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Stress is known to be associated with adverse health outcomes. The COVID-19

pandemic and its associated lockdowns are examples of chronic stressors. Lockdown

measures inadvertently caused significant psychological distress and became a powerful

source of anxiety/stress, sleep disturbances, nutritional changes and weight gain. Stress

is known to impact women’s health specifically, through hypothalamic-pituitary-gonadal

(HPG) axis dysfunction and resultant ovulatory dysfunction. Such dysfunction may

manifest in menstrual irregularities and/or infertility due to hypothalamic hypogonadism.

Here, we review the key physiological mediators of stress and associated ovulatory

dysfunction. The kisspeptinergic system is comprised of sets of neurons located

in the hypothalamus, the rostral periventricular region of the third ventricle (RP3V)

and the arcuate nucleus (ARC). This system links nutrition, reproductive signals and

stress. It plays a key role in the function of the HPG axis. During chronic stress, the

kisspeptinergic system affects the HPG axis, GnRH pulsatility, and, therefore, ovulation.

Leptin, insulin and corticotrophin-releasing hormone (CRH) are thought to be additional

key modulators in the behavioral responses to chronic stress and may contribute to

stress-related ovulatory dysfunction. This mini-review also summarizes and appraises

the available evidence on the negative impact of chronic stress as a result of the COVID-

19 pandemic lockdowns. It proposes physiological mechanisms to explain the observed

effects on women’s reproductive health and well-being. The review suggests areas for

future research.
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INTRODUCTION

Ovulation is the result of the coordinated action of the endocrine, paracrine, and autocrine
systems. Any disruption in the delicately coordinated interaction between the components of the
hypothalamic-pituitary-ovarian axis may lead to ovulatory dysfunction (1). Persistent irregularities
in the ovulatory cycle can be associated with stress, as well as with, endocrine, gynecological,
autoimmune, nutritional, genetic, and iatrogenic disorders (2). Despite regular menses generally
being considered an indicator of ovulation, they can, in fact, be associated with anovulation (3).
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Therefore, monitoring for regular ovulation, not just regular
menstruation, is key when analyzing women’s health.

Stress has many adverse health effects (4). Unfortunately,
the relative lack of objective markers for chronic stress, means
that identifying individuals suffering with chronic stress is very
challenging clinically. In women, phenotypic markers of chronic
stress include menstrual irregularities, amenorrhea, and/or
infertility due to hypothalamic hypogonadism (5). Previous
studies of the relationship between stress and menstrual cycle
have yielded conflicting results. Some have found stress is
associated with longer cycles, others with shorter cycles, and still
others have found no association of stress and cycle length (6). It
is interesting to note that the menstrual cycle changes observed
with stress are sometimes similar to those experienced by women
in the perimenopause.

The COVID-19 pandemic, and its lockdowns, have caused
psychological distress, resulting in populations living under
conditions of chronic stress (7–13). Lockdowns have been
characterized by the development of negative lifestyles and
their consequent metabolic changes (7). During the COVID-
19 pandemic, women have been found to have a higher
incidence of anxiety and depression disorders (14). This mini-
review describes how the kisspeptinergic system integrates
women’s response to stress through its impact on energy
balance and reproduction. Understanding such integration
reveals how the stress associated with the COVID-19 pandemic
may affect women’s ovulatory cycles. This review evaluates the
clinical evidence on this topic thus far and suggests areas for
future research.

STRESS AND OVULATORY DYSFUNCTION

Ovulatory dysfunction is a group of disorders with variable
clinical presentations that occasionally have serious long-term
adverse effects. According to the World Health Organization
(WHO), ovulation disorders are the main cause of infertility
(82). These disorders fall into three categories: Group I
ovulation disorders encompass hypothalamic insufficiency.
Group II disorders involve HPO axis dysfunction and Group III
constitutes ovarian insufficiency (15).

Group I ovulatory disorders include functional hypothalamic
amenorrhea (FHA) (15–17). FHA is recognized as a sentinel
indicator of chronic stress (4). FHA can also be triggered
by excessive exercise or weight loss (16). In FHA, the final
common pathway is activation of the limbic-hypothalamic-
pituitary-adrenal axis (18) which then reduces the central
gonadotropin-releasing hormone (GnRH) drive (19, 20). Stress
and the resulting hormonal changes could trigger undernutrition
or overnutrition, depending on fuel availability, attitudes
toward food, and dietary behaviors such as binging, purging,
overeating, or restricting. Reversal of functional hypothalamic
amenorrhea includes restoration of ovulatory ovarian function
and fertility (5).

