
Research Article
A Novel Necroptosis-Associated lncRNA Signature Can Impact
the Immune Status and Predict the Outcome of Breast Cancer

Xin Zhang, Xingda Zhang, Guozheng Li, Yi Hao, Lei Liu, Lei Zhang, Yihai Chen, Jiale Wu,
Xinheng Wang, Shuai Yang, and Shouping Xu

Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China

Correspondence should be addressed to Shouping Xu; shoupingxu@hrbmu.edu.cn

Received 27 March 2022; Revised 21 April 2022; Accepted 22 April 2022; Published 5 May 2022

Academic Editor: Fu Wang

Copyright © 2022 Xin Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Breast cancer (BRCA) is one of the leading causes of death among women worldwide, and drug resistance often leads to a poor
prognosis. Necroptosis is a type of programmed cell death (PCD) and exhibits regulatory effects on tumor progression, but few
studies have focused on the relationships between necroptosis-associated lncRNAs and BRCA. In this study, we established a
signature basis of 7 necroptosis-related lncRNAs associated with prognosis and divided BRCA patients into high- and low-risk
groups. Kaplan-Meier curves all showed an adverse prognosis for patients in the high-risk group. Cox assays confirmed that
risk score was an independent prognostic factor for BRCA patients. The receiver operating characteristic (ROC) curve proved
the predictive accuracy of the signature and the area under the curve (AUC) values of the risk score reached 0.722. The
nomogram relatively accurately predicted the prognosis of the patients. GSEA analysis suggested that the related signaling
pathways and biological processes enriched in the high- and low-risk groups may influence the tumor microenvironment
(TME) of BRCA. ssGSEA showed the difference in immune cell infiltration, immune pathway activation, and immune
checkpoint expression between the two risk groups, with the low-risk group more suitable for immunotherapy. According to
the significant difference in IC50 between risk groups, patients can be guided for an individualized treatment plan. Overall, the
authors established a prognostic signature consisting of 7 necroptosis-associated lncRNAs that can independently predict the
clinical outcome of BRCA patients. The difference in the tumor immune microenvironment between the low- and high-risk
populations may be the reason for the resistance to immunotherapy in some patients.

1. Introduction

The latest global cancer burden data for 2020 shows that the
incidence of breast cancer (BRCA) has overtaken lung carci-
noma as the most common cancer worldwide, and it is one
of the leading causes of cancer death among women [1].
With the development of modern medicine, more sensitive
and efficient imaging techniques are emerging, which has
led to a distinct increase in the rate of early diagnosis of
BRCA and a drastic reduction in the mortality rate, but the
prognosis for patients remains poor for a variety of reasons
[2, 3]. Traditional treatments for breast cancer, including
surgery, targeted therapy, endocrine therapy, radiotherapy,
and chemotherapy, have greatly extended patient survival
[4]. In addition, there are also some emerging treatment
methods, such as immunotherapy, which are gradually

introduced in clinical treatment [5]. However, the cure rate
remains low due to drug resistance for a variety of reasons
[6]. Therefore, finding a reliable prognostic signature and
new therapeutic targets are the best ways to achieve a cure
for BRCA.

Necroptosis is a new form of programmed cell death
(PCD) mediated mainly by mixed lineage kinase domain-
like protain [7]. After the tumor necrosis factor binds to its
receptor (TNFR1), RIPK1 is activated, and the activated
RIPK1 forms a complex with receptor-interacting serine-
threonine kinase 3 (RIPK3) [8]. Then, MLKL is phosphory-
lated and recruited into a complex termed the necrosome
through its interaction with RIPK3 [9]. MLKL moves to
the plasma membrane to form pores, and then, the mem-
brane is destroyed [10]. Necroptosis eventually leads to
swelling of organelles, cell membrane rupture, and release
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of cytoplasmic contents [11]. More and more evidence
indicates that necroptosis is involved in the progression of
several types of cancers [12]. After the rupture of the cell
membrane, its contents are released, exposing damage-
related molecular patterns (DAMP), which induce immuno-
genic cell death (ICD), promoting the phagocytosis and pro-
cessing of tumor antigens by dendritic cells (DC) and the
activation and proliferation of antitumor T cells [13]. At
the same time, it can change the tumor microenvironment
(TME), promote the increase of tumor-infiltrating lympho-
cytes (TILs), and ultimately make the tumor more sensitive
to immune checkpoint inhibitors (ICI) [14].

Long noncoding RNA, a kind of transcript longer than
200 bp, does not have the function of an encoding protein
[15]. Although lncRNAs cannot be translated into proteins,
they still exhibited a regulatory effect on gene expression
and several physiological processes such as cell proliferation,
differentiation, migration, and apoptosis [16]. According to
previous research, lncRNAs can cause breast cancer and its
development [17]. For example, in triple-negative breast
cancer (TNBC), LINC00096 can inhibit the epithelial-
mesenchymal transition (EMT) process by regulating the
miR-383-5p/RBM3 axis [18]. In addition, LINC00339 plays
a carcinogenic role by regulating the miR-377-3p/HOXC6
axis, which may be a pathogenic factor for breast cancer
[19]. Similarly, lncRNA HEIH, as an oncogenic noncoding
RNA, is involved in SOCS1-regulated cell proliferation and
apoptosis by serving as a sponge for miR-4458 [20]. Accord-
ing to the findings above, it seems clear that lncRNAs play a
significant role in BRCA. However, few studies have focused
on necroptosis-related lncRNAs, and the mechanism has not
been clarified yet. Therefore, the authors need to further
characterize these molecules.

In this study, we aimed to develop a novel prognostic
model for BC. This work discovered seven lncRNAs linked
to necroptosis associated with BRCA and developed a pre-
diction signature that can accurately assess patient progno-
sis. Then, to better predict patient survivals, we developed
a nomogram. In addition, we conducted a differential analy-
sis of TME and drug sensitivity between low-risk and high-
risk groups, in order to find a more appropriate treatment
for BRCA and offer more valuable insights for clinical treat-
ment selection.

