulation are not affected by

the relative proportion of subpopulations, and that metabolite

concentrations lie within the range where measured ion intensities

linearly increase with the number of cells (i.e., extracted biomass).

It is worth noting that when either of the two assumptions is not ful-

filled, we expect the relationship between metabolite concentration

and ion intensity to significantly deviate from linearity. We verified

that the linearity of MS measurements (R2 > 0.9) was preserved

across multiple cell line extracts (i.e., different sample matrices,

Appendix Fig S3, Dataset EV3) by spiking metabolites into extracts

of three cell lines exhibiting different basal levels of high-abundant

metabolites like glutamate, glutathione, and 2-oxoglutarate

(Appendix Fig S3 and Materials and Methods, Dataset EV3). For all

metabolites, the linear range extended two orders of magnitude

beyond metabolite concentrations in a typical cell extract (Appendix

Fig S3). Deviations from linearity were observed for only 18% of

metabolites on average (Appendix Fig S3), supporting the validity

of our assumptions. Ions not following a linear dependency between

cell number and ion intensity are filtered out during data

processing.

To benchmark the methodology for the separation (decon-

volution) of subpopulation metabolic profiles, we mimicked

co-occurring signals by mixing metabolite extracts from different

cell lines and applied the deconvolution approach to reconstruct the

individual cell line metabolic profiles (Appendix Fig S4). To that

end, we generated cell extracts from five cell lines grown individu-

ally, prepared mixes in all possible pairwise combinations of cell

lines, and applied the workflow described above to reconstruct the

individual cell line profiles (Dataset EV3). After deconvolution, we

compared (Spearman correlation) the relative metabolite abun-

dances derived from mixed metabolite extracts against previously

measured characteristic metabolic differences between the five cell

lines (Ortmayr et al, 2019) (Appendix Fig S4, Dataset EV3). For 128

metabolites exhibiting large variation in abundance across cell lines

in pure extracts (greater than 3 standard deviations variance across

the 5 cell lines), we observed high correlations (median Spearman

correlation 0.7) that were significantly higher than for ions exhibit-

ing no characteristic difference across these five cell lines (622

metabolites, P-value 8.9e-13). Hence, we validated the ability of our

approach to resolve distinct metabolic characteristics of different

cell types from the profiling of mixed extracts.

We applied the sorting-free deconvolution method to profile the

relative difference in the abundance of 1940 putatively annotated

metabolites between quiescent (G0) and proliferating (G1, S, and

G2/M phases) cell subpopulations, in the six cell types and three

quiescence stimuli (Fig 1, Dataset EV4). To that end, we generated

cell extracts at 8 and 96 h after applying quiescence-inducing condi-

tions, enriched for non-G0 and G0 cells, respectively (Fig 1C).

Deconvolution using the mixing scheme revealed a distinct signa-

ture of G0-cell populations (Appendix Fig S4) that was not dis-

cernible by simply comparing the metabolic profiles at 8 and 96 h

after quiescence induction (i.e., without deconvolution, Appendix

Fig S4, Dataset EV4). This further reinforces that conventional

approaches used for the metabolome profiling of quiescent cells,

where the bulk population is measured, may overlook characteristic

differences in quiescent cell subpopulations.

Interestingly, we found that the differences in metabolite abun-

dances were mostly due to the cell state (i.e., G0 vs. non-G0) rather

than cell type or quiescence stimulus (Fig 2D), while only 31 ions

showed significant variation across stimuli (ANOVA P-value <0.05,
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Figure 2. Metabolic profiling of quiescent (G0) cell subpopulations using sorting-free in silico deconvolution.

A, B Schematic representation of the multistep approach for the in silico separation of subpopulation metabolic signatures without physical separation. The mixing of
cell extracts obtained from cultures at 8 h (mostly G1, S, and G2/M phase cells) and 96 h (quiescence-enriched, mainly cells in G0 and G1, see Fig 1C) allows for con-
trolling the number of G0 and non-G0 cells in each sample prior to FIA-TOFMS analysis (Fuhrer et al, 2011). Panel B depicts the linear regression model used to
determine separate estimates αQ and αP describing the relative intracellular abundance of individual metabolites in quiescent and proliferating cells, respectively.

C Comparison (Spearman correlation) of reconstructed metabolome profiles of five cell lines after mixing and deconvolution (Appendix Fig S4) to known metabolic
differences between the five cell lines (Ortmayr et al, 2019). The plot shows the probability density (kernel smoothing function) of Spearman correlation coefficients
for 128 ions with characteristic variance across cell lines (orange curve). Distributions expected at random, i.e., correlations obtained after scrambling cell line
labels, or randomly selecting putatively annotated metabolites are shown in green and blue, respectively. Shaded errors represent the standard deviation across
100,000 permutations.

D Dimensionality reduction (Uniform Manifold Approximation and Projection, UMAP (preprint: McInnes et al, 2018)) of deconvoluted metabolic profiles of quiescent
(G0) vs. non-G0 cells (panel A and B), using Z-scored relative abundances of 1940 putatively annotated metabolites in 6 cell lines × 3 stimuli × 2 cell states and
Spearman similarity metric.

E Distribution of metabolic differences (effect size) between G0 and non-G0 cells in six cell lines exposed to three different quiescence-inducing stimuli, depicted as a
violin plot. The violin shape is given by the Kernel density, overlaid data points represent individual metabolites (in total 1940 putatively annotated metabolites),
and white circles indicate the median.

F Volcano plot of common metabolic changes in G0 cells. X-axis values indicate the association with G0, i.e., the fraction of G0 models in which a metabolite is found
at higher (positive association) or lower (negative value) abundance in G0 cells across the 18 cell models. The statistical significance (y-axis) of the quiescence asso-
ciation was estimated for each metabolite using a hypergeometric test and an iterative testing scheme (see Materials and Methods section and Appendix Fig S4).
Highlighted metabolites change consistently in two-thirds or more conditions (G0 association >= 0.667, P-value < 0.01, Benjamini–Hochberg correction). Only ions
annotated to metabolites listed in the KEGG database are shown in the plot. The suffix [d] indicates α-keto acids detected as phenyl hydrazine derivatives (Zimmer-
mann et al, 2014).

G Effect size profiles for selected putatively annotated metabolites showing significantly quiescence-associated patterns across six cell lines and three quiescence
stimuli (see panel F).
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Benjamini–Hochberg correction, Appendix Fig S5, Dataset EV4). A

common metabolic signature of cells in G0 that is largely invariant

to cell type or quiescence-inducing stimuli suggests a universal

metabolic program underlying the proliferation-quiescence transi-

tion, consistent with our observation of largely similar growth

dynamics (Fig 1, Dataset EV1).

To systematically identify common features of the metabolic

adaptation to quiescence, for each metabolite we estimated how fre-

quently cells exhibit higher or lower levels in G0 (effect size, Fig 2E)

across the 18 conditions (Fig 2F, Appendix Fig S4, Dataset EV4,

Materials and Methods section). We identified 164 putatively anno-

tated metabolites exhibiting an association with G0, i.e., that

showed consistently increased or decreased abundances in G0 cells,

irrespective of cell type or quiescence stimulus (Fig 2F, abs. G0 asso-

ciation > = 2/3, Benjamini–Hochberg corrected P-value <0.01,
hypergeometric statistical test).

While consistently reduced pool sizes of several nucleotides

and intermediates of nucleotide biosynthesis (precursors dihy-

droorotate and pentose 5-phosphates) are likely the result of the

arrest of DNA replication, quiescence-associated metabolites

reflected adaptive changes in metabolism that likely go beyond

an indirect effect of growth arrest (Fig 2F). For example, we

found metabolites that exhibited consistently higher levels in G0

cells, such as cis-aconitate and (iso-)citrate (in 15 and 16 out of

18 quiescence models, respectively, Fig 2G). On average, citrate

and aconitate accumulations were slightly lower in glutamine lim-

itation as compared to serum starvation and contact inhibition

(Fig 2G), potentially reflecting the indirect effect of an interrupted

supply of a major anaplerotic TCA cycle substrate like glutamine

(DeBerardinis et al, 2007; DeBerardinis & Cheng, 2010; Daye &

Wellen, 2012). Maintaining large metabolite pools can report on

active strategies supporting cell survival in the quiescent state,

and possibly prepare quiescent cells for resuming growth (e.g.,

xanthine (Link et al, 2015)). Together with citrate and aconitate,

we noted a significantly quiescence-associated accumulation (cor-

rected P-value <0.01) of several metabolites located in lipid meta-

bolism (acetylcarnitine, glycerol 3-phosphate, and hexadecanal,

Fig 2F). These changes suggest for differential regulation of lipid

metabolism in quiescent cells. Interestingly, fatty acid β-oxidation
has been associated with quiescence in cell models other than

cancer, i.e., in endothelial (Kalucka et al, 2018) and stem cells

(Ito et al, 2012; Knobloch et al, 2017; Shyh-Chang & Ng, 2017).

However, its fundamental functional role, and whether fatty acid

degradation also plays a role in cancer cell quiescence remains to

be elucidated. Here, we observed increased levels of acetylcar-

nitine that could indicate an engagement of the carnitine system

(Melone et al, 2018) responsible for fatty acid transport across

the mitochondrial membrane, consistent with a possible role of

fatty acid β-oxidation and its product acetyl-CoA in the accumula-

tion of aforementioned TCA intermediates (e.g., citrate).

Altogether, our data uncover common metabolome character-

istics of quiescent cells across several quiescence-inducing condi-

tions and multiple cell types, including cancer cells. While

previous studies have focused on cellular quiescence in a physi-

ological (i.e., noncancer) setting, here we show global metabolic

rearrangements that hint at the involvement of fatty acid degra-

dation also in cancer cells reversibly transitioning between prolif-

eration and quiescence.