Dysfunction of the HPO axis (Group II) constitutes 85% of
ovulation disorders (15). Stress can trigger such dysfunction (4).
It has been reported that prolonged or chronic stress in rats and

human females can block, inhibit, or delay the preovulatory LH
surge and thus disrupt the estrous or menstrual cycle (21). The
endocrine system, including most specifically the hypothalamic-
pituitary-adrenal (HPA) axis, and the immune system contribute
to the development of these disorders (22–26).

PHYSIOLOGY OF STRESS

Stress primarily activates two systems: The sympathetic nervous
system (SNS) and the Hypothalamic-Pituitary-Adrenal Axis
(HPA). The activation of the SNS causes the release of
Epinephrine and Norepinephrine. The activation of the HPA
axis triggers a hormonal cascade in which corticotropin
releasing hormone (CRH) is released by the hypothalamus,
adrenocorticotropic releasing hormone (ACTH) by the anterior
pituitary and finally, glucocorticoids by the adrenal gland. This
results in an increase in the level of cortisol (27). Cortisol
is released in order to increase glucose levels, which are
needed to adequately respond to stressful situations. In order
to achieve these levels of circulating glucose, cortisol promotes
gluconeogenesis in the liver, the mobilization of amino acids
from muscles and an increased lipolysis in the adipocytes
(28). There is a strong inter-relationship between activation of
the hypothalamo-pituitary-adrenal axis and energy homeostasis.
Stress and glucocorticoids act to control both food intake and
energy expenditure.

FOOD INTAKE AND METABOLIC SIGNALS

Under adequate nutritional conditions, the presence of metabolic
signals such as insulin and leptin will activate anorexigenic
neurons, as the POMC (pro-opiomelanocortin) neurons that
release α-MSH (alpha-melanocyte stimulating hormone),
causing satiety. On the other hand, insulin and leptin will inhibit
the orexigenic neurons, which release NPY (neuropeptide Y)
and AgRP (Agouti-related peptide), causing hunger (29). In
overweight and obese individuals, high levels of leptin and
insulin cause a state of resistance to both hormones, which,
through positive feedback mechanisms, further increases their
levels (30). Leptin and insulin resistance thus results in aberrant
feedback signaling, causing the orexigenic neurons to release
NPY and AgRP. This means the individual feels hungry, with the
brain thinking more nutrition is needed, despite actually having
excessive energy storage. These peptides are released into the
arcuate nucleus of hypothalamus where reproductive signals are
also sensed (31). The link between nutrition and reproductive
signals is the kisspeptinergic system.

THE KISSPEPTINERGIC SYSTEM

The kisspeptinergic system consists of two populations of
neurons in the hypothalamus; the rostral periventricular region
of the third ventricle (RP3V) (also known as the preoptic
area); and the arcuate nucleus (ARC) (also known as the
infundibular nucleus). Both neuronal groups produce the
neuropeptide kisspeptin, which plays a critical role in the
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FIGURE 1 | An increase in FSH levels leads to recruitment and development

of ovarian follicles. Selected follicles produce rising estradiol levels. Estradiol

and inhibin exert a negative feedback upon the HPG axis, thus decreasing

FSH levels. Estradiol also causes a negative feedback upon the KissARC

neurons. Kisspeptin-neurokinin B-dynorphin (KNDy) neurons present in the

hypothalamus’s arcuate nucleus (ARC), co-express neurokinin B (NKB) and

dynorphin (Dy) and are essential for GnRH pulse generation and secretion.

Low frequency hypothalamic GnRH pulses lead to a release of FSH and LH

from the anterior hypophysis. One of the selected ovarian follicles becomes

dominant, and secretes increasingly high levels of estradiol. This rapid and

sustained increase in estradiol values gives the required signal to activate the

KissRP3V/POA neurons. This activation triggers the GnRH pulsatility and release,

necessary for the LH/FSH surge. The LH surge is initiated, which causes

follicular luteinization and an initial progesterone rise. Progesterone maintains

the LH peak and is necessary for follicular rupture and adequate ovulation.

