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Abstract
A central question in drug discovery is how to select drug candidates from a large number of available compounds. This

analysis presents a model-based approach for comparing and ranking combinations of radiation and radiosensitizers. The

approach is quantitative and based on the previously-derived Tumor Static Exposure (TSE) concept. Combinations of

radiation and radiosensitizers are evaluated based on their ability to induce tumor regression relative to toxicity and other

potential costs. The approach is presented in the form of a case study where the objective is to find the most promising

candidate out of three radiosensitizing agents. Data from a xenograft study is described using a nonlinear mixed-effects

modeling approach and a previously-published tumor model for radiation and radiosensitizing agents. First, the most

promising candidate is chosen under the assumption that all compounds are equally toxic. The impact of toxicity in

compound selection is then illustrated by assuming that one compound is more toxic than the others, leading to a different

choice of candidate.
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Introduction

Radiotherapy is a cornerstone of modern oncology, and is

frequently given in conjunction with chemical treatments

to improve efficacy [1, 2]. Radiosensitizers are a class of

chemical agents designed to enhance the radiation effect,

e.g. by interfering with the cell’s repair of radiation-

induced DNA damage [3]. During preclinical development

of novel compounds, including radiosensitizers, a central

question is how to select the most promising compounds

from a large number of candidates [4–6]. Proper assess-

ment of radiation and radiosensitizer combinations requires

studies of efficacy as well as toxicology and adverse effects

[7]. All compounds and doses cannot be tested in vivo—for

reasons of time, resources, and ethics [8]. Experimental

studies must therefore be supported by cheaper alternatives

such as computer modeling and simulations [9, 10].

Numerous quantitative models have been developed to

describe the effects of radiotherapy on tumors, with or

without chemical intervention [11–14]. These models

range from the simple, yet ubiquitous, linear-quadratic

model of radiobiology [15], to complex systems pharma-

cology models that include particular pathways and pro-

cesses (such as the cell cycle) that are relevant to the given

treatment [16, 17]. In radiation oncology, models of Tumor

Control Probability (TCP)—defined by whether a given

radiation dose controls or eradicates an irradiated tumor—

are commonly employed alongside Normal Tissue Com-

plication Probability (NTCP) models that quantify toxi-

cology and adverse risks [18–20].
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Models have also been developed to describe the effects

of radiotherapy on tumor volume over time. Watanabe

et al. [21] proposed a radiation model with gradual cell

death in response to single-dose treatment, and used it to

describe tumor growth over time in rat rhabdomyosarcoma

and in patients with metastatic brain tumors. More recently,

Husband et al. developed and evaluated radiation models

that describe tumor growth and survival in patient-derived

xenograft mice for diffuse intrinsic pontine glioma [22].

In two earlier papers, we developed models that describe

tumor growth in xenograft mice receiving radiotherapy and

neoadjuvant radiosensitizing treatment [23, 24]. We also

introduced the Tumor Static Exposure (TSE) concept—a

model-based prediction of all combinations of radiation

doses and radiosensitizer concentrations that result in

tumor regression. However, these models only consider a

single radiosensitzing compound and can therefore not

fully illustrate the utility of the TSE concept in aiding the

drug selection process.

In this paper, we use TSE to compare and rank three

different combinations of radiation and radiosensitizing

agents. One of our earlier models is used with data from a

xenograft study involving radiotherapy administered alone

or together with either of the radiosensitizers. The com-

pounds are ranked by weighing efficacy (measured using

TSE) against toxicity. Two different toxicological models

are considered: a simple, linear model; and a more complex

NTCP model adjusted to account for radiosensitizing

treatment [25]. We also introduce the concept of Tumor

Shrinkage Exposures, which can be used if tumor stasis is

insufficient and tumor shrinkage with a particular rate is

desired.

Methods

Experimental data are first described. Then, a previously-

developed tumor model used to describe radiation and

radiosensitizer combination therapies is summarized.

Thereafter, a method for comparing and ranking radiation

and radiosensitizer combinations, based on TSE, is pre-

sented. The method optimizes a given cost function, used

to describe, e.g., toxicity and other adverse effects, along

the TSE curve. Finally, computational aspects of the non-

linear mixed-effects modeling approach are provided.