2. Materials and Methods

2.1. Data Acquisition and Information Extraction. We
obtained the transcriptome information of 1208 BRCA
patients from The Cancer Genome Atlas (TCGA) website
(https://portal.gdc.cancer.gov/) including mRNA and lncRNA
levels. Additionally, we gathered clinical data on BRCA
patients from the same website, eliminating patients who
had missing follow-up information or pathological data that
was incomplete, resulting in a total of 848 patients for the fol-
lowing analysis. Necroptosis-associated genes were down-
loaded from the KEGG website, (https://www.kegg.jp/), and
ultimately, 157 genes were obtained by referring to published
literature [21, 22]. Finally, 140 genes associated with necropto-

sis were retrieved from the BRCA mRNA expression data
available in TCGA (Table S1).

2.2. Building a Predictive Risk Signature Based on lncRNAs
Associated with Necroptosis. Pearson correlation analysis
was conducted for 140 necroptosis-related genes to examine
the relationships between gene and lncRNA data expressed
in all cases. Then, a total of 1241 necroptosis-related
lncRNAs were identified based on Pearson correlation coef-
ficients greater than 0.3 and P values less than 0.05 (R > 0:3,
P < 0:05). Based on univariate assays, 61 lncRNAs related to
necroptosis were identified to be distinctly related to prog-
nosis in BRCA patients, which were identified as candidate
lncRNAs (Table S2). And then, these lncRNAs were
included in multivariate assays to calculate risk scores to
construct the risk signature (Table S3). The following
formula was used for each patient’s risk score.

Risk Score = explncRNA1 ∗ coef lncRNA1 + explncRNA2
∗ coef lncRNA2+⋯+explncRNAi
∗ coef lncRNAi:

ð1Þ

exp represents the gene expression and coef represents
the coefficient value. Based on the median risk score,
BRCA patients in the TCGA datasets were split into high-
risk and low-risk categories. The difference in overall
survival (OS) was examined utilizing the Kaplan-Meier
assays.

2.3. Verification of the Necroptosis-Associated lncRNA Risk
Signature. We separated the TCGA database cohorts ran-
domly into two groups of about 1 : 1 ratio, called the training
set and the testing set, to further evaluate the accuracy of this
signature. This algorithm was used to split patients into
high- and low-risk groups based on their risk ratings in both
training and testing sets. After that, an OS comparison using
a Kaplan-Meier analysis was carried out between the two
groups. Survival curves were generated, and the area under
the curve was calculated using time-dependent receiver
operating characteristic (ROC) curves. In addition, univari-
ate and multivariate assays were conducted for the examina-
tion of whether risk scores and other possible characteristics
were independent variables in predicting prognosis, to deter-
mine prognostic indicators.

2.4. Bioinformation Analysis. The mRNA-lncRNA coexpres-
sion network between seven necroptosis-related lncRNAs
and their corresponding necroptosis-related genes was con-
structed by the use of the Cytoscape program 3.7.2 [23].
The R package “ggalluvial” was used to construct a Sankey
diagram to prove the relationship between necroptosis-
related lncRNAs and their corresponding genes. Using the
R package “scatterplot3d,” a principal component analysis
(PCA) diagram was created to examine the distribution of
patients under various scenarios.

2.5. Construction of Nomogram.We created a nomogram for
BRCA patients using the R package “rms,” which combined
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Figure 1: Continued.
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risk scores with clinical factors such as age, stage, and TNM
stage to produce predictions for 1-, 3-, and 5-year survivals.
To evaluate the nomogram’s accuracy in predicting both
expected and actual survival rates, we performed a calibra-
tion curve study.

2.6. Gene Set and Function Enrichment Analysis (GSEA).
GSEA was used to analyze which cell functions and cell sig-
naling pathways were mainly enriched between high-risk
and low-risk patients [24]. GSEA 4.1.0 was used to perform
the GSEA. Statistical significance was defined as P < 0:05 and
a FDR < 0:25. The Gene Ontology (GO) assays were con-
ducted from the perspective of biological functions, and the
Kyoto Encyclopedia of Genes and Genomes (KEGG) assays
were performed from the perspective of signaling pathways.

2.7. Analysis of Tumor Microenvironment and Clinical
Treatment Response in the Prognostic Risk Signature. We
used the “GSVA” package by single-sample gene set enrich-
ment analysis (ssGSEA) to calculate the immune cells’ infil-
tration scores and the activities of pathways involved in
immune function [25]. CIBERSORT algorithm was applied
to calculate levels of immune cell infiltration in all cases
and examined the relationships between the risk score and
the immune checkpoints expression levels [26]. Besides, we
compared the IC50 of clinically common drugs for BRCA
to observe the sensitivity of different groups of patients to
the drug using the R package “pRRophetic.”

2.8. Statistical Analysis. All statistical assays were conducted
with the use of R software (version 3.6.2). The Wilcoxon test
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Figure 1: Identification of necroptosis-related lncRNAs with predictive prognostic values in BRCA. (a) The forest plot shows the HR (95% CI)
and P values (P < 0:05) of selected lncRNAs determined using univariate analysis. (b) The Sankey diagram shows the association between
lncRNAs, mRNA, and risk types. (c) lncRNA-mRNA coexpression network of necroptosis-associated lncRNAs and corresponding
genes. (d) Expression levels of 7 lncRNAs associated with necroptosis in tumor tissue and normal tissue.
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was used to compare proportion of tumor-infiltrating
immune cells and expression levels of immune checkpoints
between two risk groups. Spearman correlation analysis was
used to identify the correlation between tumor-infiltrating
immune cells. The forest maps are drawn using the R package
“ggplot2.” The R package “survival rock” is applied to plot the
ROC curve and determine the area under curve (AUC) value
[27]. P < 0:05 was considered statistically significant.

3. Results

3.1. Necroptosis-Associated lncRNAs with Prognostic Value in
BRCA Patients Were Identified. We first selected 157 genes
related to necroptosis, and according to the expression data
obtained in TCGA, a total of 140 genes were expressed.
Then, 1241 lncRNAs associated with necroptosis were ana-
lyzed by Pearson correlation analysis (R > 0:3, P < 0:05).
After that, 61 lncRNAs were found to be prognostic by uni-
variate assays, suggesting that these lncRNAs may have pre-
dictive values for outcomes of BRCA patients. Among them,
the HR of 6 lncRNAs was greater than 1.0, while the HR of
55 lncRNAs was less than 1.0 (Figure 1(a)).