After ovulation, estradiol levels abruptly decrease. This “turns off” the

KissRP3V/POA neurons, ending the LH/FSH surge.

function of the hypothalamic-pituitary-gonadal (HPG) axis (32).
From these two areas, kisspeptinergic neurons release kisspeptin
to GnRH neurons, which have kisspeptin receptors (Kiss1R).
This stimulates GnRH neurons to release GnRH (33) (Figure 1).

Kisspeptinergic neurons located in the arcuate nucleus
(KissARC) are regulated mainly by metabolic inputs such as
insulin, leptin and ghrelin (31). Kisspeptinergic neurons located
in the anteroventral periventricular nucleus in the preoptic
area (KissRP3V/POA) are regulated mainly by reproductive
signals such as estradiol, testosterone and progesterone (34).
Arcuate kisspeptin expression is similar in both sexes, whereas
kisspeptinergic expression in the preoptic area is greater
in females (35). When estradiol concentration is elevated,
kisspeptin mRNA expression is increased in KissRP3V neurons
and decreased in the ARC nucleus (34). On the other
hand, selective deletion of the classical progesterone receptor
neurons in kisspeptinergic neurons prevents the LH surge.
This suggests estrogens and progesterones act synergistically in
kisspeptinergic neurons to modulate gonadotrophin release (36).
The relationship between testosterone and the kisspeptinergic
nuclei is not well established. In mammals, it has been shown that
high levels of testosterone during prenatal development decrease
the size of the preoptic kisspeptinergic nucleus area (34).

KISSPEPTINERGIC SYSTEM AS THE
PACEMAKER OF THE MENSTRUAL CYCLE

GnRH is released in a pulsatile pattern throughout all of the
menstrual cycle, but the frequency and amplitude of its pulses
differs with cycle phase. During the periovulatory period, there
is an increase in the frequency and amplitude of GnRH pulses.
Kisspeptinergic neurons induce such changes in the pattern
of GnRH release (33). The increase in GnRH is generated
by the activation of the KissRP3V/POA. These neurons respond
to the increasing estradiol levels produced by the dominant
follicle that occur around the periovulatory period (37). The
concentration of estradiol that is produced by recruited follicles
during the early follicular phase increases the pattern of secretion
of kisspeptin by the KissARC. Higher levels of estradiol are
later produced by the dominant follicle and increase kisspeptin
release by the KissRP3V/POA (38). Such positive feedback of
estradiol on kisspeptin release therefore increases the amplitude
and frequency of GnRH production and secretion. This causes
the LH surge. After ovulation, during the luteal phase, estradiol
and progesterone modulate GnRH pulsatility by acting upon the
KissARC (39).

STRESS AND THE KISSPEPTINERGIC
SYSTEM

Under stress conditions, increased cortisol has an indirect
inhibitory effect on KissARC neurons (40). This effect is mediated
by the pro-opiomelanocortin and cocaine and amphetamine-
regulated transcript (POMC/CART) neurons, located in the
arcuate nucleus. These neurons, depending upon the stimuli
they receive, secrete α-MSH. Alpha-MSH stimulates the KissARC,
or β-endorphins, which inhibit the KissARC. Under stress
conditions, these neurons detect CRH and cortisol. CRH
and cortisol stimulate the production of β-endorphins over
the production of α-MSH (16, 41). Beta-endorphins exert an
inhibitory effect on KissARC neurons. Additionally, the deficit
of α-MSH is sensed as an orexigenic stimulus (42). Another
mechanism by which stress affects the kisspeptinergic system is
through the increased expression and activity of gonadotropin-
inhibitory hormone/RFamide-related peptides (GnIH/RFRP-3)
(37, 43). GnIH/RFRP-3 is a peptide hormone that acts in the
hypothalamus and pituitary gland. GnIH/RFRP-3 suppresses the
synthesis and release of GnRH and gonadotropins (44). CRH,
cortisol and GnIH inhibit the activity of Kiss ARC neurons, Kiss
RP3V/POA neurons and GnRH neurons (45).

CRH is secreted by neurons in the anterior portion of
the paraventricular nucleus of the hypothalamus. Under stress
conditions, additional CRH-producing neurons are activated.
This activation is greater in females than in males (46). This level
of CRH expression in females has recently been associated with
increased levels of anxiety (47). Data from non-human animal
models also reveal extensive sex differences in CRH functions
ranging from its presynaptic regulation to its postsynaptic
efficacy (48). For example, females have greater CRH receptor
turnover, post activation, than males. It has also been shown
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that at the locus coeruleus, which is involved in stress regulation
and arousal, females have a greater number of neurons and
dendritic projections (48–50). These differences make females
more vulnerable to stress conditions (51). CRH is recognized as
a key modulator of behavioral responses to stress. Therefore, sex
differences in CRH processing may partly explain sex differences
in responses to stress (48).