Experimental data

Pharmacodynamic data were generated in FaDu xenograft

mouse models treated with radiation either alone or toge-

ther with one of three early-discovery radiosensitizing

compounds, henceforth referred to as compounds A1, A2,

and A3. A total of 54 female mice were divided into six

treatment groups with nine mice in each group: (A) vehicle

control, (B) monotherapy with radiation (2 Gy per dose),

(C) combination therapy with radiation (2 Gy per dose)

and compound A1 (100 mg/kg per dose), (D) combination

therapy with radiation (2 Gy per dose) and compound A2

(25 mg/kg per dose), (E) combination therapy with radia-

tion (2 Gy per dose) and compound A2 (100 mg/kg per

dose), and (F) combination therapy with radiation (2 Gy

per dose) and compound A3 (20 mg/kg per dose). Doses

were given once per day Mon–Fri for 6 weeks.

Exposure data were generated in FaDu xenograft models

for the compounds A1, A2, and A3. Single doses of the

compounds A1, A2, and A3 were given orally to 16 animals

divided into four treatment groups with four mice in each

group: compound A1 (100 mg/kg), compound A2 (25 mg/

kg), compound A2 (100 mg/kg) and compound A3 (20 mg/

kg) Drug concentration in plasma was measured after 1, 2,

and 6 h.

Experiments were approved in accordance with German

animal welfare regulations by the Regierungspräsidium

Darmstadt, Hessen, Germany (protocol registration num-

bers DA 4/Anz. 397 and DA 4/Anz. 398).

Tumor model for radiation and radiosensitizer
combination treatment

We use a previously-developed radiation model (Fig. 1) to

describe tumor growth following treatment with radiation

and radiosensitizing agents [23]. The model consists of a

main compartment V1 representing proliferating cancer

cells, three damage compartments V2, V3, and V4, that all

Fig. 1 Tumor model used to describe combination therapy with ion-

izing radiation (IR) and radiosensitizer compounds. Cancer cells in

compartment V1 proliferate with rate kg and are eliminated with rate

kk. Dying cells are transferred through three damage compartments

V2, V3 and V4. Lethally irradiated cells are moved to a radiation-

damage compartment U1 where they are allowed up to one more cell

division, before dying. The compartment U2 represents irradiated

cells after one cell division that can no longer divide
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dying cells traverse, and two radiation compartments U1,

and U2, that allow irradiated cells up to one more cell

division before dying. Irradiated cells are instantaneously

transferred from V1 to U1. The fraction of proliferating

cells that is transferred is based on the well-established

linear-quadratic formula from radiobiology [14, 15].

Moreover, the presence of a radiosensitizing agent is

accounted for via an increase in the number of lethally

irradiated cells depending on the plasma concentration of

the radiosensitizer at the time of irradiation. A high plasma

concentration leads to a greater transfer of cells from V1 to

U1. The model also incorporates natural cell death, mean-

ing that some cells traverse the damage compartments even

for untreated tumors.

The tumor model is described by the following differ-

ential equations

dV1

dt
¼ kgV1 � kkV1

dV2

dt
¼ kkV1 þ kkU1 þ kkU2 � kkV2

dV3

dt
¼ kkV2 � kkV3

dV4

dt
¼ kkV3 � kkV4

dU1

dt
¼ �kgU1 � kkU1

dU2

dt
¼ 2kgU1 � kkU2

ð1Þ

where kg is the growth rate of proliferating cancer cells,

and kk the kill rate of cancer cells which is assumed to be

the same for all compartments. The use of growth rate kg
and the presence of the factor two in the transfer from U1 to

U2 describes that cell division occurs between these states

and therefore twice as many cells enter U2 than leave U1.

Radiation treatment is implemented as sudden transfer

between compartments V1 and U1, corresponding to an

instantaneous transfer of cells with the fraction given by (1-

SF (DIR,Ci)). Here, SF (DIR,Cj) is the surviving fraction of

proliferating cancer cells given a radiation dose DIR and

concurrent drug plasma concentration Cj of compound Aj.

Mathematically this can be described by the two equations

V1 tþið Þ ¼ V1 t�i
� �

� 1� SF DIR tið Þ;Cj tið Þ
� �� �

V1 t�i
� �

;
U1 tþið Þ ¼ U1 t�i

� �
þ 1� SF DIR tið Þ;Cj tið Þ

� �� �
V1 t�i
� �

;

ð2Þ

where ti denotes the times of irradiation, and t�i and tþi can

be interpreted as times just before and after irradiation.