3.2. Identification of Necroptosis-Associated lncRNAs
Associated with Prognosis in Breast Cancer. We used multi-
variate assays for the identification of 7 lncRNAs associated
with necroptosis ultimately (AC010834.3, AL031186.1,
AL136531.1, LINC01871, MAPT-AS1, SEMA3B-AS1, and
AL606834.2) and applied them to develop a predictive prog-
nostic risk signature of breast cancer. Among them, 1
lncRNA was an unfavorable prognostic factor, while the
remaining 6 lncRNAs were favorable prognostic factors
(Figure 1(b)). The expression relationship between these 7
lncRNAs and necroptosis-related genes is shown in

Figure 1(c). In addition, according to the transcriptome
information extracted from the TCGA database, we can also
see the expressions of the 7 lncRNAs in normal tissues and
tumor specimens (Figure 1(d)). Then, based on the risk
score formula, we calculated the risk scores of each patient,
ranked them, and used the median as the threshold, thus
dividing the patients into two groups (high-risk group:
n = 511, and low-risk group: n = 511). The median value
of the risk score is 1.18178.

3.3. Correlation between Prediction Signature and Outcome
of Patients. Kaplan-Meier analysis was performed to com-
pare the OS times of patients in the low- and high-risk
groups based on individual risk scores. Compared with the
high-risk group, the OS time in the low-risk group was dis-
tinctly longer (Figure 2(a)). The expression levels of the 7
lncRNAs in the high-risk and low-risk groups are shown
in Figure 2(b). The risk scores of the two groups are dis-
played in Figure 2(c). More patients died as their risk scores
rose (Figure 2(d)). Moreover, according to the ROC curve
analysis, the AUC values were: 1-year survival of 0.671,
3-year survival of 0.718, and 5-year survival of 0.718, indicat-
ing that the signature exhibited a strong ability in predicting
outcomes of BRCA patients (Figure 2(e)). The accuracy of
the signature was tested using training and testing sets
(Supplement Figure S1A-S1J). Table S4 displays the
individual patient data from the two groups.

3.4. Cell Function and Pathway Enrichment in GSEA. GSEA
was used for further analysis and functional annotation.
KEGG pathways are being identified to study necroptosis-
related signaling pathways. The data of GSEA revealed that
TGF-β signaling pathway, adherens junction, ubiquitin-
mediated proteolysis, Wnt signaling pathway, and oocyte
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Figure 2: Correlation between predictive risk signature constructed by 7 necroptosis-associated lncRNAs and prognosis of BRCA patients.
(a) Kaplan-Meier curve analyzed OS rates in high- and low-risk BRCA patients (b) Heat map of expression of 7 lncRNAs. (c) Risk score
distribution in BRCA patients (d) Survival status of patients with different risk scores. (e) ROC curve and area under the curve at
long-term survivals.
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meiosis were enriched in the high-risk group (Figure 3(a)),
while some other pathways were enriched in the low-risk
group, including arachidonic acid metabolism, autoimmune
thyroid disease, systemic lupus erythematosus, glycerophos-
pholipid metabolism, and primary immunodeficiency. In
addition, we further investigated the biological processes of
lncRNAs associated with necroptosis. GO enrichment
results indicate that cerebral cortex development, NLS bear-
ing protein import into nucleus, cadherin binding, spindle
localization, and blastocyst growth were enriched in groups
with higher risk. However, negative regulation of the diges-
tive system process, glycosyl compound catabolic process,
negative regulation of tumor necrosis factor superfamily
cytokine production, nucleoside catabolic process, and
nucleobase-containing small molecule catabolic process
were enriched in the low-risk group (Figure 3(b)).

3.5. Comparative Study of High- and Low-Risk Groups.
Figures 4(a)–4(d) exhibited the results of principal compo-
nent analysis. The four graphs represent the expression
levels of different gene types in high-risk and low-risk

groups. It was clear that in both groups of patients, the
expression of all examined genes, necroptosis-associated
genes, and lncRNAs could not effectively discriminate
between the low- and high-risk groups (Figures 4(a)–4(c)).
However, there was a distinct difference between the two
groups in the expressions of the 7 lncRNAs used in the risk
signature (Figure 4(d)). Through this, we can determine that
the necroptosis signature well distinguishes populations at
different risk.

3.6. Assessment of Risk Score as Independent Prognostic
Factor and Prediction of the Clinical Survival. Risk scores
for BRCA patients were examined using univariate and mul-
tivariate assays to establish whether or not the score was an
independent predictor of OS in these individuals. In the uni-
variate analysis, the HR (95% CI) of the risk score was 1.435
(1.307-1.576) (P < 0:001, Figure 5(a)); also, in multivariate
assays, the HR (95% CI) for the risk score was 1.357
(1.238-1.486) (P < 0:001, Figure 5(b)). Besides, AUC values
of the ROC curve were used to determine the accuracy of
the signature (Figure 5(c)). Among them, the AUC value
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Figure 4: Principal component analysis. A comparison of gene expression levels in low- and high-risk populations, as determined by the
expression of all examined genes (a), necroptosis-related genes (b), and lncRNAs (c) and the 7 lncRNAs of the prognostic signature (d).
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Figure 5: Continued.
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of the risk score (0.722) was significantly higher than other
clinical parameters, further demonstrating the excellent pre-
dictive ability of the signature for patients. To further predict
the outcome of patients with BRCA, we constructed a nomo-
gram that predicted the probability of survivals of cases at 1,
3, and 5 years (Figure 5(d)). Calibration curves showed good

agreement between actual OS rates and predicted 1-, 3-, and
5-year survival rates (Figures 5(e)–5(g)).