With quiescence entry, FAO becomes a metabolic vulnerability

Fatty acid β-oxidation (FAO) is a major pathway in the degradation

of fatty acids (as fatty acyl-CoAs) into acetyl-CoA units (Fig 3A)

(Houten et al, 2016). Acetyl-CoA can further be converted to citrate,

forming a key intermediate not only in energy generation (TCA

cycle) but also in the regeneration of redox equivalents (NADPH,

isocitrate dehydrogenase reaction) in mitochondria or the cytosol.

Thus, FAO can ensure cellular energy and redox homeostasis, and

also provides citrate for lipogenesis, protein, or histone acetylation

(Melone et al, 2018). While FAO has been associated with different

functions in cellular quiescence in noncancer cells (Knobloch et al,

2017; Shyh-Chang & Ng, 2017; Kalucka et al, 2018), its function in

the adaptation of cancer cells to quiescence remains to be clarified.

The common metabolic characteristics of G0 cells (Fig 2F) hint

at a differential regulation of fatty acid degradation, reflected in the

accumulation of citrate and cis-aconitate, which exhibit the most

significant association with G0 (Fig 2F and G, Benjamini–Hochberg
corrected P-value 4.87e-9 and 6.65e-9, respectively). To test

whether this quiescence-associated accumulation of FAO-related

metabolites in G0 cells reports an increased activity of fatty acid

β-oxidation in quiescence, we used trimetazidine, a competitive

inhibitor of 3-ketoacyl-CoA thiolase (Lopaschuk et al, 2003) catalyz-

ing the third and last enzymatic step of FAO (Fig 3A). Cells in full

growth media were insensitive to trimetazidine across a wide range

of concentrations (Fig 3B, Dataset EV5), indicating that FAO is dis-

pensable during rapid cell proliferation. By contrast, in A549 and

HCT116 cancer cells under serum starvation conditions, trimetazi-

dine treatment caused drastic dynamic changes in cell confluence

(Fig 3C, Dataset EV5) and induced cell death in a dose-dependent

manner (Fig 3D, Dataset EV5). Similarly, trimetazidine impaired

viability also when applied 96 h after quiescence induction, and

also in cultures enriched for G0 cells by glutamine limitation

(Appendix Fig S6, Dataset EV5). Using dynamic metabolome profil-

ing (Dubuis et al, 2018), we found that trimetazidine treatment

abolished the time-dependent accumulation of citrate during G0

induction by serum deprivation (Fig 3E, Dataset EV6). Targeted

LC–MS/MS measurements confirmed this observation (Appendix

Fig S7, Dataset EV6), providing supportive evidence that the G0-

associated citrate accumulation reflects an increased activity of fatty

acid β-oxidation in G0 cells. Moreover, in line with our observation

that fatty acid β-oxidation is dispensable during proliferation (Fig 3

B), trimetazidine did not alter citrate levels in cells in full medium

containing 5% dFBS and 2 mM glutamine (Appendix Fig S7). Col-

lectively, these results indicate that fatty acid degradation plays a

central role in cells transitioning from rapid proliferation to G0

phase.

Previous studies exploring the function of FAO in quiescence

models outside of cancer identified a link to energy production in

adult stem cells (Ito et al, 2012; Knobloch et al, 2017) or redox

homeostasis in endothelial cells (Kalucka et al, 2018). Downstream

metabolism of FAO-derived citrate can fuel oxidative phosphoryla-

tion and ATP synthesis, as well as the NADP+-dependent isocitrate

dehydrogenase reaction to regenerate NADPH. To test whether FAO

is required to supply citrate for these functions, we supplemented

serum-starved and trimetazidine-treated cells with citrate or reduced

glutathione (GSH), a key endogenous antioxidant. Remarkably, the

strong toxicity induced by trimetazidine was rescued neither by
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citrate nor by GSH (Appendix Fig S7, Dataset EV5), indicating that

in our quiescence models, the role of FAO likely goes beyond the

previously suggested functions to maintain redox homeostasis or

use of FAO-derived acetyl-CoA/citrate as an energy source.

We hypothesized that if the inhibition of FAO affects mitochon-

drial metabolic intermediates, the toxicity of trimetazidine for

quiescence-induced cells is linked to accumulating FAO substrates

in mitochondria, which can impair mitochondrial function and trig-

ger apoptosis (Ostrander et al, 2001; Penzo et al, 2002; Artwohl

et al, 2009). To test this possibility, we investigated whether a

reduced transport of FAO substrates into mitochondria can alleviate

trimetazidine-induced toxicity. To this end, we used etomoxir, an

irreversible inhibitor of carnitine palmitoyltransferase CPT1A, the

limiting component of the carnitine system for the import of longer-

chain fatty acids into mitochondria (Melone et al, 2018) (Fig 3A).

Co-treatment with etomoxir reduced the toxic effect of trimetazidine

in quiescence-induced cells (Fig 3D and Appendix Fig S7, Dataset

EV5), indicating that trimetazidine-induced toxicity is at least par-

tially caused by increased levels of potentially toxic intermediates in

mitochondria. Nevertheless, etomoxir is not able to completely abol-

ish trimetazidine toxicity (Fig 3D). The residual toxicity is consistent

with a remaining citrate accumulation (Appendix Fig S7, Dataset

EV6) and is likely due to incomplete inhibition of fatty acid-driven

respiration by etomoxir (Divakaruni et al, 2018), or a compensatory

role of peroxisomal FAO (Violante et al, 2013, 2019).

To shed light on the mechanism underlying trimetazidine-

induced toxicity, we measured metabolic changes in quiescence-

induced cells treated with trimetazidine at 24, 48, 72, and 96 h

(Fig 3F and Appendix Fig S8, Dataset EV6). Already at 24 and 48 h,

we detected significantly higher levels (adjusted P-value <0.05, Ben-
jamini–Hochberg correction) of several metabolites related to lipid

metabolism and phospholipids in trimetazidine-treated as compared

to untreated quiescence-induced cells (Fig 3F and Appendix Fig S8,

Dataset EV6). Among these early metabolic responses to trimetazi-

dine, we found accumulations of several bioactive lipid species with

signaling functions, such as lysophospholipids (stearoyl and arachi-

donoyl phosphoinositol, Fig 3F and Appendix Fig S8) and cera-

mides containing long-chain fatty acids (e.g., sum compositions

32:0, 32:1, 34:0, 34:1, 38:0). Elevated levels of certain ceramides

have been associated with the progression of apoptotic cell death

(Rudd & Devaraj, 2018) by promoting the permeabilization of the

mitochondrial membrane (Chang et al, 2015; Ogretmen, 2018;
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Dadsena et al, 2019). Hence, we hypothesized that impaired FAO

can lead to the generation of cytotoxic intermediates such as cera-

mides, thus potentially exposing quiescence-induced cells to apop-

totic cell death.

To test this hypothesis, we systematically searched for metabolic

changes associated with trimetazidine-induced toxicity. To that end,

we estimated the correlation (Spearman) between the reduction in

viability at 96 h (Fig 3D) and characteristic relative changes in

metabolite abundances in G0-induced A549 and HCT116 cells

treated with trimetazidine (400 μM or 1 mM), alone or in combina-

tion with 10 μM etomoxir (Dataset EV6). We found that the meta-

bolic signature associated with cell death consists of several

ceramide species (Fig 3G and H), reinforcing a potential link

between FAO inhibition by trimetazidine and the accumulation of

toxic metabolites such as apoptosis-inducing ceramides. To verify

apoptosis as the cell death mechanism triggered by trimetazidine,

we monitored the induction of apoptosis by detecting externalized

phosphatidylserine (PS) residues with ApoTracker Green (BioLe-

gend, (Barth et al, 2020)) in a fluorescence imaging assay (Fig 3I

and Appendix Fig S8, Dataset EV6). Consistent with the accumula-

tion of ceramides (Fig 3G), we observed a rapid significant

(P-value = 6.8e-08) increase in the fraction of early apoptotic cells

(i.e., displaying PS) in trimetazidine-treated quiescence-induced

cells as compared to untreated serum-starved cells (Fig 3I and J),

reaching up to 60% of all cells within the first 48 h in both A549

and HCT116 cells (Fig 3I and Appendix Fig S8). Subsequently, we

observed a large increase in the number of cells with compromised

plasma membranes (additional staining by live cell-impermeable

propidium iodide, Fig 3J and Appendix Fig S8, Dataset EV6), indi-

cating late stages of apoptosis and cell death in agreement with the

previous viability analysis (Fig 3D). Interestingly, co-treatment with

etomoxir did not abolish the increase in early apoptotic cells but

reduced cell death at 96 h (Fig 3D and Appendix Fig S8). The lower

rate of apoptotic cell death reinforces the hypothesis that

trimetazidine-induced toxicity is at least in part caused by the action

of toxic intermediates in mitochondria. Hence, a co-treatment with

etomoxir, by reducing the import of fatty acids into mitochondria,

can slow down the buildup of toxic metabolites. Altogether, these

results suggest that maintaining homeostasis by controlling fatty

acid degradation is critical to preserve mitochondrial integrity and

avoid induction of the apoptotic cascade in cells reversibly transi-

tioning into quiescence.

Several metabolites showing a reduced abundance after trimeta-

zidine treatment are intermediates of nucleotide, energy, and redox

metabolism (e.g., ADP, AMP, NADPH, reduced glutathione,

2-oxoglutarate, Fig 3H and Appendix Fig S8), potentially indicating

that FAO is involved in maintaining homeostasis of cofactors and

metabolite pools that are not only relevant to survival in quiescence

but also to rapidly resume proliferation. Furthermore, citrate, whose

abundance was decreased by FAO inhibition (Fig 3E), is a key

◀ Figure 3. FAO inhibitor trimetazidine (TMZ) impairs viability and regrowth of quiescent cancer cells.