Note that radiation dose is given in terms of Gray (Gy),

which is absorbed dose measured in joules per kilogram,

i.e., the radiation dose is normalized with respect to animal

weight and hence plays the role of exposure to radiation.

The surviving fraction is given by

SF DIR;Cj

� �
¼ exp � 1þ ajCj

� �
aDIR þ bD2

IR

� �� �
ð3Þ

where a and b are the linear and quadratic coefficients

associated with radiation DNA damage, and aj is the

pharmacodynamic parameter associated with the

radiosensitizing capabilities of compound Aj. The initial

conditions for the system are given by

Vi 0ð Þ ¼ V0 kk
kg

� �i�1

; Ui 0ð Þ ¼ 0; ð4Þ

where V0 is the initial volume of the main compartment.

With these initial conditions, untreated tumors grow

exponentially with net growth rate kg - kk [26]. The total

tumor volume, Vtotal, is obtained as the sum of all

compartments

Vtotal ¼ V1 þ V2 þ V3 þ V4 þ U1 þ U2 ð5Þ

Comparing combinations of radiation
and radiosensitizers

In the case study, the goal is to select one of three

radiosensitizing agents for further experimental study. We

propose a model-based approach that evaluates combina-

tions based on how easily tumor regression is achieved,

relative to toxicological or other adverse effects. The

model described in the previous section is calibrated to data

and then used to derive TSE curves for each radiosensi-

tizing agent. Cost functions are introduced to describe

toxicology and other potential costs associated with treat-

ment, and an optimization problem is formulated to mini-

mize the cost subject to the constraint that the tumor does

not grow, i.e., that the exposure is on or above the TSE

curve.

The Tumor Static Concentration (TSC) and TSE con-

cepts have been introduced and used in several earlier

papers [26–29]. The TSC curve corresponding to a par-

ticular combination therapy consists of all pairs (C1, C2) of

plasma concentrations for which a maintained exposure

leads to tumor stasis. In particular, maintaining exposure

levels above the TSC curve leads to tumor regression. The

TSE concept is a generalization of TSC that allows for

treatments for which concentrations are unknown or not

applicable, such as radiotherapy. The TSE curve for the

model given in Eqs. 1 and 2 has previously been derived

(see [23]). The curve consists of combinations of daily

radiation doses and average radiosensitizer concentrations

such that the tumor is kept in approximate stasis.

In the Results section, the calibrated tumor model is

used to generate TSE curves for combination therapy with

radiation and each of three radiosensitizers, which we

denote A1, A2, and A3. We propose the following
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procedure for comparing and ranking combinations, while

accounting for toxicity and other adverse effects.

For each treatment combination, introduce an associated

cost function W (E1, E2), where E1 and E2 refer to general

exposure metrics. In our case study E1 = DIR is radiation

dose, and E2 = Cj is the concurrent plasma concentration of

radiosensitizer Ai. Alternatively, nondimensional expo-

sures could be defined by E1 = DIR/Dref and E2 = Cj/Cref,j,

where Dref and Cref,j are reference exposures. The cost

function is a way to measure the toxicity of the combina-

tion, although other kinds of costs could also be included.

W is an increasing function, reflecting that a larger value

corresponds to higher cost/toxicity.

In the simplest case, W is linear function and is given by

W E1;E2ð Þ ¼ pE1 þ qE2; ð6Þ

where p/q is the relative toxicity of the two compounds,

assumed to be constant. Equation 6 assumes that toxicity

increases linearly with exposure and is additive. Exposure

pairs of equal costs, i.e., the level curves W (E1, E2-

) = constant, are in this case lines with slope - p/q, with

E1 and E2 are on the horizontal and vertical axes, respec-

tively. An example of a TSE curve and a level set of the

cost function is shown in Fig. 2.

As an example of a more intricate cost function, we

utilize the established framework around NTCP [18, 19].

Such models are commonly used to describe the proba-

bility of adverse events following radiation treatment

[30–32]. A widely used model for NTCP is the Lyman–

Kutcher–Burman (LKB) model which defines the NTCP as

NTCP tð Þ ¼ 1
ffiffiffiffiffiffi
2p

p
Z t

�1
e�x2=2dx; ð7Þ

where the variable t is defined by

t ¼ Deff � TD50

mTD50

; ð8Þ

and where Deff is the effective dose, which accounts for

non-uniform dose distribution, TD50 is the dose associated

with 50% complication risk, and m is a slope parameter for

the sigmoidal curve [25, 33]. From these equations we can

see that a larger value of Deff corresponds to a larger value

for t, which in turns means a greater risk of complications.