3.7. Prognosis Was Predicted by Combining Different
Clinical-Pathological Variables. To investigate the relation-
ships between predictive characteristics and outcomes of
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Figure 5: Risk scores became independent predictors of prognosis and constructed patient prognostic nomogram. Univariate (a) and
multivariate (b) analyses were performed to observe the association between clinical-pathological elements and overall survival. (c) The
ROC curve of age; stage; T, N, M stage; and risk score with OS for BRCA cohorts. A clinical prognostic nomogram (d) was developed to
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Figure 6: Continued.
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BRCA patients classified based on several clinical-pathological
features, they were grouped by age, survival status, stage, and
TNM stage (Table S5). For each different classification, the
OS of patients with high-risk scores was distinctly shorter
(Figures 6(a)–6(j)). Our findings suggested that risk scores
can predict the survival time of BRCA patients regardless of
other clinical elements. In addition, for each of the seven
prognostic lncRNAs and clinical components, we examined
the distribution of expression in the high-risk and low-risk
groups (Figure 7).

3.8. Correlation Analysis of Risk Score and 7 Prognostic
lncRNAs with Clinical-Pathological Factors. To examine the
roles of the risk score in breast cancer development, our
group carried out correlation assays between the risk score
and clinical-pathological elements. We also evaluated the
role of the 7 lncRNAs in disease development. As shown
in Figure 8(a), risk scores were distinctly related to patient
survival status. At the same time, the risk score is also corre-
lated with stage and T stage (Figures 8(b) and 8(c)). We
observed that risk scores are closely correlated with patient
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Figure 6: Kaplan-Meier assays in patients (high and low groups) sequenced according to different clinical-pathological ingredients: (a, b)
age; (c, d) stage; (e, f) T stage; (g, h) N stage; (i, j) M stage.
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Figure 8: Continued.
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outcomes. In addition, the different lncRNA was also corre-
lated with clinical-pathological ingredients. Among the 7
necroptosis-related lncRNAs, 3 protective lncRNAs played
a significant role. LINC01871 was associated with patients’
age, survival status, and T stage (Figures 8(d)–8(f)).
MAPT-AS1 was associated with patients’ survival status,
stage, and T stage (Figures 8(g)–8(i) SEMA3B-AS1 was asso-
ciated with patients’ age, survival status, and N and M stages
(Figures 8(j)–8(m)). In addition, it can be seen from the figure
that the expressions of these 3 lncRNAs are reduced in
patients with older age, higher stage, and death, which is con-
sistent with our previous findings. This may be a new thera-
peutic target, and we need further experimental validation.

3.9. Analysis of Tumor Microenvironment of Breast Cancer.
BRCA patients with necroptosis-related lncRNAs and TME
were analyzed by the use of the CIBERSORT algorithm,
which calculated the fraction of different immune cells.
The results showed that the proportion of different tumor-
infiltrating immune cells was significantly different between
the two groups (Figures 9(a) and 9(b)). As shown in
Figures 9(c) and 9(d), the CD8+ T cell, activated dendritic
cells (aDCs), DC cell, NK cell, and tumor-infiltrating lym-
phocyte (TIL) were higher in the low-risk group, while the
M0 macrophage cell, M2 macrophage cell, and DC resting
cell were higher in the high-risk group. In addition, we
analyzed the differences in immune function and immune
checkpoint between the two groups. As shown in
Figure 10(a), the checkpoint, chemokine receptor, cytolytic
activity, human leukocyte antigen, T cell costimulation,
inflammation promotion, and type II IFN response were sig-
nificant differences, which shows that tumors in high-risk
groups grow in immunosuppressive microenvironments.

Moreover, as shown in Figure 10(b), the expressions of
immune checkpoints, including CD274, CTLA4, LAG3, and
TIGIT, are generally low in the high-risk group, which partly
explains the lack of effects of ICI in BRCA, especially in TNBC.

3.10. Relationship between Prognostic Risk Signature and
Drugs for Treating BRCA. Our group analyzed the relation-
ship between predictive signature and medication in breast
cancer patients and determined that paclitaxel, CDK4/6
inhibitors, and HDAC inhibitors recommended in clinical
guidelines are more suitable for high-risk patients based on
the IC50 values of different risk groups (Figures 11(a)–
11(c)). Besides, we also studied the relationship between
small-molecule inhibitors and BRCA. The IC50 of MEK
inhibitors was higher in the high-risk group, while those of
PI3K inhibitors and Akt inhibitors were higher in the low-
risk group (Figures 11(d)–11(f)). The above findings may
help in the search for individualized treatment options.

4. Discussion

In this study, 61 lncRNAs associated with necroptosis were
identified, of which 6 was a risk factor and the rest were pro-
tective factors. Then, multivariate analysis was applied to
further identify 7 lncRNAs, i.e., AC010834.3, AL031186.1,
AL136531.1, LINC01871, MAPT-AS1, SEMA3B-AS1, and
AL606834.2, to have significant correlation with the progno-
sis of patients. Among them, MAPT-AS1 and SEMA3B-AS1
have been reported already. For example, researchers have
found that MAPT-AS1 is overexpressed in breast cancer
and that the high expression of MAPT-AS1 is beneficial to
patient survival and is probably a potential survival predic-
tive biomarker in breast cancer [28]. In addition, it has been
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Figure 8: Risk scores and 7 necroptosis-associated lncRNAs were associated with clinical-pathological features in BRCA patients.
Correlation between risk score (a–c), LINC01871 (d–f), MAPT-AS1 (g–i), and SEMA3B-AS1 (j–m) and clinical-pathological features.

14 Journal of Immunology Research



Re
la

tiv
e p

er
ce

nt

0%

20%

40%

60%

80%

100%

Low risk High risk

B cells naive
B cells memory
Plasma cells
T cells CD8
T cells CD4 naive
T cells CD4 memory resting
T cells CD4 memory activated
T cells follicular helper
T cells regulatory (tregs)
T cells gamma delta
NK cells resting

NK cells activated
Monocytes
Macrophages M0
Macrophages M1
Macrophages M2
Dendritic cells resting
Dendritic cells activated
Mast cells resting
Mast cells activated
Eosinophils
Neutrophils

(a)

T cells CD8

Plasma cells

T cells CD4 memory resting

Risk

Risk
Low

High

0

0.1

0.2

0.3

0.4

T cells follicular helper

Dendritic cells resting

Monocytes

Dendritic cells activated

NK cells activated

T cells gamma delta

Mast cells activated

B cells memory

NK cells resting

Neutrophils

T cells CD4 naive

Eosinophils

T cells CD4 memory activated

T cells regulatory (tregs)

Mast cells resting

B cells naive

Macrophages M0

Macrophages M1

Macrophages M2

(b)

Figure 9: Continued.