A Schematic representation of mitochondrial fatty acid β-oxidation. In the cytosol, long-chain fatty acids are conjugated to carnitine by carnitine palmitoyltransferase 1
(CPT1, irreversibly inhibited by the CoA conjugate of etomoxir) for transport across the mitochondrial membrane by acylcarnitine translocase (CACT). In the mitochon-
drial matrix, the fatty acyl chain is released from carnitine and conjugated to coenzyme A by CPT2. Fatty acyl-CoAs are shortened stepwise by β-oxidation enzymes
acyl-CoA dehydrogenase, enoyl-CoA hydratase, and 3-ketoacyl-CoA thiolase, generating FADH2, NADH, and one molecule of acetyl-CoA per reaction cycle. Trimetazi-
dine competitively inhibits the last step of FAO, the cleavage of acetyl-CoA by 3-keto acyl-CoA thiolase.

B Growth phenotypic changes induced by TMZ treatment in A549 and HCT116 cells grown in full growth medium (RPMI-1640 with 5% dialyzed FBS). Cell confluence
as a proxy of cell numbers was monitored using automated time-lapse microscopy in a plate reader (TECAN Spark 10M). Data points and shaded areas indicate
mean � SD over three biological replicates.

C Growth phenotypic changes induced by TMZ treatment in quiescence-inducing conditions (serum starvation) in A549 and HCT116 cancer cells. Growth was moni-
tored via cell confluence as described in panel B. At 96 h, cells were stimulated to exit quiescence by replacing serum-free media with a fresh growth medium without
TMZ (regrowth). Data points and shaded areas indicate mean � SD over three biological replicates.

D Viability of quiescence-induced cells treated with TMZ, or with TMZ plus 10 μM etomoxir was assessed using a fluorescence imaging assay involving two fluorescent
dyes: Hoechst 33342 (all nuclei) and propidium iodide (dead cells). Data points and error bars indicate mean � SD over three biological replicates.

E Dynamic changes in the intracellular levels of citrate in A549 and HCT116 cells induced to enter quiescence by serum starvation with or without TMZ. Fold changes
were estimated relative to steady-state levels in full medium (Dubuis et al, 2018). Data points and error bars indicate mean � SD over three biological replicates.

F Volcano plot showing TMZ-induced metabolic changes (1 mM, 48 h) in A549 cells in serum starvation (see also Appendix Fig S8). Shown are differences in log2 fold
change between TMZ treatment and serum starvation alone (x-axis), and their statistical significance (y-axis, adjusted P-value, t-test, and Benjamini–Hochberg
correction).

G Correlation of ceramide levels (log2 fold change, y-axis) with the loss of viability under TMZ treatment (fraction of dead cells at 96 h, x-axis, see panel D).
H Comparison of relative changes (log2 fold-change) in the abundance of 1791 putatively annotated metabolites upon TMZ treatment (1 mM, y-axis) against untreated

quiescence-induced A549 cells (x-axis). Fold-changes are calculated relative to the expected ion intensity in full medium at a steady state (Dubuis et al, 2018). Signifi-
cant positive and negative correlations (Spearman, P < 0.01) with cell death at 96 h are highlighted in blue and yellow, respectively.

I Fractions of early apoptotic cells in A549 or HCT116 cancer cell cultures in quiescence-inducing conditions (serum starvation, left panels) or full growth medium (5%
dFBS, right panels), treated with TMZ (0.4 or 1 mM), 5-fluorouracil (5-FU, 0.5 mM, positive control), or medium (untreated). Early apoptotic cells were detected using
ApoTracker Green under co-staining with Hoechst 33342 (nuclei) and propidium iodide (dead cells). Cell staining was continuously monitored in 3-h intervals for 96 h
using automated fluorescence microscopy in a TECAN Spark Cyto. The full time course is shown in Appendix Fig S8. Data points and shaded areas indicate mean �
SD over three biological replicates. Approximately 3,400 and 7,500 cells/well were seeded of A549 and HCT116 cells, respectively.

J Summarized differences in the dynamics of apoptosis induction by TMZ treatment between quiescence-inducing conditions (upper panel) and full growth medium
(lower panel). In each treatment, the maximum fraction of apoptotic cells and the time at which the maximum was reached (dark green bars) is reported alongside
the fraction of dead cells at 96 h (light green bars, full time course in Appendix Fig S8). Apoptosis induction was assessed as described in panel I. Bar length and error
bars indicate mean � SD over three biological replicates.

K Comparison of lag times (i.e., time to resume cell duplication) after serum starvation with or without TMZ treatment in A549 and HCT116 cancer cells. Lag times were
estimated from cell confluence data shown in panel C, by first estimating the maximum growth rate (see Materials and Methods section for a detailed description),
and subsequently finding the intersection between the tangent to the point with the highest growth rate and the initial confluence (i.e., after media change at 96 h).
To correct for the intrinsic dependency of lag time on the initial confluence (Appendix Fig S9), expected lag times (x-axis) were determined by linear interpolation of
lag times measured in untreated cells at different initial confluences (Appendix Fig S9).
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intermediate not only in energy metabolism but also in lipid biogen-

esis (Bauer et al, 2005). Hence, we hypothesized that, in addition to

maintaining homeostasis during quiescence induction, fatty acid

degradation also plays a role in preparing cells for reversing quies-

cence. We tested whether the ability to exit quiescence and switch

back to rapid proliferation is affected by prior trimetazidine treat-

ment, by restoring normal growth conditions (i.e., complete growth

medium containing 5% dialyzed FBS) after 96 h of trimetazidine

treatment in serum starvation. Strikingly, while untreated serum-

starved cells readily escaped the growth arrest, prior treatment with

more than 200 μM trimetazidine increased the time necessary to

restart cell proliferation (i.e., lag time, Fig 3C and K, Dataset EV5).

Although we observed a basal dependency of lag time on the start-

ing cell density (Appendix Fig S9, Dataset EV5), lag times observed

after trimetazidine treatment exceeded the expected delay in

regrowth simply due to reduced cell confluence caused by trimetazi-

dine toxicity in quiescence-induced cells (Fig 3K). Similarly, because

most dead cells are removed during media change at 96 h (green

vertical line in Fig 3C, Appendix Fig S9), we concluded that the

increased lag time was not a mere consequence of higher numbers

of dead cells in the population after trimetazidine treatment. Supple-

mentation of citrate, whose abundance is decreased by trimetazi-

dine treatment, did not restore rapid regrowth (Appendix Fig S9),

indicating that the growth lag is not simply linked to a decreased

citrate availability for lipid biosynthesis and/or generation of energy

and redox cofactors. Not only the levels of citrate were decreased by

trimetazidine but also levels of other intermediates of oxidative

energy metabolism (e.g., 2-oxoglutarate), nucleotides (e.g., AMP,

ADP), and redox cofactors (e.g., NADPH, NAD/H), potentially indi-

cating a key role of mitochondrial metabolism and respiration in

mediating the rapid switch of nongrowing cells back to proliferation

and cell cycle progression (Ahn et al, 2017).

Our experimental evidence suggests that while fatty acid degra-

dation is dispensable during rapid proliferation, its proper function

and maintenance of mitochondrial integrity becomes crucial for

homeostasis during quiescence-induced growth arrest, and also for

preparing cells for rapid growth resumption. Thus, our findings

demonstrate that the transition into cellular quiescence can impose

metabolic dependencies that are fundamentally different from prolif-

erating cells, and potentially offer unique opportunities to selec-

tively target quiescent cancer cells.

Discussion

While cancer cells are typically associated with rapidly proliferating

cell states, nondividing, quiescent cancer cells pose a serious risk

for cancer recurrence and represent a key challenge to conventional

anticancer therapies. Moreover, because in vivo identification and

selective isolation of quiescent cancer cells is complicated, the meta-

bolic characteristics of quiescent cancer cells are largely unexplored.

Here, to bypass major technical bottlenecks, we developed an inno-

vative approach to systematically chart fundamental metabolic char-

acteristics that differentiate proliferating from quiescent cells

in vitro. This new methodology enables delineating metabolic differ-

ences between coexisting cell subpopulations without the need for

laborious, time-consuming, and invasive cell sorting procedures.

Compared with other in silico frameworks able to remove

contaminations of cancer tissue samples with nontumor cells or vice

versa in metabolome profiling data (Wang et al, 2016), our frame-

work is able to directly establish relative metabolite abundances in

distinct cell subpopulations, and can in principle be applied to

deconvolute more than 2 coexisting subpopulations.

It is noteworthy that our approach does not require samples of

pure cell populations. Instead, a relative enrichment of individual

subpopulations is sufficient to generate gradients of each subpopula-

tion with the aid of the mixing scheme. Hence, we envisage that our

approach could complement single-cell technologies, like single-cell

transcriptomics (Aldridge & Teichmann, 2020), that allow defining

different cell types in complex tissue samples, expanding the decon-

volution of metabolic signatures in bulk measurements beyond in

vitro systems. Here, this method enabled us to systematically char-

acterize differential metabolic profiles in six cell types and three

quiescence-inducing conditions, generating an unprecedented

resource to directly investigate the role of metabolism in mediating

the transition from rapid proliferation into quiescence.

While more cell lines and conditions need to be tested to further

support the generalization of our findings, we discovered character-

istic metabolic adaptive changes that are common to diverse

quiescence-inducing environmental conditions and largely different

cell types, suggesting a central role of metabolism in the reversible

transitioning between proliferation and quiescence (G0). Our analy-

sis uncovered quiescence-associated changes in central metabolic

pathways (e.g., from nucleotide and amino acid to energy, redox,

and cofactor metabolism) and storage metabolism (e.g., xanthine,

hexose sugars) (Fig 2F), suggesting widespread adaptive changes to

mediate (Andrade et al, 2021) cellular homeostasis in quiescence,

and potentially aid rapid regrowth (Link et al, 2015). Remarkably,

the specific metabolic characteristics of G0 cells revealed metabolic

functions like fatty acid β-oxidation that are dispensable during pro-

liferation but become a vulnerability in quiescence, potentially offer-

ing new and selective therapeutic targets in nondividing cells (Fendt

et al, 2020).