The key question when defining a cost function for

radiation and radiosensitizer combinations is how to

introduce radiosensitizing treatment into the NTCP model.

Since TD50 is a typical measure of radiation sensitivity, we

propose to let the radiosensitizer modulate this parameter

and thereby increase the risk of complications. Assuming

an exponential sigmoidal modulation function gives a new

definition of t,

t ¼ Deff � TD50I Cð Þ
mTD50I Cð Þ ð9Þ

where I(C) is an exponential inhibitory function with

parameter ks [34]:

I Cð Þ ¼ exp �ksCð Þ: ð10Þ

We can thus use the NTCP model as a cost function with

exposures E1 = Deff = D (total radiation dose) and E2 = C,

where C is the radiosensitizer concentration at the time of

irradiation. Note that NTCP depends on the exposures E1

and E2 only through the variable t. Therefore, exposure

combinations with equal complication risk have the same

value for t. Thus, solving for Deff in Eq. 9 gives the

expression for equal cost

Deff ¼ 1þ mtð ÞTD50 exp �ksCð Þ: ð11Þ

Equation 10 describes a sigmoidal relationship between

exposure pairs (Deff, C) with equal cost.

Equipped with a cost function, we search along the TSE

curve for the exposure pair with the lowest cost. Repeating

this procedure for each combination gives a sequence of

lowest costs, each corresponding to a different combination

therapy. These values can then be used to compare and

rank combination therapies.

The procedure for comparing and ranking combinations

is summarized below:

(1) Choose a suitable tumor model given available data

and calibrate the model to obtain parameter estimates

(2) Compute the TSE curves and insert the estimated

parameter values

Fig. 2 TSE curve for two compounds with exposures E1 and E2

(blue). Exposure pairs above the curve give rise to tumor shrinkage,

whereas exposure pairs below the curve result in tumor growth. A

level set where the cost W is constant is shown in black, dashed, with

the corresponding W* (color figure online)
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(3) Choose an appropriate cost function W for each

combination and find the minimum cost W* along the

TSE curve

(4) Repeat Steps 1–3 for each drug combination

(5) Compare W* across combination therapies and

choose the combination with the lowest cost

Tumor shrinkage exposures

TSE curves are based on the requirement of tumor stasis.

This is valuable since the curve divides the exposure plane

into regions of tumor growth and tumor shrinkage. How-

ever, in practice, tumor shrinkage may not be enough and

one can therefore look at tumor shrinkage with different

rates. This leads to a generalization of TSE called tumor

shrinkage exposure (TSEq) where q is the relative change

in volume for a given time unit, q ¼ V t1ð Þ�V t2ð Þ
V t1ð Þ , where

t2[ t1 are two time point, and t2 - t1 is the chosen time

unit. In particular, TSE0 is the regular TSE curve, and

TSE0.5 requires that the tumor shrinks by 50% of its size

every for every unit of time that elapses. TSEq is derived

analogously to TSE, with the difference that the growth

rate is set to a constant different from zero. The concept of

TSEq curves is illustrated for the case study in the Results

section.

Computational methods

The tumor model was calibrated to xenograft data using a

nonlinear mixed-effects approach based on the first-order

conditional estimation (FOCE) method in a computational

framework developed at the Fraunhofer-Chalmers

Research Centre for Industrial Mathematics (Gothenburg,

Sweden) and implemented in Mathematica (Wolfram

Research) [35]. Exposure data for compounds A1, A2, and

A3 were described using one-compartment pharmacoki-

netic models. Model evaluation was based on goodness-of-

fit, empirical Bayes estimates, and residual analysis.

Lognormal distributed between-subject variability was

added to the initial volume of the main compartment V0

and the growth rate kg. Residual errors were assumed to be

proportional to tumor volume with zero mean and variance

r2V . As done previously, the ratio between a and b was set

to 10 [23, 36].

Results

First, the results of fitting the tumor model to the experi-

mental data are presented. Then, TSE curves corresponding

to combination therapy with radiation and each of the three

radiosensitizers A1, A2, and A3, are computed. Finally, the

procedure for comparing and ranking combinations is

illustrated for two toxicological settings.