STRESS, CORTISOL AND
APPETITE-RELATED HORMONES

Glucocorticoids released during stressful conditions act on the
hypothalamus, increasing the sensation of hunger. This leads
to an increase in appetite and food intake, especially intake
of foods high in saturated fat and carbohydrates (52). When
glucocorticoid levels remain high over time, such persistent
eating changes can cause weight gain (53, 54). This mechanism is
not fully elucidated. However, it has been suggested that during
stress, the expression of POMC (an anorexigenic stimulus) is
inhibited, and the expression of NPY and AgRP (orexigenic
stimuli) is increased (55, 56). Individuals under chronic stress
conditions also have higher levels of leptin, insulin, glucose and
ghrelin (57).

Sex is an important factor determining plasma leptin
concentration. Women have markedly higher leptin
concentrations than men (58). Elevated glucocorticoids, as
found under stress conditions, affect leptin and insulin function
and sensitivity. This contributes to the development of a
leptin-insulin resistant state (59). Furthermore, in chronic
stress situations, the release of LH and FSH is inhibited in both
overweight and normal weight women. This contributes to
ovulation inhibition (60, 61). An imbalance in leptin and insulin
will also influence the kisspeptinergic system, thus affecting
ovulatory function (Figure 2).

FUNCTIONAL HYPOTHALAMIC
AMENORRHEA

Weight loss and weight gain, excessive physical exercise, and
chronic stress induce an anovulatory state which is called
“functional hypothalamic amenorrhea” (FHA). This condition
is one of the main causes of secondary amenorrhea. It occurs
when GnRH pulsatility is affected by a decreased activity of the
KissARC neurons. This decreases the release of FSH and LH,
generating a state of anovulation and hypoestrogenism (16, 61).
The mechanisms underlying the pathophysiology of FHA are
not fully understood. However, kisspeptin, NPY, ghrelin, leptin
and, corticotropin-releasing hormone (CRH) are thought to
play important roles in the physiological regulation of pulsatile
GnRH secretion and thus are likely to be involved in the
pathophysiology of FHA (62). As mentioned above, kisspeptin
can directly stimulate GnRH secretion from the arcuate nucleus
of the hypothalamus. The importance of the suppression of the
kisspeptinergic system in FHA is further demonstrated by the
fact that acute administration of kisspeptin to women with FHA

FIGURE 2 | Kisspeptinergic neurons from the “preoptic area” and “arcuate

nucleus” release kisspeptin to stimulate GnRH neurons to release GnRH.

Under proper nutritional conditions, the presence of metabolic signals such as

insulin and leptin will activate anorexigenic neurons, as the POMC neurons that

release α-MSH, causing satiety. On the other hand, insulin and leptin will inhibit

the orexigenic neurons, which release NPY and AgRP, causing hunger. Proper

metabolic signals will stimulate the release of kisspeptin and promote

ovulation. On the contrary, signs of starvation and/or stress will inhibit the

release of kisspeptin, affecting ovulation and the reproductive process.

potently stimulates gonadotropin release and ultimately restores
ovulation (63).

STRESS AND LIFESTYLE DURING
COVID-19 PANDEMIC

The SARS-CoV-2 pandemic has affected millions of people
worldwide. Many countries have adopted lockdowns or
quarantines as strategies to help minimize the spread of the
disease and the collapse of healthcare systems (64). The COVID-
19 pandemic, and its lockdowns, have caused psychological
distress, with populations living under conditions of chronic
stress (7–13). It is important to note that chronic stress is a
prolonged and constant feeling of stress that can negatively
affect our health if it goes untreated and that state of emotional
suffering associated with stressors and demands that are difficult
to cope with in daily life lead to a psychological distress.