Fatty acid beta-oxidation has so far mostly been studied in speci-

fic cell types with a focus on its role in energy generation (Schafer

et al, 2009; Ito et al, 2012; Knobloch et al, 2017; Shyh-Chang & Ng,

2017) or redox homeostasis (Kalucka et al, 2018). Our results shed

light on the multiple implications of fatty acid degradation function-

ality for cellular homeostasis and in mediating the reversible transi-

tion between proliferation and quiescence. Here, we show that the

approved drug trimetazidine, inhibitor of FAO-enzyme 3-keto acyl-

CoA thiolase, whilst showing no activity against rapidly proliferat-

ing cells, is able to induce apoptosis in quiescence-induced cells.

Our metabolome-based analysis suggests that interfering with fatty

acid β-oxidation using agents like trimetazidine can lead to the for-

mation of bioactive signaling species such as apoptosis-inducing

ceramides, and ultimately cell death. We also observed increased

levels of phospholipids containing long-chain fatty acyls, and of

phosphatidic acid, a central precursor of major classes of membrane

phospholipids. While these types of phospholipids exert no known

key signaling function, it is plausible that when FAO is impaired,

long-chain fatty acids are redirected for incorporation into phospho-

lipids by de novo synthesis and/or remodeling of membrane phos-

pholipids to avoid lipotoxicity induced by free or activated fatty

acids (e.g., fatty acyl-CoAs) (Ostrander et al, 2001; Penzo et al,

2002; Listenberger et al, 2003; Artwohl et al, 2009; Piccolis et al,
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2019). Interfering with FAO using trimetazidine also impairs the

ability of quiescence-induced cells to reverse growth arrest, suggest-

ing that following cell fate after treatment can offer new mechanistic

insights and uncover modulators of cell state transitions.

While verification in in vivo models is needed to explore a potential

therapeutic use of our findings, genome-based investigations have

demonstrated that metabolic shifts like enhanced FAO can be decisive

for cell fate and proliferation in vivo (Echeverria et al, 2019; Oren et al,

2021). It is plausible that metabolic processes mediating homeostasis

or cellular stress responses could similarly be key to the ability of qui-

escent cells to tolerate and resist treatments (Ramirez et al, 2016;

Brown et al, 2017). Our approach, by uncovering common metabolic

adaptations in cancer cell quiescence, offers new perspectives on the

conventional search for chemotherapies based on the growth inhibi-

tory activity against rapidly dividing cancer cells, leading to new

strategies for the discovery of therapeutic agents against difficult-to-

target nondividing cancer cell subpopulations. Obviously, it is crucial

that agents interfering with essential metabolic processes in quiescence

preserve healthy human quiescent cells such as immune, stem, or

endothelial cells. Nevertheless, the presented findings unraveled the

potential of exploring whether general medications with no significant

adverse effects, like the anti-ischemic therapeutic agent trimetazidine

(Fragasso et al, 2003; Napoli et al, 2005), could be repurposed to selec-

tively target quiescent cancer cells and potentially resensitize them to

classical chemotherapeutic agents. Together with conventional anti-

cancer agents, combination therapies (e.g., with trimetazidine) could

simultaneously target highly proliferating and quiescent cancer cells,

and thereby reduce the risk of cancer recurrence. Understanding the

mechanisms that govern the ability to switch between proliferation

and quiescence can shed light on fundamental aspects of tissue

homeostasis, immune cell maintenance, and activation and have impli-

cations in largely diverse applicative fields, from tissue engineering to

pharmacology.

Materials and Methods

Cell lines and cell cultivation

Six human-derived cell lines were used in this study, four cancer

cell lines A549, HCT116, MCF7, and SKOV3 (obtained as part of the

NCI-60 panel from the National Cancer Institute, Bethesda, MD,

USA), and two nontransformed fibroblast cell lines CCD1070Sk and

HFL1 (purchased from ATCC). The standard growth medium for all

cell lines was RPMI-1640 (cat. no. 01-101-1A, Biological Industries,

Israel or cat. no. 21870076, Thermo Fisher Scientific) supplemented

with 2 g/l glucose (as necessary, cat. no. G8644, Sigma Aldrich,

Buchs, Switzerland), 2 mM glutamine (cat. no. 25030024, Thermo

Fisher Scientific), 1% penicillin–streptomycin (P/S, cat. no.

15140122, Thermo Fisher Scientific) and 5% dialyzed fetal bovine

serum (dFBS, cat. no. F0392, Sigma Aldrich, Buchs, Switzerland).

Cultures were routinely tested for Mycoplasma contamination and

were found contamination-free.

Quiescence induction

For serum starvation and glutamine limitation, cells were seeded

below confluence in normal growth medium (RPMI-1640 with 2 g/l

glucose, 2 mM glutamine, 1% P/S, and 5% dFBS) and allowed to

attach overnight. To induce quiescence via serum starvation, the

medium was then changed to RPMI-1640 with 2 mM glutamine and

2 g/l glucose but without serum supplementation for 96 h. For glu-

tamine limitation, the medium was changed to RPMI-1640 with 2 g/l

glucose and 5% dialyzed FBS but without glutamine supplementa-

tion, for 96 h. For contact inhibition, cells were seeded already close

to confluence and allowed to attach overnight. The medium was

then renewed once (RPMI-1640, 2 g/l glucose, 2 mM glutamine,

and 5% dFBS). All quiescence-induced cell cultures were incubated

for 96 h at 37°C in 5% CO2 atmosphere.

Continuous cell growth monitoring

To monitor cell numbers and growth in proliferating, quiescence-

induced (serum starvation or glutamine limitation), or quiescence-

exiting cells in situ in 96-well plates, we used automated time-lapse

microscopy imaging in a plate reader to measure cell confluence,

i.e., the area of the well bottom covered by cells. Using a TECAN

Spark 10 M plate reader, we acquired bright-field microscopy

images of each well in 1.5-h intervals in standard cell culture condi-

tions (5% CO2 and 37°C). Images were analyzed and confluence

estimated online in SparkControl software (TECAN, M€annedorf,

Switzerland). Confluence data during quiescence induction and sub-

sequent regrowth are provided in Dataset EV2.

Estimation of growth rates and lag times

To estimate dynamic growth rates in each growth phase (e.g.,

between quiescence induction and stimulation), we used a moving

window approach following an exponential growth model. First, we

log-transformed cell confluence data and performed linear regres-

sion analysis for 24-h time windows (i.e., 16 consecutive data

points) to determine the slope, representative of the log10 change in

confluence per unit of time, i.e., growth rate with the unit h−1. Next,

we shifted the time window by 8 h and repeated the analysis, thus

iteratively scanning the entire growth curve and recording instanta-

neous growth rates (Dataset EV2). To estimate lag times, i.e., the

duration between stimulation until the onset of growth with maxi-

mal rate, we calculated the time-point at which the tangent to the

growth curve at the maximum growth rate intersects with the initial

confluence, using the slope and intercept determined by linear

regression of log-transformed confluence data in the time window

where the highest growth rate is observed (Dataset EV2).

Cell cycle analysis using flow cytometry

To determine cell cycle distributions and G0 fractions in cell cultures

exposed to quiescence stimuli, we used a well-established flow

cytometry assay (Kim & Sederstrom, 2001; Lemons et al, 2010; Hu

et al, 2011) based on the quantification of single-cell DNA and RNA

contents. In brief, live cell cultures growing adherently in T75 flasks

were detached using trypsin, resuspended in warm PBS (pH 7.4),

and centrifuged at 400 g for 5 min. After discarding the supernatant,

the cell pellets were resuspended in 1 ml PBS and fixed by drop-

wise addition of the cell suspension into 10 ml of a 70% ethanol/

30% deionized water mixture (precooled to −20°C) in a 50 ml coni-

cal tube while vortexing. Samples were stored at 4°C until further
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processing. Immediately prior to flow cytometry analysis, the fixed

cell suspension was centrifuged at 1,200 g for 15 min at 8°C. The
supernatant was carefully aspirated, and the cell pellet was resus-

pended in 5 ml cold PBS and centrifuged again at 1,200 g for

15 min. The cell pellet was then resuspended in 500 μl cold PBS and

mixed with a freshly prepared staining solution containing 4 μg/ml

Hoechst 33342 (stains DNA) and 4 μg/ml pyronin Y (stains RNA) in

PBS. Samples were incubated in the dark on ice for at least 15 min

until flow cytometry analysis. The stained cell samples were ana-

lyzed using a BD LSRFortessa flow cytometry analyzer, using 405

and 561 nm lasers for excitation, and 450/40 and 586/15 emission

filters for Hoechst 33342 and pyronin Y, respectively. At least

10.000 events were recorded in each sample with a flow rate of

12 μl/min. The measured data (Dataset EV1) were visually

inspected in the instrument software and exported to fcs 3.0 file for-

mat. For further analysis, flow cytometry data were imported in

Matlab using the function fca_readfcs (https://www.mathworks.

com/matlabcentral/fileexchange/9608-fca_readfcs). Cell cycle distri-

butions and G0 fractions were determined using a custom script as

follows (see also Appendix Fig S1). Samples collected at 8 h after

quiescence induction (containing cells in all cell cycle phases) were

used to define the gates separating the cell cycle phases in each cell

line (Fig 1 and Appendix Fig S1). G1 and G2/M peaks (2n and 4n

DNA contents, respectively) were picked based on DNA content

measurements (Hoechst 33342 intensity) using the Matlab function

findpeaks. Cells with DNA contents between G1 and G2/M phases

were classified as S-phase cells (Appendix Fig S1). Cells with 2n

DNA content and an RNA content below S and G2/M phases are

classified as G0 (Kim & Sederstrom, 2001) (Fig 1, Dataset EV1).