Tumor model for radiation and radiosensitizer
combination treatment

Exposure profiles for each of the three radiosensitizers A1,

A2, and A3 were described by standard one-compartment

pharmacokinetic models, with parameter estimates given in

Table 1. Simulated PK profiles used to drive the pharma-

codynamic tumor model are shown in Fig. 3. The exposure

of compound A1 (green) was approximately ten times

lower than the exposures of compounds A2 (blue) and A3

(purple).

The tumor model adequately described observed data

from each of the six treatment groups. Examples of indi-

vidual fits for each treatment group are shown in Fig. 4. In

the vehicle group, tumor growth was approximately

exponential during the observed time period. Tumors

treated with radiation monotherapy reached approximate

stasis during treatment and in some cases showed signs of

regression. Tumors treated with radiation and compound

A1 combination therapy exhibited significant regression

and in most cases the tumors were eradicated. Tumors

treated with radiation and compound A2 showed significant

regression with the lower dose (25 mg/kg) and in most

cases tumor eradication with the higher dose (100 mg/kg).

Lastly, tumors treated with radiation and compound A3

also exhibited tumor eradication in most instances. Visual

predictive checks for the tumor model can be found in

Supplemental Information S1.

The parameter estimates from fitting the tumor model

simultaneously to all treatment groups are given in Table 2.

The net growth rate kg � kk ¼ 0:16=day corresponds to an

average doubling time of 4.3 days for the vehicle group.

System and radiation parameters were estimated with good

precision, whereas drug parameters were estimated with

lower but still acceptable precision (RSE\ 40%).

TSE curves for radiation and radiosensitizer
combinations

Following the same principles as in [23] the following

expression for the TSEq curves was derived

DIR ¼
� aþ ajaCj

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ ajaCj

� �2þ4 bþ ajbCj

� �
kgT � kkT þ log 1� qð Þ
� �q

2 bþ ajbCj

� �

ð12Þ

where DIR is the radiation dose given every T days, and Cj

is the plasma concentration of Aj at the instance of irra-

diation. The details can be found in Supplemental Infor-

mation S2.
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The TSE curves for the three combination therapies

involving radiation and one of the radiosensitizing agents

A1, A2, and A3, were computed by inserting the parameter

estimates from Table 2 into Eq. 12, using T = 1 day to

indicate daily dosing. The resulting TSE curves are shown

in Fig. 5.

Fig. 3 Simulated PK profiles for compounds A1, A2, and A3 with corresponding plasma concentrations C1, C2, and C3. Doses of 100 mg/kg

(compounds A1 and A2) or 20 mg/kg (compound A3) were given 5 days a week for 6 weeks

Fig. 4 Examples of individual

fits for each of the six treatment

groups: vehicle (black),

radiation monotherapy with

2 Gy per dose (red),

combination therapy with

radiation and A1 at 100 mg/kg

per dose (green), combination

therapy with radiation and A2 at

25 mg/kg or 100 mg/kg per

dose (blue), and combination

therapy with radiation and A3 at

20 mg/kg per dose (purple)

(color figure online)

Table 1 Parameter estimates for

the one-compartment

pharmacokinetic models

describing exposure to the

compounds A1, A2, and A3 in

terms of plasma concentration

Parameter Compound Population median (RSE%) Between-subject variabilitya (RSE%)

ke (/h) A1 0.092 (9) 63 (15)

A2 0.35 (7) 18(13)

A3 0.27 (9) 6 (13)

V (L/kg) A1 110 (8) 26 (14)

A2 12 (8) 14 (17)

A3 2.6 (6) 2 (21)

rbc(%) A1 14 (25) –

A2 15 (22) –

A3 27 (20) –

aCalculated as
ffiffiffiffiffiffi
x2

ii

p
� 100

bIntra-individual variability
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The TSE value for radiation monotherapy was estimated

to 1.3 Gy, meaning that for the median individual a daily

dose of 1.3 Gy would be sufficient for approximate tumor

stasis. Since the compounds A1, A2, and A3, have no

monotherapy effect, they have no TSE values. Instead, the

TSE curves asymptotically approach the concentration axis

as the plasma concentrations of the compounds approach

infinity. The TSE curve for combinations of radiation and

compound A1 (left) exhibits the largest curvature. Indeed,

that TSE curve associated with A1 lies strictly below the

TSE curve for the other two combination therapies.