15Journal of Immunology Research



reported that SEMA3B-AS1 is downregulated in hepatocel-
lular carcinoma cells (HCC) and that its overexpression
may inhibit the proliferation of HCC cells by upregulating
PTEN via the downregulation of miR-718 [29]. Moreover,
SEMA3B-AS1 plays a tumor-suppressive role in gastric car-
dia adenocarcinoma tumorigenesis, and its expression level
is coregulated by promoter aberrant hypermethylation and
histone modification [30]. The authors demonstrated that
the risk signature was more accurate and reliable in predict-

ing BRCA patients’ prognosis without considering other
clinical-pathological ingredients.

In addition, GO and KEGG analyses using these differ-
entially expressed necroptosis-associated lncRNAs revealed
that these lncRNAs were primarily involved in the TGF-β
signaling pathway, WNT signaling pathway, and negative
regulation of TNF superfamily cytokine production. Previ-
ous studies have found that TGF-β promotes the metastasis
of breast cancer cells by inducing epithelial mesenchymal
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Figure 9: Immune-infiltrating cell score analysis of tumor microenvironment in patients with different risks. (a) The proportion of
immune-infiltrating cells in tumors. (b) Heat map of tumor immune-infiltrating cell expression. (c, d) Showing levels of infiltration of
immune cells.
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transformation (EMT) [31], thus making these cells lose
their cell polarity and adhesion characteristics, and develop-
ing the ability of migration and invasion [32]. TGF-β can
upregulate the expression of CXC chemokine receptor 4
(CXCR4), thereby enhancing the metastatic potential of
BRCA [33]. In TNBC, the PD-L1 expression was upregu-
lated through the WNT signaling pathway, and then, CD8
+ T cell activation was blocked [34]. Moreover, the WNT
signaling pathway stimulates IL-1 β production by tumor-
associated macrophages (TAM), resulting in phenotypically
altered neutrophils producing inducible nitric oxide
synthase (iNOS), which inhibits the activity of antitumor
CD8+ T cells and drives the metastasis of BRCA [35]. The
TNF superfamily of ligands (TNFSF) and receptors
(TNFRSF) is cosignaling in regulatory T (Treg) cells to sup-

press immune responses [36]. In addition, the TNF-related
apoptosis-inducing ligand (TRAIL), also a member of the
TNF superfamily, can transform the TME into a more
immunosuppressive type that promotes tumor growth [37].

In previous studies, cell death is divided into PCD and
accidental cell death (ACD) according to genetic control
[38], and apoptosis was considered to be the only form of
PCD [39]. However, in recent years, many other forms have
been found, such as pyroptosis, ferroptosis, and necroptosis
[40]. PCD produces inflammatory mediators that activate
innate immune responses and change the state of the tumor
microenvironment [41]. Induction of immunogenic cell death
(ICD) is the premise and basis of tumor immunotherapy [42].
The molecular pathways of necroptosis and apoptosis are very
similar, but the morphological changes are quite different [43].
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Figure 10: Analysis of immune-related functions and immune checkpoint expression in patients at high and low risk. (a) Correlations
between predictive signature and immune-related functions. (b) Differences in immune checkpoint expression levels among different
groups. ∗∗∗P < 0:001, ∗∗P < 0:01, ∗P < 0:05.
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The result of apoptosis is immune tolerance, while necroptosis
can activate the immune system to achieve tumor clearance by
inducing a robust inflammatory response [44].

The newly emerged ICI is a revolutionary approach to
cancer treatment, whose main target is to restore antitumor
immunity, yet only works in less than one-third of patients

[45]. In addition, secondary drug resistance often occurs in
patients who respond to treatment, which further limits
the progress of immunotherapy [46]. Tumor cells often
develop a variety of mechanisms to achieve immune evasion.
First, there is reduced expression of immune checkpoint
receptors, such as PD-L1, PD-1, CTLA-4,and TIM-3 [47].
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Figure 11: Comparison of drug sensitivity between high-risk and low-risk groups. IC50 of paclitaxel (a), IC50 of CDK4/6 inhibitors (b),
HDAC inhibitors (c), MEK inhibitors (d), PI3K inhibitors (e), and Akt inhibitors (f) in high-risk and low-risk populations.
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The second is the increase in immunosuppressive cell infil-
tration in the TME, for example, M2 tumor-associated mac-
rophages, MDSC, and Treg cell [48]. It has been shown that
the key to ICI’s therapeutic effect is the number of tumor-
infiltrating lymphocytes (TIL) [49], and because there is usu-
ally less TIL infiltration in breast cancer, it is called a “cold”
tumor [50]. Since necroptosis and antitumor immunity are
closely linked, necroptosis transforming “cold” tumors into
“hot” tumor in BRCA is the hinge to make immunotherapy
more sensitive.

According to subsequent results of tumor microenviron-
ment analysis, CD8+ T cell, NK cell, TIL, and other tumor-
killing immune cells scored higher in the low-risk group, while
M2-type macrophages and other immunosuppressive cells
scored higher in the high-risk group. In addition, the expres-
sion of immune cell-related activation pathways was also dif-
ferent between the two groups, with higher expression in the
low-risk group. For the expression level of the immune check-
point, the high-risk group generally expressed less, such as
CD274, CTLA4, and LAG3. Studies have shown that the lack
of TIL and the deficiency of immune checkpoint expression
are one of the reasons that lead to tumor insensitivity to ICI
[51]. Inflammatory forms that trigger localized tumor necrop-
tosis alter the tumor microenvironment and enhance the
response to ICI [52]. This is consistent with our results.