Metabolome analysis after trypsin-mediated cell detachment

To assess the metabolic impact of enzymatic cell detachment (e.g.,

during flow cytometry workflows), we generated cell extracts using

two different methods (see schematic overview in Appendix Fig

S2), i.e., with or without prior trypsin treatment to digest extracellu-

lar matrix components that mediate the attachment of cells to the

culture dish. To that end, we seeded four different cell lines, i.e.,

A549, IGROV1, OVCAR8, and UO31 cancer cell lines, in 6-well

plates to achieve approximately 50% confluence after 24 h (1.32e5,

1.80e5, 1.32e5 and 1.26e5 cells/well, respectively). Approximately

24 h after seeding, cells in three replicate cultures (i.e., containing

identical cell numbers) of each cell line were extracted with or with-

out prior cell detachment as follows. For cell detachment, the cul-

ture medium was aspirated, and cells were briefly rinsed with 2 ml

warm phosphate-buffered saline solution (PBS, pH 7.4, 37°C, cat.
no. 10010023, Thermo Fisher Scientific). After removing the wash

solution, 500 μl trypsin solution (0.25%, cat. no. 25200056, Thermo

Fisher Scientific) was added to each well, and the cultures were

incubated at 37°C in 5% CO2 atmosphere until cells were detached

(approximately 5 min). Detached cells were subsequently resus-

pended in 2 ml cell culture medium containing 5% serum to inacti-

vate trypsin, transferred to separate sample tubes, and immediately

centrifuged at 400 g for 5 min at room temperature. Cell pellets

were washed once with 2 ml warm 75 mM ammonium carbonate

solution (pH 7.4, 37°C) and centrifuged as before. Finally, the wash

solvent was discarded, and cells were extracted by adding 400 μl
precooled extraction solvent (40% acetonitrile, 40% methanol,

20% water, with 25 μM phenyl hydrazine) to each tube. The sam-

ples were incubated for 1 h at −20°C, and subsequently stored at

−80°C until MS analysis. In parallel, three replicate cultures of each

cell line were extracted by in situ metabolite extraction as described

previously (Dubuis et al, 2018; Ortmayr et al, 2019), i.e., culture

media were removed, each well briefly washed with 2 ml pre-

warmed 75 mM ammonium carbonate solution, and the still

attached cells were then directly extracted by addition of 400 μl of
cold extraction solvent (40% acetonitrile, 40% methanol, 20%

water, with 25 μM phenyl hydrazine). Plates were sealed with alu-

minum adhesive foil (cat. no AB0626, Thermo Fisher Scientific),

incubated for 1 h at −20°C, and subsequently stored at −80°C.
Immediately before MS analysis, the bottom of each well was

scraped with a cell culture scraper, and the extract with cell debris

was quantitatively transferred to a fresh sample tube. Together with

the samples obtained from trypsin-mediated cell detachment, all

extracts were centrifuged to separate cell debris (5 min,

14,000 rpm). Cell-free extracts were then transferred to fresh 96-

well plates with a conical bottom for MS injection. MS analysis and

metabolite annotation was carried out as described below (section

“Sample mixing and MS analysis”). MS intensity data are provided

in Dataset EV3. To compare metabolic profiles between trypsin-

mediated cell detachment and in situ extraction, measured ion

intensities were transformed to Z-scores and analyzed by principal

component analysis. In addition, to account for potential systematic

differences in effectively extracted cell numbers (e.g., due to loss of

detached cells during centrifugation steps prior to extraction), we

repeated the analysis after centering metabolite intensities to the

mean for each extraction method separately (Appendix Fig S2,

Dataset EV3).

Evaluation of linearity of MS measurements

To evaluate the linearity of MS signals measured in cell extract sam-

ples, we supplemented cell extract samples with increasing concen-

trations of endogenous metabolites and measured MS signal

intensities using FIA-TOFMS (Fuhrer et al, 2011). To that end, we

generated cell extracts of three different cell lines (i.e., A549,

IGROV1, and MDAMB468 cancer cells), representing three poten-

tially different sample matrices, and, for each cell line separately,

mixed 25 μl extract with increasing amounts of 105 metabolites

(equimolar mixture prepared from pure standards) ranging from

3 pmol to 3 nmol in a fixed volume of 5 μl. In parallel, metabolites

were spiked at the same concentrations into cell-free extraction sol-

vent. All spiked samples were prepared in triplicates and immedi-

ately measured by FIA-TOFMS.

Following metabolite annotation based on exact mass (3 mDa

mass tolerance, 83 unique ions), we first determined the saturation

limit for each annotated ion, i.e., the ion abundance above which a

further increase in metabolite concentration no longer yields an

increase in measured ion abundance (examples in Appendix Fig

S3), due to ion suppression effects and/or saturation of the MS

detector. Ions whose abundance was close to or above the satura-

tion limit already in the unspiked cell extract samples were excluded

from further analysis (13 ions). For all remaining spiked metabolites

(75 unique ions, Appendix Fig S3), we evaluated the linearity of MS

signals in each of the four sample matrices (i.e., three cell lines or

cell-free extract) as follows.
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First, we asked whether the increase in MS ion intensity was lin-

ear with respect to the spiked metabolite concentration. To that end,

for each sample matrix separately, we performed linear regression

analysis on measured ion intensities to establish a base model that

determines the slope of the linear relationship between ion intensity

and the spiked metabolite concentration, and the intercept relating

to the basal abundance of the metabolite in the cell extract (Dataset

EV3). Measurements above the saturation limit were excluded from

the analysis, allowing the fitting of a linear model across at least

two orders of magnitude of ion intensity beyond the ion intensity in

the unspiked cell extract for each metabolite (Appendix Fig S3,

Dataset EV3).

In the second step, to test whether the same model also fits mea-

sured ion intensities in different sample matrices, we compared the

predicted ion intensities in the base model to the measured ion

intensity in all other sample matrices. Because 31 metabolites exhib-

ited a cell-type-specific abundance in the unspiked extracts (1-way

ANOVA, adjusted P-value <0.05, Benjamini–Hochberg multiple test-

ing correction, Appendix Fig S3), we adjusted the intercept parame-

ter to each sample matrix, while the slope parameter was fixed to

the value determined in the base model. We then calculated R2 val-

ues to quantify the deviation of model predictions from the actual

MS measurements in each sample matrix (goodness of fit, Appendix

Fig S3, Dataset EV3), i.e., the ratio of variance explained by the

model (i.e., deviation from the model prediction) and the total vari-

ance (i.e., deviation from the mean). R2 values close to 1 indicate an

excellent fit, i.e., that the linear model explains most of the variance

observed in the measured data. We repeated this linearity compar-

ison for each sample matrix acting as the base model and applied

each base model to all three other sample matrices (Appendix Fig

S3 and Dataset EV3).

Sample generation for metabolome profiling in G0 cells

Cell extracts of quiescence-induced cultures at 8 and 96 h expo-

sure to the quiescence stimulus were generated in 6-well plates to

increase the sample volume for later preparation of mixed sam-

ples. Five 6-well plates were prepared in each experiment, with 2

cell lines in three replicates each. At 8 and 96 h after induction

of quiescence, an aliquot of the culture supernatant was removed

and stored at −80°C, and the remainder was aspirated. Each well

was subsequently washed once with fresh 75 mM ammonium car-

bonate (wash solvent, 37°C, pH 7.4), and metabolites were

extracted from adherent cells in situ with 400 μl cold extraction

solvent (40:40:20 acetonitrile:methanol:water with 25 μM phenyl

hydrazine for the stabilization of α-keto acids (Zimmermann et al,

2014)). The plates were sealed with aluminum adhesive foil, kept

at −20°C for 1 h, and then stored at −80°C until further process-

ing. A second plate was used to determine the cell number per

well for later normalization. In each well, the medium was aspi-

rated, cells were washed once with warm wash solvent and

detached with 250 μl trypsin (0.25%, cat. no. 25200056, Thermo

Fisher Scientific). Immediately after resuspending cells in 750 μl
warm PBS, equal volumes of cell suspension and trypan blue

solution (0.4%, Invitrogen) were mixed, and the cell concentra-

tion, average cell size, and viability were determined using a

Countess II Automated Cell Counter (Invitrogen, Thermo Fisher

Scientific).

Of note, for contact-inhibited cultures, the samples at 8 h (i.e.,

the reference sample containing mostly proliferating cells in G1, S,

or G2/M phases) were collected from subconfluent cultures incu-

bated with spent medium from a fully confluent culture for 8 h, to

mimic the acute exposure to low-nutrient conditions.

In addition, we generated metabolite extracts for each cell line

grown in normal growth conditions (i.e., subconfluent culture, stan-

dard growth medium with both dFBS and glutamine) at several

time-points between 20 and 80% cell confluence. These samples

were used for the selection of ions of likely biological origin in our

data analysis and deconvolution procedure (see below).

Sample mixing and MS

Immediately prior to MS analysis, the 6-well plates holding cell

extracts were briefly thawed on ice, and cells were detached from

the well bottom using cell scrapers (cat. no. 3010, Corning). All sub-

sequent steps were carried out on ice. The extracts were collected in

fresh microcentrifuge tubes (cat. no. 0030120086, Eppendorf),

mixed, and centrifuged at maximum speed (13,000 rpm in an

Eppendorf 5424 R microcentrifuge) to deposit cell debris. The super-

natant, i.e., the cell-free metabolite extracts, was used for subse-

quent sample mixing and MS measurements. In brief, for each cell

line and quiescence stimulus, the triplicate extracts obtained at 8

(Extract 1) and 96 h (Extract 2) were adjusted to the same average

cell concentration and mixed at eight defined ratios, i.e., 100, 85,

70, 55, 40, 25, 10, 0% of Extract 1 in Extract 2, in a total volume of

50 μl. The mix samples were prepared independently for the three

replicates in 96-well microtiter plates. The metabolite extracts gener-

ated from cell cultures in normal growth conditions at different

levels of cell confluence were processed as described above, but no

mixing was applied. Empty wells on each plate were filled with

fresh (i.e., cell-free) extraction solvent or quality control samples,

then plates were sealed and stored at 4°C until injection.