Comparing combinations of radiation
and radiosensitizers

The procedure outlined in the Methods section is applied to

compare and rank the three combination therapies for two

toxicological models. Using the first model, we consider

two scenarios: one based on the assumption that all

radiosensitizers are equally toxic, and one where the toxi-

city of compound A1 is increased tenfold. The cost func-

tions are given by

W DIR;Cj

� �
¼ pDIR þ qjCj ð13Þ

where DIR is the radiation dose with toxicity coefficient p,

and Cj is the plasma concentrations of compound Aj with

toxicity coefficient qj. First, assuming that all test com-

pounds are equally toxic means that q1 = q2 = q3. The

costs associated with each combination pair (DIR, Cj) on

the corresponding TSE curve are illustrated in Fig. 6 (left).

The parameter s indicates the location along the TSE curve

with s = 0 corresponding to radiation monotherapy, and

s = 1 corresponding to monotherapy with the radiosensi-

tizer. Note that, for the particular tumor model in this case

study, the radiosensitizers have no monotherapy effect,

which means that s = 1 corresponds to an infinitely large

exposure of the radiosensitizer and therefore also an infi-

nite cost/toxicity. The parametrization has been performed

Fig. 5 TSE curves for combinations of radiation and radiosensitizers

A1 (left), A2 (middle) and A3 (right) obtained by inserting the

parameter estimates from Table 2 into Eq. 12. TSE curves are shown

in blue. Regions above and below the curves correspond to

combination pairs that result in tumor shrinkage, or tumor growth,

respectively. The dashed reference lines indicate the daily radiation

dose required for tumor shrinkage during monotherapy

Table 2 Parameter estimates for the tumor model describing the effects of radiation and radiosensitizer combination therapy

Parameter Population median (RSE%) Between-subject variabilitya (RSE%) Description

kg (/day) 0.50 (5) 53 (2) Natural growth rate

kk (/day) 0.34 (5) – Natural kill rate

V0 (mm3) 26.0 (8) 7 (11) Initial volume of main compartment

a (/Gy) 0.11 (6) – Linear radiation parameter

b (/Gy2) 0.011 (6) – Quadratic radiation parameter

a1 (mL/lg) 0.27 (33) – Pharmacodynamic parameter of A1

a2 (mL/lg) 0.038 (36) – Pharmacodynamic parameter of A2

a3 (mL/lg) 0.028 (35) Pharmacodynamic parameter of A3

rbV (%) 28.0 (3) – Proportional standard error

aCalculated as
ffiffiffiffiffiffi
x2

ii

p
� 100

bIntra-individual variability
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such that s = 0.5 corresponds to Cj = 25 lg/mL. This is an

arbitrary scaling of the parametrization that does not affect

the optimization problem and is performed only to make

the figures easier to interpret. This amounts to the

parametrization given in Eq. 14 below

W sð Þ ¼ pDIR
25s

1� s

� �
þ qj

25s

1� s
ð14Þ

with DIR (Cj) given as in Eq. 12.

The cost coefficients were set to p = 100/Gy and qj-
= 1 mL/lg. Figure 6 (left) shows that combination ther-

apy with A1 has the lowest cost (for s & 0.5Þ. We then

consider the second scenario, where the toxicity of A1 has

been increased by a factor ten, q1 = 10 mL/lg, which is

illustrated in Fig. 6 (right). A1 is no longer the best treat-

ment option, since A2 and A3 both have lowers costs (oc-

curring at s & 0.6).

Figure 7 shows the results using the more complex

NTCP model as cost function. For this model, we use

values of TD50 = 50 Gy and m = 0.5 to describe radiation

treatment and set the radiation parameter ks to 0.02 mL/

lg/day for all three radiosensitizers. Similar to the case

with a linear cost function, A1, which is the most effica-

cious, has the lowest cost. Compared with the linear case,

the value of the radiosensitizer parameter ks for A1 would

need to be decreased approximately tenfold for another

radiosensitizer to become the most promising candidate.

The parametrization of the cost function along the TSE

curve, with parameter s going from s = 0 (radiotherapy) to

s = 1 (radiosensitizer monotherapy) is given in Eq. 15.

W sð Þ ¼ NTCP
DIR

25s
1�s

� �
� TD50I

25s
1�s

� �

TD50I
25s
1�s

� �

 !

ð15Þ

where DIR is given by Eq. 12, I is given by Eq. 10, and

NTCP is given by Eq. 9.