However, our research has some imperfections. Most of
the data analyzed in this study was based on TCGA datasets,
and we need more samples for repeated validation. Secondly,
we need to conduct some in vivo and in vitro experiments to
verify our findings. In addition, the specific mechanism and
relationship between these lncRNAs and breast cancer still
need further study.

5. Conclusion

We identified necroptosis-associated lncRNAs related to the
prognosis of breast cancer and established a prognostic risk
signature. At the same time, this study found differences in
the tumor microenvironment in high- and low-risk groups,
providing a reasonable explanation for immune drug resis-
tance. In addition, we performed a drug sensitivity analysis
to indicate the direction of individualized treatment for
breast cancer patients.

Data Availability

The authors declare that all the other data supporting the
findings of this study are available within the article and its
additional files and from the corresponding author upon
reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Xin Zhang and Xingda Zhang contributed equally to
this work.

Acknowledgments

This work was funded by the National Natural Science
Foundation of China (grant numbers 81602323 and
81872149).

Supplementary Materials

Supplementary 1. Table S1: a list of necroptosis-related
genes.

Supplementary 2. Table S2: univariate cox proportional haz-
ard regression analysis results of necroptosis-related lncRNAs
in BRCA.

Supplementary 3. Table S3: multivariate Cox proportional
hazard regression analysis results of necroptosis-related
lncRNAs in BRCA.

Supplementary 4. Table S4: clinical information variables for
BRCA patients in the high- and low-risk groups.

Supplementary 5. Table S5: Demographic and clinical char-
acteristics of BRCA patients in TCGA, training set, and test-
ing set.

Supplementary 6. Supplement Figure 1: the training set and
testing set are used to examine the veracity of the signature.
(A) Kaplan-Meier analyzed OS rates in the high - and low-
risk training set patients. (B) Heat map of expression of 7
lncRNAs in the training set. (C) Risk score distribution in
training set patients. (D) Survival status of training set
patients with different risk scores. (E) ROC curve and
AUC value at 1-year, 3-year, and 5-year survival for the
training set. (F) Kaplan-Meier analyzed OS rates in high-
and low-risk testing set patients. (G) Heat map of expression
of 7 lncRNAs in the testing set. (H) Risk score distribution in
the testing set patients. (I) Survival status of the testing set
patients with different risk scores. (J) ROC curve and AUC
value at 1-year, 3-year, and 5-year survival for the testing set.

References

[1] H. Sung, J. Ferlay, R. L. Siegel et al., “GLOBOCAN estimates of
incidence and mortality worldwide for 36 cancers in 185 coun-
tries,” CA: a Cancer Journal for Clinicians, vol. 71, pp. 209–
249, 2020.

[2] M. Wang, M. Dai, D. Wang et al., “The long noncoding RNA
AATBC promotes breast cancer migration and invasion by
interacting with YBX1 and activating the YAP1/Hippo signal-
ing pathway,” Cancer Letters, vol. 512, pp. 60–72, 2021.

[3] Y. Zou, X. Zou, S. Zheng et al., “Efficacy and predictive factors
of immune checkpoint inhibitors in metastatic breast cancer: a
systematic review andmeta-analysis,” Therapeutic Advances in
Medical Oncology, vol. 12, 2020.

[4] L. A. Emens, “Breast cancer immunotherapy: facts and hopes,”
Clinical Cancer Research, vol. 24, no. 3, pp. 511–520, 2018.

[5] Y. Tokumaru, D. Joyce, and K. Takabe, “Current status and
limitations of immunotherapy for breast cancer,” Surgery,
vol. 167, no. 3, pp. 628–630, 2020.

[6] Q. Zheng, M. Zhang, F. Zhou, L. Zhang, and X. Meng, “The
breast cancer stem cells traits and drug resistance,” Frontiers
in Pharmacology, vol. 11, article 599965, 2020.

19Journal of Immunology Research

https://downloads.hindawi.com/journals/jir/2022/3143511.f1.docx
https://downloads.hindawi.com/journals/jir/2022/3143511.f2.docx
https://downloads.hindawi.com/journals/jir/2022/3143511.f3.docx
https://downloads.hindawi.com/journals/jir/2022/3143511.f4.docx
https://downloads.hindawi.com/journals/jir/2022/3143511.f5.docx
https://downloads.hindawi.com/journals/jir/2022/3143511.f6.pdf


[7] Y. Wang and T.-D. Kanneganti, “From pyroptosis, apoptosis
and necroptosis to PANoptosis: a mechanistic compendium
of programmed cell death pathways,” Computational and
Structural Biotechnology Journal, vol. 19, pp. 4641–4657, 2021.

[8] L. Sun, H. Wang, Z. Wang et al., “Mixed lineage kinase
domain-like protein mediates necrosis signaling downstream
of RIP3 kinase,” Cell, vol. 148, no. 1-2, pp. 213–227, 2012.

[9] S. Feng, Y. Yang, Y. Mei et al., “Cleavage of RIP3 inactivates its
caspase-independent apoptosis pathway by removal of kinase
domain,” Cellular Signalling, vol. 19, no. 10, pp. 2056–2067,
2007.

[10] Z. Cai, S. Jitkaew, J. Zhao et al., “Plasma membrane transloca-
tion of trimerized MLKL protein is required for TNF-induced
necroptosis,” Nature Cell Biology, vol. 16, no. 1, pp. 55–65,
2014.

[11] A. Kaczmarek, P. Vandenabeele, and D. V. Krysko, “Necropto-
sis: the release of damage-associated molecular patterns and its
physiological relevance,” Immunity, vol. 38, no. 2, pp. 209–
223, 2013.

[12] J. Yan, P. Wan, S. Choksi, and Z.-G. Liu, “Necroptosis and
tumor progression,” Cancer, vol. 8, no. 1, pp. 21–27, 2022.

[13] A. G. Snyder, N. W. Hubbard, M. N. Messmer et al., “Intratu-
moral activation of the necroptotic pathway components
RIPK1 and RIPK3 potentiates antitumor immunity,” Science
Immunology, vol. 4, no. 36, 2019.

[14] S. T. Workenhe, J. Pol, and G. Kroemer, “Tumor-intrinsic
determinants of immunogenic cell death modalities,” Oncoim-
munology, vol. 10, no. 1, article 1893466, 2021.