MS measurements were performed as described previously

(Fuhrer et al, 2011) by flow-injection analysis time-of-flight mass

spectrometry (FIA-TOFMS) on an Agilent 6550 iFunnel Q-TOF LC–
MS system (Agilent Technologies, Santa Clara, CA, USA). Raw MS

spectra were aligned and centroids picked using in-house data pro-

cessing environment in Matlab R2018b (The Mathworks, Natick),

yielding MS intensities for typically more than 10,000 unique m/z

features in each sample.

Metabolite annotation

The detected m/z features were putatively annotated to known

metabolites by matching accurate masses to metabolites listed in the

genome-scale reconstruction of human metabolism (Brunk et al,

2018) (Recon3D, 5835 metabolites) and the human metabolome

database (HMDBv4; Wishart et al, 2018). Here, we putatively anno-

tated 2,099 measured ions with a mass tolerance of 0.003 m/z. Sum

formulae were used to calculate reference masses for 5,835 and

7,038 metabolites listed in Recon3D and HMDBv4 (subset of

endogenous metabolites in urine, serum, feces, excluding drugs),

respectively. Because α-keto acids were derivatized with phenyl

hydrazine (Zimmermann et al, 2014) during extraction, sum formu-

lae for the phenyl hydrazone derivatives (+C6H8N2-H2O) of 30

α-keto acid compounds (selected via KEGG SimComp search,
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http://www.genome.jp/tools/simcomp/) were added to the

metabolite list for annotation (marked by the prefix “PHderiv_” in

Dataset EV4 and by the suffix “[d]” in figure labels).

Regression-based deconvolution

We designed a two-step procedure to analyze and deconvolute the

metabolic profiles of cells in G0 as compared to any other cell cycle

phase. Of note, most cells in the non-G0 fraction resided in G1 phase

(Fig 1).

In the first step, we selected only ions where the measured ion

intensity is linearly dependent on the number of cells extracted, i.e.,

that are likely of biological origin. To that end, we adapted an

approach we previously described in Ortmayr et al, 2019 for the

comparative metabolic profiling of widely different cancer cell lines.

During steady-state growth, the metabolite concentration in each

cell is constant in time, and the measured ion intensity of intracellu-

lar metabolites scales with the number of cells extracted. Ion signals

not following this relationship are likely artifacts not related to the

intracellular metabolic content or represent metabolites yielding ion

abundances below the detection limit. Following this criteria, for

each putatively annotated metabolite, we analyzed the ion intensi-

ties obtained in metabolite extracts of each cell line grown in normal

growth conditions at different confluence levels (i.e., different

amounts of cells extracted, see above for sample generation) using a

multiple linear regression scheme (Matlab fitlm function) as

described in detail in (Ortmayr et al, 2019). For each cell line, we

obtained the slope and significance (P-value) of the linear fit, and

one value for the intercept, estimated from the measured intensity

in a sample where no cells were extracted, and hence representative

of the MS background signal independent of the cell line. Only puta-

tively annotated metabolites with a regression P-value below 3.97e-

06 (Bonferroni-adjusted threshold, adjusted by the number of

metabolites and cell lines) in at least one cell line were retained after

this step.

In the second step, we used a multilinear regression scheme to

estimate the relative metabolite abundance in G0 and non-G0 cells in

each cell line and quiescence-inducing condition based on the mea-

sured ion intensities in mixed cell extracts (see above). While this

approach can be in principle applied to estimate relative metabolic

differences across multiple cell subpopulations, here we describe

the approach for cell populations consisting of two main subpopula-

tions. Key to this approach is to prepare samples in which the two

different subpopulations are present in different ratios. The total

measured ion intensity across samples can be expressed as a linear

combination of metabolite concentrations in the two subpopula-

tions. Specifically, ion intensities measured in mixed cell extract

samples, Imix can be expressed as:

Imix ¼ αpop1 � Npop1 � Vpop1 þ αpop2 � Npop2 � Vpop2 þ β; (1)

where β is a constant term representing the ion-specific MS mea-

surement background, Npop1 and Npop2 are the number of cells in

either subpopulation in the mixed sample, and αpop1 and αpop2 are

the parameters fitted in the model, representing the actual metabo-

lite abundance in each subpopulation. By comparing the αpop1 vs

αpop2 we can quantify relative differences in intracellular metabolite

abundances between the two subpopulations. Vpop1 and Vpop2 are

the cell volume of cells in the respective subpopulation. Here, we

considered the volumes of cells equal, because flow cytometry-

based estimates of cell volume forward-scatter (Tzur et al, 2011)

indicated a characteristic difference in cell diameter between G0

and non-G0 cells in any given cell line and quiescence stimulus

(Appendix Fig S1).

Here, we applied this general model to deconvolute the relative

metabolite abundances in G0 and non-G0 cells (i.e., G1, S, or G2/M

phase, Fig 1) in six cell lines exposed to three different quiescence-

inducing stimuli. According to the above-described mixing scheme,

for each cell line and quiescence stimulus, we obtained triplicate ion

intensity measurements in eight different mix samples. The total

number of cells is constant in all mix samples, and the variable

number of cells in G0 (NQ) or any other cell cycle phase (NP) is

given by the G0 fractions determined using flow cytometry (assay

described above) at 8 and 96 h after exposure to the quiescence

stimulus, respectively.

Here, for each putatively annotated metabolite retained in step 1,

we solved the basic model described in Equation (1) across all cell

lines and quiescence stimuli all at once using a multilinear regres-

sion scheme (Matlab lsqlin function with model coefficients con-

strained from 0 to Inf):

Imix1 ;1;1;1

Imix1 ;1;1;2

Imix1 ;1;1;3

. . .

Imix1 ;1;2;1

Imix1 ;1;2;2

Imix1 ;1;2;3

. . .

Imixm ;cl;st;n

2
66666666666666664

3
77777777777777775

�β¼

N1;1;1;P;1 N1;1;Q;1;1 0 0 . . . 0 0

N1;1;1;P;2 N1;1;Q;2 0 0 . . . 0 0

N1;1;1;P;3 N1;1;Q;3 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 N1;2;P;1 N1;2;Q;1 . . . 0 0

0 0 N1;2;P;2 N1;2;Q;2 . . . 0 0

0 0 N1;2;P;3 N1;2;Q;3 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . Ncl;st;m;P;n Ncl;st;m;Q;n

2
6666666666666666666666664

3
7777777777777777777777775

� α1;1;P α1;1;Q α1;2;P α1;2;Q . . . αcl;st;P αcl;st;Q
� �

;

(2)

The ion intensity in the mixed sample, Imix, the metabolite-

specific MS background signal, β (i.e., the constant term in Equa-

tion (1)), and the number of cells in G0 or any other cell cycle

phase, NQ and NP, respectively, are measured, while the α coeffi-

cients are fitted. The index cl indicates the cell line, st the quies-

cence stimulus, m the sample mix (1–8 with predefined mixing

ratios, see above), and n the replicate (1–3). For each metabolite,

the model coefficients αcl,st,P and αcl,st,Q represent the relative intra-

cellular abundance of the given metabolite. To estimate the error for

each coefficient, we used a bootstrap resampling approach, where

we first calculated the model residuals (i.e., the deviation of the

model prediction from the measured values) for each subpopula-

tion, and then selected a random sample of the residuals with

replacement and added it to the model prediction. Using linear

regression analysis, we then obtained new coefficient values αcl,st,P
and αcl,st,Q. After 100 repetitions of these steps, we calculated the

errors of the model coefficients, SDcl;st;P and SDcl;st;Q, as the standard

deviation of the bootstrapped coefficients. Using this approach, we

obtained estimates of the relative intracellular abundance (coeffi-

cients α) and their standard errors separately for G0 and non-G0 cells

in each cell line and quiescence stimulus (i.e., 2-cell states × 6-cell
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lines × 3 quiescence stimuli = 36 observations per metabolite), for

1,940 putatively annotated metabolites (Dataset EV4).

Method validation

To verify the ability of the deconvolution workflow to disentangle the

metabolic signatures of two distinct cell subpopulations, we tested

whether known differences in metabolite abundance between two cell

lines can be recovered after applying the deconvolution strategy

described above. To that end, we generated cell extract samples from

individual cultures of five cell lines in standard growth conditions

(RPMI-1640 with 2 g/l glucose, 2 mM glutamine, 1% P/S, and 5%

dFBS), and calculated the cell concentration in the extract samples.

Using the mixing scheme described above, we prepared eight mixed

samples for each possible pair of cell lines, and measured metabolite

abundances using FIA-TOFMS as described above. After annotation,

we applied the deconvolution approach (Equation (1)). For each cell

line, we determined one model coefficient α and its error for 2,713 puta-

tively annotated metabolites (Dataset EV3). Next, we compared these

estimates of relative metabolite abundances across the five cell lines

with existing data. We previously reported comparative metabolic pro-

files under steady-state conditions for the same 5 cell lines as part of a

larger panel of 54 adherent cancer cell lines (Ortmayr et al, 2019) (NCI-

60 panel). In that dataset, 267 out of 2,181 putatively annotated

metabolites were characteristically different between the five cell lines,

i.e., showing a variation across cell lines greater than three times the

typical error of the estimates for individual cell lines. Of these metabo-

lites showing the most characteristic differences between the cell lines,

117 were also annotated in the herein-generated dataset after deconvo-

lution. To systematically assess the overlap of the relative metabolite

abundances for these key metabolites, we calculated Spearman correla-

tion coefficients (Fig 2C), confirming that characteristic differences in

the metabolic profiles of the five cell lines were recovered.