Fig. 6 Hypothetical costs W for different combinations along the TSE

curves in Fig. 5 for combination therapy with radiation and

radiosensitizers A1 (green), A2 (blue), and A3 (purple). The left plot

assumes that all three compounds are equally toxic, whereas in the

right plot the toxicity of A1 (green) has been increased by a factor ten.

The parameter s represents the position on the TSE curve with s = 0

corresponding to radiation monotherapy and s = 1 monotherapy with

compound Aj (color figure online)

Fig. 7 Hypothetical costs W
using the NTCP model (Eq. 15)

for radiation and radiosensitizer

combinations, A1 (green), A2

(blue), and A3 (purple), along

the TSE curves in Fig. 5. The

left plot assumes equal toxicity,

whereas the right plot assumes a

tenfold increase for

radiosensitizer A1 (color

figure online)
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Tumor shrinkage exposures

Figures 5 and 6 are used to minimize the cost of combi-

nation therapy with the respect to the TSE curve, i.e., while

making sure the tumor is not growing. As pointed out in the

Methods section, it is also possible to require that the

tumors shrink at a specified rate, by introducing the TSEq

curves. TSEq curves are illustrated in Fig. 8 for combina-

tions of radiation and compound A2, assuming a linear cost

function as in Fig. 6. The three TSEq curves (blue) consists

of exposure pairs (DIR, Cj) that keep the tumor in stasis,

shrink the tumor to half its size, and shrink the tumor to one

eighth of its size, respectively.

For each TSEq curve, it is possible to minimize the costs

of combination therapy following the same procedure as

described earlier. Thus, for a given combination, consider

how the minimum cost, Wmin, varies depending on how

quickly the tumor is required to shrink, i.e., q. Figure 9

depicts this scenario for combinations of radiation and the

three radiosensitizers as a function of the parameter

1=1� q under the assumption that all compounds are

equally toxic. Note that combination therapy with A1

(green) always has the lowest cost.

Discussion

Recent decades have seen a growing focus on combination

therapies as a way to combat resistances and to obtain

synergistic effects [37, 38]. Our analysis of radiotherapy

and radiosensitizer combinations in this paper is focused on

the latter, while also addressing toxicity and side-effects.

As with any model-based analysis, good predictions and

results are contingent not only on data [39], but also on

sound modeling methodology [40, 41]. Details on this

topic, particularly in the context of oncology, can be found

e.g. in several papers by Mould et al. [42–44]. The

remainder of this discussion considers, in order: the

mathematical tumor model, the resulting TSE curves and

concepts, and, finally, our proposed optimization and

ranking procedure for radiation and radiosensitizer

combinations.

Tumor model for radiation and radiosensitizer
combinations

The model used in this paper in based on an earlier model

(see [23]), with two minor differences. As in [24] an

exponential growth function was favored over logistic

growth, since it proved sufficient to describe vehicle data

and no plateaus in tumor volumes were observed. Sec-

ondly, we assumed no monotherapy effect for the

radiosensitizers, which is expected to be negligible given

that the compounds interact with the repair mechanisms of

DNA damage induced by irradiation.

The growth and kill rates were estimated to similar

values to those in [23, 24], and the net growth rate kg - kk
of 0.15/day, corresponds to a doubling time of 4–5 days,

which is similar to other models [21, 23, 26, 27, 45]. The

estimated a and b values of 0.11/Gy and 0.0011/Gy2 are in

line with reported ranges of 0.02 - 0.2 for a and

0.001 - 0.6 for b [46]. Model parameters were estimated

Fig. 8 Examples of TSE curves for combinations of radiation and

compound A2. TSE1, TSE2, and TSE8 corresponding to shrinkage

rates that keep the tumor in stasis, reduce the tumor to half its size,

and reduce the number of proliferating tumor cells to one eighth of its

size with each daily dose, respectively

Fig. 9 Minimal costs w* as a function of relative shrinkage rate q for

combinations of radiation and A1 (green), A2 (blue), and A3 (purple).

Here

1

1� q
¼ V1 t1ð Þ=V1 t2ð Þ

is a more natural parameter such that the minimal cost is an

increasing function of the parameter. The figure shows that, for any

value of q, the compound A1 has the lowest cost, since the curves

never intersect
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with reasonable precision, although the radiosensitizer

parameters ai had somewhat lower precision

(RSE% & 35), which is partially explained by the fact that

each ai is only informed by one or two treatment groups,

whereas other model parameters are informed by all data.