In the US, more than half university students reported
moderate to severe anxiety symptoms during the pandemic
(14). Severe anxiety symptoms were associated with increased
hunger, emotional overeating and decreased enjoyment of food
(14). Furthermore, obese people have reported, an excessive
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desire to eat during the pandemic (65). The lockdowns have
caused so many changes in nutritional habits, sleep patterns,
and physical activity routines that in the United States, people
refer to the “Quarantine 15”. This phrase refers to the 15 pounds
(6.8 kg) of weight that many Americans have gained during
the lockdown (66). Individuals who reported changes in their
eating behaviors during the pandemic also reported concurrent
increases in depression (67). Stress is associated with an increase
in high calorie food intake (68). This association is particularly
strong in those who emotionally overeat and weaker or absent in
those who have greater cognitive flexibility. Promoting cognitive
flexibility and helping to prevent emotional overeating could
help decrease the intake of high calorie foods during stressful
conditions, such as the COVID-19 pandemic (68). Women are
more vulnerable than men to developing anxiety (69–73). They
are diagnosed twice as often as men and this prevalence increases
with age and with the gradual decrease in estradiol secretion at
menopause (74, 75). Therefore, tools to help prevent anxiety and
pathological eating behaviors are like to particularly help women.

THE LOCKDOWN AND THE MENSTRUAL
CYCLE

There is a growing, though nascent, body of evidence appraising
the impact of the COVID-19 pandemic and its impact on
women’s reproductive health. Whilst one cross-sectional study
of 125 women did not find that the pandemic altered menstrual
cycle characteristics, several other larger-scale studies have linked
altered menses with stress associated with COVID-19 pandemic.
The smallest of these studies included 263 participants with
an average age of 26.3 ± 6.9 (18–45) (76). The authors found
that menses duration and heaviness decreased in a statistically
significant fashion during the COVID-19 pandemic. However,
the clinical significance of such changes is unclear. Period time
only decreased from 6.3 to 5.9 days and pads per day changed
from 3.7 to 3.2. A larger cross-sectional study of 952 female
healthcare workers in Turkey found that COVID-19 pandemic-
induced anxiety, perceived stress, and depressive symptoms,
were associated with increased menstrual cycle irregularity (77).
Women with regular menstrual cycles for more than 1 year
before the beginning of the pandemic were included in the
study. During the COVID-19 pandemic, 71% of participants had
regular menstrual cycles, and 23% had irregular menstrual cycles.
This was a significant change given that all recruited women had
regular menstrual cycles for at least 1 year. Covid stress scale
scores (CSS) were significantly higher in women with irregular
cycles than women with regular cycles. Depression, anxiety, and
stress scores were likewise significantly higher in women with
irregular cycles. This study was limited by the self-selecting
nature of survey responders and by its reliance on women -
recall of cycle characteristics. However, as the authors note, over
75% of their respondents used a period tracking application
on a smart device which improves accuracy of women’s self-
reported data. A further observational study of over 1,000 women
corroborated such findings (78). This study used a social media
and text survey to appraise the effects of the COVID-19 pandemic

on women. All study participants reported typical signs of
chronic stress such as a significant increase in low mood, poor
appetite, binge eating, poor concentration, anxiety, poor sleep,
loneliness and excess alcohol use. Women also reported a median
2 kg increase in self-reported body weight. Forty-six percent of
participants reported a change in their menstrual cycle since
the beginning of the pandemic and 53% described a worsening
of premenstrual symptoms. Indeed, one third of participants
reported new dysmenorrhea during the pandemic. Interestingly,
whilst median cycle length and days of bleeding were unchanged,
total cycle variability was increased.

The largest study of over 18,000 mobile app users similarly
found that stress was reported in nearly half of participants
during the COVID-19 pandemic (79). Interestingly, whilst a
number of participants recorded more anovulatory cycles (7.7%)
or cycles of abnormal length (19.5%) during the pandemic, a
number of women actually recorded fewer anovulatory (9.6%)
or abnormal length cycles (19.6%). The authors suggest that this
may reflect that the COVID-19 pandemic likely affected women
with different sociodemographic characteristics differently. For
example, app-users in the study were typically from high-income
countries (USA and Great Britain) and had high education
levels. Therefore, a number of these women may have started
working from home, rather than commuting. Studies have
shown that women who began working from home, rather
than commuting, may have had an increased opportunity to
exercise or eat healthily, given the reduced commute time (80).
Overall, these studies suggest there is an association between the
COVID-19 pandemic-induced anxiety and increased prevalence
of menstrual cycle irregularities in women. However, they also
highlight that the COVID-19 pandemic measures did not affect
all women equally.