[15] H.-P. Qiao, W.-S. Gao, J.-X. Huo, and Z.-S. Yang, “Long non-
coding RNA GAS5 functions as a tumor suppressor in renal
cell carcinoma,” Asian Pacific Journal of Cancer Prevention,
vol. 14, no. 2, pp. 1077–1082, 2013.

[16] F. Kopp and J. T. Mendell, “Functional classification and
experimental dissection of long noncoding RNAs,” Cell,
vol. 172, no. 3, pp. 393–407, 2018.

[17] X. Agirre, C. Meydan, Y. Jiang et al., “Long non-coding RNAs
discriminate the stages and gene regulatory states of human
humoral immune response,” Nature Communications,
vol. 10, no. 1, p. 821, 2019.

[18] Y. Tian, S. Xia, M. Ma, and Y. Zuo, “LINC00096 promotes the
proliferation and invasion by sponging miR-383-5p and regu-
lating RBM3 expression in triple-negative breast cancer,” Onco-
targets and Therapy, vol. Volume 12, pp. 10569–10578, 2019.

[19] X. Wang, T. Chen, Y. Zhang et al., “Long noncoding RNA
Linc00339 promotes triple-negative breast cancer progression
through miR-377-3p/HOXC6 signaling pathway,” Journal of
Cellular Physiology, vol. 234, no. 8, pp. 13303–13317, 2019.

[20] P. Li, B. Zhou, Y. Lv, and Q. Qian, “lncRNA HEIH regulates
cell proliferation and apoptosis through miR-4458/SOCS1 axis
in triple-negative breast cancer,” Human Cell, vol. 32, no. 4,
pp. 522–528, 2019.

[21] Z. Zhao, H. Liu, X. Zhou et al., “Necroptosis-related lncRNAs:
predicting prognosis and the distinction between the cold and
hot tumors in gastric cancer,” Journal of Oncology, vol. 2021,
Article ID 6718443, 16 pages, 2021.

[22] N. Wang and D. Liu, “Identification and validation a
necroptosis-related prognostic signature and associated regu-
latory axis in stomach adenocarcinoma,” Oncotargets and
Therapy, vol. 14, pp. 5373–5383, 2021.

[23] N. T. Doncheva, J. H. Morris, J. Gorodkin, and L. J. Jensen,
“Cytoscape StringApp: network analysis and visualization of

proteomics data,” Journal of Proteome Research, vol. 18,
no. 2, pp. 623–632, 2019.

[24] A. Subramanian, P. Tamayo, V. K. Mootha et al., “Gene set
enrichment analysis: a knowledge-based approach for inter-
preting genome-wide expression profiles,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 102, no. 43, pp. 15545–15550, 2005.

[25] B. Xiao, L. Liu, A. Li et al., “Identification and verification of
immune-related gene prognostic signature based on ssGSEA
for osteosarcoma,” Frontiers in Oncology, vol. 10, article
607622, 2020.

[26] A. M. Newman, C. L. Liu, M. R. Green et al., “Robust enumer-
ation of cell subsets from tissue expression profiles,” Nature
Methods, vol. 12, no. 5, pp. 453–457, 2015.

[27] A. J. Vickers and E. B. Elkin, “Decision curve analysis: a novel
method for evaluating prediction models,” Medical Decision
Making, vol. 26, no. 6, pp. 565–574, 2006.

[28] D. Wang, J. Li, F. Cai et al., “Overexpression of MAPT-AS1 is
associated with better patient survival in breast cancer,” Bio-
chemistry and Cell Biology, vol. 97, no. 2, pp. 158–164, 2019.

[29] Y. Zhong, Y. Li, T. Song, and D. Zhang, “miR-718 mediates the
indirect interaction between lncRNA SEMA3B-AS1 and
PTEN to regulate the proliferation of hepatocellular carcinoma
cells,” Physiological Genomics, vol. 51, no. 10, pp. 500–505,
2019.

[30] W. Guo, X. Liang, L. Liu et al., “miR-6872 host gene SEMA3B
and its antisense lncRNA SEMA3B-AS1 function synergisti-
cally to suppress gastric cardia adenocarcinoma progression,”
Gastric Cancer, vol. 22, no. 4, pp. 705–722, 2019.

[31] M. E. Menezes, X.-N. Shen, S. K. Das, L. Emdad, D. Sarkar, and
P. B. Fisher, “MDA-9/syntenin (SDCBP) modulates small
GTPases RhoA and Cdc42 via transforming growth factor β1
to enhance epithelial-mesenchymal transition in breast can-
cer,” Oncotarget, vol. 7, no. 49, pp. 80175–80189, 2016.

[32] S. Wang, M. Huang, Z. Wang et al., “MicroRNA-133b targets
TGFβ receptor I to inhibit TGF-β-induced epithelial-to-
mesenchymal transition and metastasis by suppressing the
TGF-β/SMAD pathway in breast cancer,” International Jour-
nal of Oncology, vol. 55, no. 5, pp. 1097–1109, 2019.

[33] X.-P. Zhao, Y. Y. Huang, Y. Huang et al., “Transforming
growth factor-β1 upregulates the expression of CXC chemo-
kine receptor 4 (CXCR4) in human breast cancer MCF-7
cells,” Acta Pharmacologica Sinica, vol. 31, no. 3, pp. 347–
354, 2010.

[34] L. Castagnoli, V. Cancila, S. L. Cordoba-Romero et al., “WNT
signaling modulates PD-L1 expression in the stem cell com-
partment of triple-negative breast cancer,” Oncogene, vol. 38,
no. 21, pp. 4047–4060, 2019.

[35] S. B. Coffelt, K. Kersten, C. W. Doornebal et al., “IL-17-pro-
ducing γδ T cells and neutrophils conspire to promote breast
cancer metastasis,” Nature, vol. 522, no. 7556, pp. 345–348,
2015.

[36] L. K. Ward-Kavanagh, W. W. Lin, J. R. Šedý, and C. F. Ware,
“The TNF receptor superfamily in co-stimulating and co-
inhibitory responses,” Immunity, vol. 44, no. 5, pp. 1005–
1019, 2016.