Like many tumor models used preclinically, our model

contains a sequence of damage compartments

[26, 27, 29, 45], and can be viewed as a combination of

these models with the linear-quadratic model in radiobi-

ology [15], or compartment radiation models that imple-

ment the linear-quadratic model with delay [21, 22].

Compared with systems pharmacology models for radia-

tion and chemical combinations, e.g., Checkley et al. [17],

Kosinsky et al. [16], our model is simpler and, although

less mechanistic, can be calibrated to standard xenograft

data.

TSE curves for radiation
and radiosensitizer combinations

TSC and TSE have been developed and applied in a series

of papers [23, 26, 27, 29]. They are tailored specifically to

cancer treatments (single-agents or combinations), and are

connected to qualitative behavior (tumor growth or

shrinkage) of the disease as well as synergy, unlike general

models such as the isobologram [47, 48] and the half-

maximal effect curve [49] which focus only on synergy. In

radiation oncology, TCP models are used to assess proba-

bilities of tumor eradication, recurrence, or emergence of

metastases [20, 50], which is similar to TSE in that it also

aims to control or destroy cancer cells.

In our analysis, greatest synergy occurred with

radiosensitizer A1, which can also be seen from the cur-

vatures of the TSE curves (Fig. 5). This happens because

although observed tumor growth was similar across com-

binations, exposure levels were approximately ten times

lower for compounds A1 (see Fig. 3). However, proper

assessment requires consideration not only of efficacy, but

joint consideration of efficacy and toxicity.

Comparing combinations of radiation
and radiosensitizers

In our case study involving radiation and three radiosen-

sitizing agents, Fig. 6 (left) shows that radiosensitizer A1 is

the superior radiosensitizer given that all compounds are

equally toxic, which holds for either cost function. More-

over, Fig. 6 (right) shows that the toxicity of A1 would

have to be increased tenfold over A2 and A3 for another

radiosensitizer to become preferable. This result held true

for both cost functions. However, since the NTCP model is

nonlinear and contains multiple sigmoidal functions, these

results depend on the chosen parameter values.

Our proposed method evaluates combinations of radia-

tion and radiosensitizers by the ability to induce tumor

regression relative to toxicity. Two toxicity functions, or

cost functions are considered: one linear, and one based on

NTCP. The former approach was also considered in [29] to

find an optimal combination for two anticancer com-

pounds. A similar analysis can be found in [51] where

phase one clinical data were used to construct a toxicity

function with linear terms as well as a quadratic term to

penalize combination treatment.

In radiotherapy, TCP and NTCP models are often

combined to optimize treatment [52, 53]. In our analysis,

the tumor model together with TSE appear instead of a

TCP model, which we consider in conjunction with the

commonly used Lyman NTCP model [25]. Here, we note

similar results using a linear model and an NTCP model

(see Figs. 6, 7) although the sigmoidal nature of the NTCP

model produced somewhat flatter cost around the minima,

which implies that good therapeutic response is less sen-

sitive to perturbations and is therefore easier to achieve.

Alternative NTCP models also exist (see e.g., [54–57])

although most tend to be static (as opposed to dynamic, or

temporal) and empirically founded.

Dynamic models of toxicity have also been developed.

In [58] Krzyzanski et al. proposed a model of thrombo-

cytopenia following combined chemotherapy and radiation

treatment. Scenarios when the tumor model as well as the

toxicity model are both dynamic can be approached using

optimal control theory [59, 60]. The approach to selecting

and ranking combinations presented in this paper could

also be used in combination with other optimization

approaches such as those that design treatment protocols to

yield the most amount of information about the compounds

[61, 62].

Conclusions and perspectives

We have demonstrated how a model-based approach, using

TSE, can be used to compare and rank radiation and

radiosensitizer combinations. The analysis weighs efficacy

(tumor regression) against side-effects (toxicity) in order to

provide a fair comparison and ranking of the different

combinations.

While the chosen criteria for comparing combination

therapies are natural, they are not the only reasonable

choice. An alternative choice could be to compare the rate

of tumor regression for each combination at a specified

maximum tolerable exposure, i.e., exchanging the roles

that efficacy and toxicity play in the optimization problem.

Our analysis is focused on radiotherapy combined with

radiosensitizing treatment. A similar approach using TSE

and cost functions could also be considered for chemical

combinations. However, the underlying pharmacokinetic,
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pharmacodynamic, and toxicity modeling would have to

account for potential drug interactions.
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