FUTURE DIRECTIONS AND
PERSPECTIVES

The evidence evaluating the impact of the COVID-19 pandemic
on women’s reproductive health is still nascent and the
consequences for women’s reproductive health are just emerging.
The medium- and longer-term effects of the pandemic remain
to be seen. Even as lockdown-related stress recedes, chronic
stress as a result of other factors (e.g., financial stressors) related
to the pandemic may remain. The studies appraised in this
mini-review were largely conducted at the beginning of the
COVID-19 pandemic. It will be important to consider how stress
levels develop and change at later stages of the pandemic and
during post-pandemic recovery, as well as how such stress levels
may influence women’s menstrual cycles, reproductive health
and well-being.

The studies were also limited in a number of other ways.
Firstly, all the studies are based on self-reported personal data.
Such self-reporting may have inaccuracies. In particular, pre-
pandemic menstrual markers were often collected retrospectively
and so were subject to recall bias. This also prevented rigorous
controls for any changes in women’s socio-economic and
educational levels pre vs. during pandemic. Furthermore, a
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number of studies did not consider the effect of SARS-CoV-
2 exposure or infection. This could present a confounding
physiological factor. This is likely particularly important for
studies that focused on female healthcare workers (77).
Furthermore, many women in some studies were from a high
socioeconomic group. This limits the general applicability of such
work. For example, one study found that women with high levels
of education (e.g., a PhD degree) had higher levels of increased
perceived stress (48.9%) compared with women with a high
school degree or lower (40.3%) (79).

The most significant limitation of these studies however
was the lack of clinical laboratory data to determine objective
measures of e.g., stress hormones and their impact on ovulation.
For example, perceived stress may differ from physiologically
high levels of stress. Clarifying whether women who feel
more stressed show higher levels of stress hormones would be
interesting. Furthermore, it is known that in chronic stress, the
acute stress response may actually be blunted (81). Might this
result in counter-intuitive impacts on women’s ovulatory cycles?

Only one study used an additional biomarker (basal body
temperature) in an attempt to record anovulatory cycles
directly (79). Other papers focused on menses length and
length of menstrual cycle. Total menstrual cycle length could
be unchanged, but luteal and/or follicular phase, specifically
might be impacted. As discussed in the introduction, ovulatory
dysfunction can occur even when menstruation remains regular.
More studies that track ovulatory function directly, through
progesterone measurements, cervical fluid recordings or basal
body temperature are needed. These studies could offer greater
clarity and insight into women’s health during times of
high stress.

One strength of these studies was that the majority of papers
did exclude women using hormonal contraceptives (76, 77, 79).
This would havemade it easier to observe physiological responses
to stress on themenstrual cycle. It would be interesting to observe
how hormonal contraception might impact perceived stress and
physiological response.

Other areas for further research could involve whether times
of chronic stress impact all women equally. For example, Sadler’s
work suggests that women who emotionally overeat may respond

differently to stress (68). It would be interesting to further
investigate this link and to elucidate whether its origins are
genetic or social or both. Such work could allow women
who are particularly vulnerable to stress to be identified and
helped earlier. Finally, future work could look at how to best
manage ovulatory dysfunction associated with chronic stress.
For example, how might therapies target stress perception and
management (e.g., cognitive behavioral therapy) or physiological
markers of ovulatory dysfunction (e.g., hypoestrogenism in the
case of FHA)?

CONCLUSION

During this time, a number of women have exhibited changes in
their menstrual cycles. Many women have reported a worsening
of premenstrual symptoms. This highlights the link between
mental status and the reproductive axis. Monitoring their
cycles more closely may allow women to identify alterations
in their hormonal balance which might confirm or even
indicate their stress levels. This mini-review has presented
evidence that the COVID-19 pandemic has negatively affected
women’s reproductive health through the possible ovulatory
dysfunction. Further work should focus on using biomarkers
to better evaluate the nature of such dysfunction. Discerning
which women are likely to be most at risk and benefit most
from targeted therapies (e.g., cognitive behavioral therapy)
may offer great help in the future. Even as the pandemic
recedes, it is important to remember that women experience
periods of acute and chronic stress across the world due to
other factors. These can include war, famine and displacement.
We hope that findings during the COVID-19 pandemic
may allow us to give a better healthcare to women in
the future.
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