Calculation of purified ion intensity profiles of G0 and non-G0

cells

In addition to obtaining the model parameters quantifying the char-

acteristic relative metabolite abundance in G0 vs. non-G0 cells (see

above, Regression-based deconvolution), we also reconstructed ion

intensity profiles in the original cell extracts at 8 and 96 h (corre-

sponding to mostly non-G0, and mostly G0 cells, respectively), simi-

lar to the approach used in a previous study (Wang et al, 2016). To

that end, we used the previously determined slope parameters from

the regression model together with the known subpopulation frac-

tions to calculate and subtract for each annotated metabolite the ion

intensity attributed to the minor subpopulation, hence obtaining a

purified intensity profile corresponding to only one subpopulation.

For example, in the sample taken at 96 h, enriched for cells in G0,

we multiplied the slope value for non-G0 cells (αnon�G0
) by the num-

ber of non-G0 cells (Nnon�G0
) and subtracted this intensity value

from the measured ion intensity Imix, such that:

IG0
¼ Imix�αnon�G0

� Nnon�G0
� Vnon�G0

(3)

Vice versa, the intensities measured in extracts obtained at 8 h,

containing mostly non-G0 cells, were corrected for the ion intensity

predicted to originate from the small subpopulation of G0 cells.

Inon�G0
¼ Imix�αG0

� NG0
� VG0

(4)

Similar to the original model, the cell volumes VG0
and Vnon�G0

were assumed to be constant (see also above). Importantly, this

approach to separate metabolic signatures of cell subpopulations does

not correct for differences in cell numbers, hence we additionally nor-

malized the purified ion intensity profiles (Dataset EV4) to the number

of non-G0 cells (for the 8-h sample) or G0 cells (for the 96-h sample).

All calculations and the subsequent analysis by principal component

analysis (PCA, Appendix Fig S3) were carried out in Matlab 2019b. Of

note, because the parameters αnon�G0
and αG0

are as per model defini-

tion invariant to cell numbers and are derived across multiple indepen-

dent ion intensity measurements (i.e., 8 different mixing ratios) rather

than individual measurements of end-point samples, all other analyses

presented in this paper are obtained based on αnon�G0
and αG0

as mea-

sures of the characteristic relative abundances of intracellular metabo-

lites in non-G0 and G0 cells, respectively.

Differential analysis: effect size

To systematically compare the metabolite abundances between G0

and any other cell cycle phase, we calculated effect sizes d for each

annotated metabolite i, i.e., the difference in relative metabolite

abundances α in matching cell types cl and quiescence-triggering

conditions st standardized to the pooled standard deviation (SD) of

metabolite abundances:

di;cl;st ¼ αi;cl;st;Q�αi;cl;st;P
SDi;cl;st;pooled

(5)

SDi;cl;st;pooled ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SDi;cl;st;P

2 þ SDi;cl;st;Q
2

2

s
; (6)

where SDi;cl;st;P and SDi;cl;st;Q are the errors in the estimates of rela-

tive metabolite abundances determined above. A negative effect

size indicates a lower abundance of a metabolite in quiescent cells,

while positive values reflect an accumulation of metabolites in qui-

escent cells. The result of this analysis is differential metabolic pro-

files in quiescent vs. proliferating cells for 1,940 putatively

annotated metabolites in six cell types and three quiescence trigger

signals (Dataset EV4).

Analysis of common metabolic changes in G0 cells

To identify metabolites that show a consistent pattern of differences

between G0 phase and any other cell cycle phase (i.e., effect sizes

calculated as described above) we used an iterative thresholding

approach. The basic principle behind the analysis is to assess how

strongly and significantly any given metabolite is associated with G0

state, based on how consistently and similarly the metabolite abun-

dance changes between G0 and non-G0 cells across 6 cell lines and 3

quiescence-inducing stimuli. To avoid selecting a single threshold

value for all metabolites and for both increasing and decreasing

metabolite abundances (i.e., positive and negative effect sizes), we

assessed the association with G0 for different effect size thresholds

between 3 and 13 (the mean of all absolute effect size values) in

increments of 1.
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For each metabolite and effect size threshold, we first counted

separately the number of effect sizes that exceed the positive thresh-

old value, and the number of effect sizes that are lower than the

negative threshold value. The sign with the larger number of

changes is then prioritized, i.e., the metabolite is assigned either a

consistently accumulating or decreasing pattern at that threshold

value. To assess the statistical significance of such a consistent pat-

tern at each threshold value, we used a hypergeometric test. Here,

we assessed the probability of drawing the same or higher number

of effect sizes exceeding the threshold value (for accumulated

metabolites) or falling below the threshold value (for metabolites

with decreased abundance in G0 cells) when sampling at random

from all changes in the dataset with matching sign. Thus, at each

threshold value, we recorded the sign and fraction of changes pass-

ing the threshold (out of 18 in total, i.e., 6-cell lines × 3 quiescence

stimuli), and the statistical significance (P-value) of a common pat-

tern for each metabolite. To define an overall G0-associated meta-

bolic signature, for each metabolite we selected the threshold value

where the most significant common pattern (i.e., lowest P-value)

was observed. The resulting profile of G0 associations and P-values

(Benjamini–Hochberg correction for multiple hypothesis testing) for

1940 putatively annotated metabolites are reported in Fig 2F and

Dataset EV4.

Inhibition of fatty acid β-oxidation

We used two different pharmacological inhibitors of fatty acid

β-oxidation (FAO), i.e., trimetazidine and etomoxir. While trimetazidine

competitively inhibits 3-keto acyl-CoA thiolase, i.e., directly targets the

last enzymatic step of FAO, etomoxir (in its active form etomoxiryl-

CoA) is an irreversible inhibitor of carnitine palmitoyl transferase

(CPT1), thus inhibiting FAO indirectly by limiting the substrate access

into mitochondria. To treat adherent cancer cells, the drugs were added

directly into the supernatant, either individually or in combinations, as

indicated in the main text. Trimetazidine solutions were prepared by

dissolving trimetazidine (1-(2,3,4-Trimethoxybenzyl)piperazine dihy-

drochloride, cat. no. 653322, Sigma Aldrich, Buchs, Switzerland) in

deionized water to a concentration of 50 mM. The pH of the solution

was adjusted to pH 7.4, and the solution was sterile-filtered prior to

addition to the culture supernatant. To establish the dose-dependent

effect of trimetazidine on serum-starved cancer cells, we prepared serial

dilutions (10 μM up to 1 mM) of the drug in serum-free RPMI-1640

with 2 g/l glucose, 2 mM glutamine, and 1% P/S. Growth phenotypic

and metabolic changes in response to trimetazidine exposure in full

medium and quiescence-inducing conditions are reported in Dataset

EV5 and EV6.

Targeted analysis of trimetazidine-induced metabolic changes by
LC–MS/MS

HCT116 cells were seeded in two 6-well plates and incubated over-

night at 37°C in 5% CO2 atmosphere to allow cell attachment. On

the next day, on one plate (i.e., six replicate cultures) the medium

was exchanged for serum-free medium, and trimetazidine was

added to three wells at a final concentration of 1 mM. Similarly, on

the second plate, the medium was removed and replaced by a fresh

growth medium containing 5% dialyzed FBS, and 1 mM of trimeta-

zidine was added to three wells. Serum-starved cultures with or

without trimetazidine were extracted at 72 h after treatment, while

cultures in full growth medium were sampled before reaching con-

fluence, at 48 h. Cell extracts were generated using in situ extraction

(Dubuis et al, 2018; Ortmayr et al, 2019) as described above, and

stored at −80°C until MS analysis. Immediately prior to MS analysis,

150 μl aliquots of all cell extracts were dried by vacuum centrifuga-

tion and resuspended in 30 μl (5-fold concentration) LC–MS grade

water.

LC–MS analysis was carried out on a Thermo TSQ Vantage triple

quadrupole mass spectrometer, using a chromatographic method

adapted from a previous publication (Lu et al, 2010), and MS/MS

parameters established in Buescher et al (2010). Peak integration in

LC–MS/MS data was carried out in Skyline, and statistical analysis

was performed in Matlab 2019b (Dataset EV6).

Viability imaging assay and CellProfiler analysis

To assess cell viability in adherent cell cultures in situ, we used a fluo-

rescence microscopy assay based on live cell staining with the DNA-

binding dyes Hoechst 33342 and propidium iodide (PI). Hoechst

33342 is cell-permeable and stains all cells (i.e., live and dead cells),

while propidium iodide cannot enter live cells and stains only dead

cells with damaged cell membranes. Hoechst 33342 (2 μg/ml in H2O,

Life technologies cat. no. H3570) and propidium iodide (2 μg/ml, cat.

no. P4864, Sigma Aldrich) were added directly into the supernatant of

cell cultures in 96-well plates, and the cells were incubated for 30 min

at 37°C in 5% CO2 atmosphere before imaging. Without any prior

washing steps, the cultures were imaged in 96-well plates using a

TECAN SparkCyto plate reader for fluorescence microscopy, recording

images in the bright-field, blue (Ex. 381–400 nm, Em. 414–450 nm)

and red channels (Ex. 543–566 nm, Em. 580–611 nm). In each chan-

nel, multiple images were acquired of each well with 4×magnification

and tiled online into a single image covering the whole well in the

vendor software (TECAN SparkControl). The fluorescence images

were analyzed in a custom image analysis pipeline in CellProfiler

3.1.9 (McQuin et al, 2018). For each well, the blue- and red-channel

images were first cropped into a circular area to exclude areas close to

(200-pixel border offset) and outside the well border and converted

from RGB to gray scale. Next, both images were independently seg-

mented to identify all nuclei (blue channel) and PI-positive cells (red

channel), respectively, using the IdentifyPrimaryObjects module of

CellProfiler, and a global threshold estimated using Otsu’s method

(two classes). To improve the robustness of the automated threshold

estimation, we constrained the lower bound for the threshold value in

red channel images, thus preventing false-positive recognition of dead

cells in images where no or only few dead cells are present. In the last

step, we applied the MaskObjects module to apply the PI-positive cell

mask to the segmented nuclei, i.e., nuclei for which a red object is

recorded in the same location are recognized, and labeled as dead

cells. As a measure of cell viability, we then calculate for each well the

fraction of dead cells as the ratio of the number of dead cells (i.e., blue

and red positive) over the total number of nuclei (blue objects), in %

(Dataset EV6).