[37] K. Beyer, A.-K. Baukloh, A. Stoyanova, C. Kamphues,
A. Sattler, and K. Kotsch, “Interactions of tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL) with the
immune system: implications for inflammation and cancer,”
Cancers, vol. 11, no. 8, p. 1161, 2019.

20 Journal of Immunology Research



[38] T. Vanden Berghe, A. Linkermann, S. Jouan-Lanhouet,
H. Walczak, and P. Vandenabeele, “Regulated necrosis: the
expanding network of non-apoptotic cell death pathways,”
Nature Reviews Molecular Cell Biology, vol. 15, no. 2,
pp. 135–147, 2014.

[39] V. Nikoletopoulou, M. Markaki, K. Palikaras, and
N. Tavernarakis, “Crosstalk between apoptosis, necrosis and
autophagy,” Biochimica et Biophysica Acta (BBA)-Molecular
Cell Research, vol. 1833, pp. 3448–3459, 2013.

[40] S.-K. Hsu, C.-Y. Li, I. L. Lin et al., “Inflammation-related
pyroptosis, a novel programmed cell death pathway, and its
crosstalk with immune therapy in cancer treatment,” Thera-
nostics, vol. 11, no. 18, pp. 8813–8835, 2021.

[41] C. Y. Taabazuing, M. C. Okondo, and D. A. Bachovchin,
“Pyroptosis and apoptosis pathways engage in bidirectional
crosstalk in monocytes and macrophages,” Cell Chemical Biol-
ogy, vol. 24, no. 4, pp. 507–514.e4, 2017.

[42] N. Yatim, H. Jusforgues-Saklani, S. Orozco et al., “RIPK1 and
NF-κB signaling in dying cells determines cross-priming of
CD8+ T cells,” Science, vol. 350, no. 6258, pp. 328–334, 2015.

[43] D. Vercammen, G. Brouckaert, G. Denecker et al., “Dual sig-
naling of the Fas receptor: initiation of both apoptotic and
necrotic cell death pathways,” The Journal of Experimental
Medicine, vol. 188, no. 5, pp. 919–930, 1998.

[44] R. Tang, J. Xu, B. Zhang et al., “Ferroptosis, necroptosis, and
pyroptosis in anticancer immunity,” Journal of Hematology
& Oncology, vol. 13, no. 1, p. 110, 2020.

[45] P. Jiang, S. Gu, D. Pan et al., “Signatures of T cell dysfunction
and exclusion predict cancer immunotherapy response,”
Nature Medicine, vol. 24, no. 10, pp. 1550–1558, 2018.

[46] G. Giannone, E. Ghisoni, S. Genta et al., “Immuno-metabolism
and microenvironment in cancer: key players for immuno-
therapy,” International Journal of Molecular Sciences, vol. 21,
no. 12, p. 4414, 2020.

[47] M. A. Galván Morales, R. Barrera Rodríguez, J. R. Santiago
Cruz, and L. M. Teran, “Overview of new treatments with
immunotherapy for breast cancer and a proposal of a combi-
nation therapy,” Molecules, vol. 25, no. 23, p. 5686, 2020.

[48] J. P. Bates, R. Derakhshandeh, L. Jones, and T. J. Webb,
“Mechanisms of immune evasion in breast cancer,” BMC Can-
cer, vol. 18, no. 1, p. 556, 2018.

[49] K. Retecki, M. Seweryn, A. Graczyk-Jarzynka, and M. Bajor,
“The immune landscape of breast cancer: strategies for over-
coming immunotherapy resistance,” Cancers, vol. 13, no. 23,
p. 6012, 2021.

[50] X. Tekpli, T. Lien, A. H. Røssevold et al., “An independent
poor-prognosis subtype of breast cancer defined by a distinct
tumor immune microenvironment,” Nature Communications,
vol. 10, no. 1, p. 5499, 2019.

[51] H. Chen, M. Li, N. Ng et al., “Ruxolitinib reverses checkpoint
inhibition by reducing programmed cell death ligand-1 (PD-L1)
expression and increases anti-tumour effects of T cells in multi-
ple myeloma,” British Journal of Haematology, vol. 192, no. 3,
pp. 568–576, 2021.

[52] S. R. Rosenbaum, N. A. Wilski, and A. E. Aplin, “Fueling the
fire: inflammatory forms of cell death and implications for
cancer immunotherapy,” Cancer Discovery, vol. 11, no. 2,
pp. 266–281, 2021.

21Journal of Immunology Research


	A Novel Necroptosis-Associated lncRNA Signature Can Impact the Immune Status and Predict the Outcome of Breast Cancer
	1. Introduction
	2. Materials and Methods
	2.1. Data Acquisition and Information Extraction
	2.2. Building a Predictive Risk Signature Based on lncRNAs Associated with Necroptosis
	2.3. Verification of the Necroptosis-Associated lncRNA Risk Signature
	2.4. Bioinformation Analysis
	2.5. Construction of Nomogram
	2.6. Gene Set and Function Enrichment Analysis (GSEA)
	2.7. Analysis of Tumor Microenvironment and Clinical Treatment Response in the Prognostic Risk Signature
	2.8. Statistical Analysis

	3. Results
	3.1. Necroptosis-Associated lncRNAs with Prognostic Value in BRCA Patients Were Identified
	3.2. Identification of Necroptosis-Associated lncRNAs Associated with Prognosis in Breast Cancer
	3.3. Correlation between Prediction Signature and Outcome of Patients
	3.4. Cell Function and Pathway Enrichment in GSEA
	3.5. Comparative Study of High- and Low-Risk Groups
	3.6. Assessment of Risk Score as Independent Prognostic Factor and Prediction of the Clinical Survival
	3.7. Prognosis Was Predicted by Combining Different Clinical-Pathological Variables
	3.8. Correlation Analysis of Risk Score and 7 Prognostic lncRNAs with Clinical-Pathological Factors
	3.9. Analysis of Tumor Microenvironment of Breast Cancer
	3.10. Relationship between Prognostic Risk Signature and Drugs for Treating BRCA

	4. Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