Metabolite supplementation under trimetazidine treatment

To investigate the functional role of FAO in quiescence-induced

cells, we supplemented several small molecules together with
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trimetazidine, or during regrowth after trimetazidine treatment, i.e.,

citrate, etomoxir, and inosine (Dataset EV5). Citrate supplementa-

tion can bypass the reduced citrate production from FAO-derived

acetyl-CoA upon FAO inhibition. Therefore, we supplemented

citrate at a final concentration of 250 μM in cell culture media either

at the same time as trimetazidine was added (0.25, 0.5, or 1 mM

doses) or when regrowth was stimulated following 96 h serum star-

vation in presence of trimetazidine (0.25, 0.5, 0.75, or 1 mM doses).

Citrate stocks were prepared from powder (citric acid monohydrate,

cat. no. 1.00244.1000, Merck Millipore) at 50 mM in deionized

water, and sterile-filtered (0.25 μm pore size) prior to addition to

cell culture media. We confirmed that at the final concentration of

200 μM, the pH of the cell culture medium (i.e., pH 7.4 under 5%

CO2 atmosphere) was not affected by citrate addition.

Etomoxir is a small-molecule inhibitor of carnitine palmitoyl-

transferase I (CPT1), and can thus limit the entry of fatty acyl chains

into mitochondria and potentially divert fatty acid flux away from

mitochondria, avoiding damage sustained by the accumulation of

fatty acyls in mitochondria upon FAO inhibition. Etomoxir was pre-

pared from powder ((+)-Etomoxir sodium salt hydrate, cat. no.

E1905, Sigma Aldrich, Buchs, Switzerland) as a 10 mM stock solu-

tion in DMSO. Because commonly used 40 μM doses have been

associated with indirect effects (Divakaruni et al, 2018) rather than

specific action on CPT1, we opted for a lower concentration, i.e.,

10 μM.

Inosine is a purine metabolism intermediate and can serve as a

source of inosine 50-monophosphate (IMP), adenosine 50-
monophosphate (AMP), and guanosine 50-monophosphate (GMP).

Here, inosine was used as a control condition to test the effect of a

supplementation unrelated to FAO functions (in contrast to citrate,

see above), and to test whether regrowth after serum starvation is

generally metabolically limited by the production of key biosynthetic

precursors like nucleotides (e.g., for nucleic acid synthesis). To that

end, inosine was supplemented in fresh growth media when cells

were stimulated to regrow after 96 h serum starvation with or with-

out trimetazidine (0.25, 0.5, 0.75, or 1 mM doses). Inosine stock solu-

tions were prepared from powder (cat. no. I4125, Sigma Aldrich,

Buchs, Switzerland) at 10 mM in deionized water, and sterile-filtered

(0.25 μm pore size) prior to addition to cell culture media.

Dynamic metabolome profiling under trimetazidine treatment

Time-dependent changes in the abundance of individual metabolites

were determined as described previously (Dubuis et al, 2018;

Ortmayr et al, 2019). Cells were seeded in 96-well plates in full

growth medium (RPMI-1640, 5% dialyzed FBS, 2 g/l glucose, and

2 mM glutamine). After allowing cells to attach overnight, media

were replaced by serum-free RPMI-1640 in all wells to induce quies-

cence by serum starvation, and treatments were applied as indi-

cated, i.e., trimetazidine was added to final concentrations of

400 μM or 1 mM from 50 mM stocks in RPMI-1640 (pH adjusted to

7.4), with or without the addition of etomoxir at a final concentra-

tion of 10 μM from a 10 mM stock in DMSO. In experiments with

cells in full medium, RPMI-1640 with 5% dialyzed FBS was sup-

plied. Samples for metabolome analysis were taken at 24-h intervals

after drug addition. During sampling, as described previously

(Dubuis et al, 2018; Ortmayr et al, 2019), cells were washed once

with 75 mM ammonium carbonate (pH 7.4, 37°C) and then

immediately extracted in situ by adding 100 μl prechilled extraction

solvent (40% methanol, 40% acetonitrile, 20% deionized water,

−20°C) to each well without prior cell detachment. To estimate the

number of cells in each sample, a second plate was processed as

described above, but the medium was added instead of extraction

solvent, and the plate was immediately imaged and analyzed for cell

confluence on a TECAN Spark 10 M plate reader for automated

bright-field microscopy imaging. Extracted cell samples were incu-

bated at −20°C for 1 h after extraction, and subsequently stored at

−80°C until MS analysis. The MS-based measurement of metabolite

abundances was carried out as described above using untargeted

high-throughput flow-injection analysis (Fuhrer et al, 2011) on an

Agilent 6550 time-of-flight mass spectrometer. Metabolites were

putatively annotated as described above, i.e., against Recon 3D and

HMDBv4. In addition, all ions were matched to SwissLipids entries

(https://www.swisslipids.org) via HMDB ids to classify lipid-related

metabolites and obtain sum composition information for putatively

annotated lipids (Fig 3F–H and Dataset EV6). Metabolome profiles

were normalized as described previously (Dubuis et al, 2018; Ort-

mayr et al, 2019), using a linear regression model to estimate the

relationship between metabolite abundance and cell confluence for

each putatively annotated metabolite at a steady state (i.e., in full

medium). We then estimated the deviation of each metabolite’s

abundance from the expected steady-state abundance by calculating

the ratio of the measured abundance and the steady-state abun-

dance at the matching cell confluence based on the linear regression

coefficients, as described in detail previously (Dubuis et al, 2018).

In addition, we calculated the statistical significance (P-value) of

each change using an unpaired t-test against all unperturbed sam-

ples. The resulting dataset of log2 fold-changes in metabolite abun-

dance and corresponding P-values, also corrected for multiple

hypothesis testing using the Benjamini–Hochberg method, is pro-

vided in Dataset EV6. For the data representation as a Volcano plot

in Fig 3F, for each metabolite we subtracted the log2 fold-change

measured in serum starvation alone from the log2 FC values of

trimetazidine-treated cells, to highlight metabolites whose abun-

dance was specifically altered by the added trimetazidine treatment.

The statistical significance (P-value) is estimated against the fold-

changes in the untreated quiescence-induced condition, additionally

applying the Benjamini–Hochberg correction for multiple hypothesis

testing. In Fig 3G and H, we summarized the time-dependent

changes in abundance for each ion by taking the log2FC with the

highest statistical significance (P-value, t-test against steady-state

abundance in full medium), i.e., the minimum of P-values against

full medium across all time-points.

Dynamic monitoring of apoptosis induction

We used a fluorescence imaging assay to assess the fraction of early

and late apoptotic cells continuously in live cell cultures

(Appendix Fig S8, Dataset EV6) under incubation conditions (37°C,
5% CO2) in a TECAN SparkCyto fluorescence imaging system. The

assay included three different fluorescent probes, i.e., Hoechst

33342 (Life technologies cat. no. H3570) for staining the nuclei of

live cells, ApoTracker Green (BioLegend, San Diego, CA, USA) to

stain cells with phosphatidylserine (PS) residues exposed on the cell

surface as a marker for early stages of apoptosis, and the live cell-

impermeable propidium iodide (Sigma Aldrich, cat. no. P4864) to
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stain cells with compromised cell membranes during late-stage

apoptosis or necrosis. Of note, in contrast to the related PS-binding

by Annexin V, binding by ApoTracker Green is calcium-

independent, allowing reliable staining also in calcium-low cell cul-

ture media like RPMI-1640. The concentration of Hoechst 33342

was optimized for each cell line (110 nM for A549, and 55 nM for

HCT116) to minimize phototoxicity effects during long-term live cell

imaging. For ApoTracker Green and propidium iodide, the dye con-

centrations in the culture supernatant were 200 nM and 0.5 μg/ml,

respectively.

For each experiment, cells were seeded as indicated in 96-well

plates (NunclonTM Delta cell culture treated surface, Thermo Scien-

tific, cat. no. 167008), and the three fluorescent probes were added

to each well parallel to the treatments. The experiment plate was

then immediately loaded into the TECAN SparkCyto for continuous

incubation (37°C, 5% CO2) and automated fluorescence imaging.

Images covering the entire well area (with automated stitching in

the instrument software) were acquired for each well in a fully

automatized manner every 3 h using a 4× objective and the kinetic

cycle and multicolor analysis options of the TECAN SparkControl

software. Fluorescence microscopy images were acquired consecu-

tively with 60 ms exposure for blue fluorescence (Hoechst 33342,

excitation 381–400 nm, emission 414–450 nm), 150 ms for green

fluorescence (ApoTracker Green, ex. 461–487 nm, em. 500–530 nm)

and 200 ms for red fluorescence (propidium iodide, ex. 543–
566 nm, emission 580–611 nm). Image analysis was optimized with

TECAN ImageAnalyzer software and key settings were transferred

to TECAN SparkControl for real-time image analysis. Individual

cells were recognized based on nuclear staining (Hoechst 33342),

and two secondary masks (for green and red fluorescence, respec-

tively) were used to measure the green and red fluorescence signals

associated with each cell. The secondary masks were defined based

on the nuclear mask (using Voronoi mask) with a radius of 14 μm
and an intensity threshold of 0.02 and 0.01 RFU (relative fluores-

cence units) for green and red fluorescence, respectively. Nuclei

counts and fractions of cells in each bin (i.e., blue+/green+, blue+/

red+ or blue+/green+/red+) at each time-point were exported in

Microsoft Excel format and are provided in Dataset EV6.

Data availability

Generated data are included in the Appendix and EV Datasets. Raw

MS ion intensity data can be downloaded from https://www.ebi.ac.

uk/biostudies with the accession number S-BSST894.

Expanded View for this article is available online.
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