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Abstract

The vitrification of immature germinal vesicle (GV) oocytes is an important way to preserve

genetic resources and female fertility. However, it is well known that cryopreserved GV

oocytes have very poor developmental ability and that further improvement in this technique

is needed. We previously reported the successful vitrification of matured mouse oocytes

with enclosed cumulus cells using the calcium-free vitrification solution supplemented with

ethylene glycol (EG) by the minimal volume cooling (MVC) method. In this study, we investi-

gated whether our method is applicable to the vitrification of mouse oocytes at the GV stage

(GV oocytes). Following maturation and fertilization in vitro, vitrified GV oocytes showed

high survival (94.3 ± 2.0%) and maturation (94.3 ± 2.1%) rates. Although the fertilization and

blastocyst rates of vitrified oocytes (fertilization: 46.6 ± 4.9% and blastocyst: 46.6 ± 3.0%)

were significantly lower than those of fresh oocytes (fertilization: 73.0 ± 7.1% and blastocyst:

71.6 ± 8.0%) (P < 0.01), there were no differences in the ability to develop to term between

fresh oocytes (50.0 ± 8.4%) and vitrified oocytes (37.5 ± 4.6%) (P > 0.05). In conclusion, we

here show, for the first time, the efficient production of live mice derived from vitrified GV

oocytes.

Introduction

The cryopreservation of germ cells can contribute to the efficient production of farm livestock

and laboratory animals, the gene banking of female resources, and the improvement of

human-assisted reproductive technologies. In recent years, oocyte cryopreservation has

become more popular as a means of fertility preservation not only for women diagnosed with

cancer prior to gonadotoxic therapy but also for women who wish to preserve their oocytes for

non-medical reasons [1]. In particular, the cryopreservation of immature oocytes at the germi-

nal vesicle (GV) stage (GV oocytes) has a safety advantage for women because GV oocytes can

be collected with fewer gonadotropins, resulting in decreased exposure to excess hormonal lev-

els and a reduced risk of developing ovarian hyperstimulation syndrome and hormone-sensi-

tive malignancies [2]. In addition, oocytes at the metaphase-II (MII) stage are very sensitive to

chilling due to their meiotic spindle, whereas GV oocytes have a lower sensitivity to low
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temperatures than MII-stage oocytes [3], since GV oocytes are arrested at the prophase I stage

of meiosis and the spindle has not yet formed in GV oocytes [2]. These facts suggest that the

cryopreservation of GV oocytes can be one of the important technologies for the female fertil-

ity preservation.

Although the vitrification of mouse GV oocytes already described in 1989 [4], the successful

generation of live birth had not been reported until Aono et al. [5], succeeded in first genera-

tion in 2005. Aono et al. [5] demonstrated that the 10-step pre-equilibrium method using an

obliquely cut 0.25-mL plastic straw with a small droplet (< 1 μL) improved the in vitro devel-

opmental ability (42.9%) of vitrified mouse GV oocytes as compared with the single pre-equi-

librium method (23.7%). However, the rate of live birth was still low (10%) following embryo

transfer [5]. In addition, 10-step pre-equilibration is required before vitrification in this

method, and thus this method may increase the risk of losing oocytes during the procedure.

Thus, there is a demand for a simpler and more efficient protocol of mouse GV oocytes

vitrification.

Recently, we have succeeded in improving MII oocytes vitrification by the minimal volume

cooling (MVC) method [6] with some modification in mice [7–9] and rats [10]. In these

reports, we demonstrated that MII oocytes vitrified with ethylene glycol (EG) as a permeable

cryoprotectant in the calcium-free medium showed higher developmental competence as

compared to oocytes vitrified with dimethyl sulfoxide (DMSO) and EG in the calcium-supple-

mented medium [7, 8, 10]. In addition, we showed the importance of cumulus cells for the

IVF efficiency of vitrified mouse MII oocytes by comparing cumulus-oocytes complexes

(COCs) to denuded oocytes [7, 8]. In results, we achieved a high ability to develop to term

after the vitrification of MII oocytes, which generally had shown low developmental ability

after IVF [7, 8].

In the present study, we investigated the ability of maturation, fertilization and develop-

ment of mouse GV oocytes with cumulus cells vitrified using the calcium-free medium supple-

mented with EG by the MVC method.

Materials and methods

All chemicals and reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) unless

otherwise stated. The animal study was approved by the Animal Research Committee of

Azabu University (Permission Number: 110325–1), and the mice were maintained and sacri-

ficed in accordance with the Azabu University Guidelines for the Care and Use of Laboratory

Animals.

Oocyte preparation

Specific-pathogen-free ICR females (3 to 5 weeks old) were purchased from Charles River

Japan (Kanagawa, Japan). The mice were housed in an environmentally controlled room with

a 12 h dark (18:00 to 6:00 hours) and 12 h light cycle at a temperature of 23 ± 2˚C and a humid-

ity of 55 ± 5% with free access to a laboratory diet and filtered water. ICR females were intra-

peritoneally injected with 5 IU equine chorionic gonadotropin (eCG: PMS-A 1000 for

animals, Nippon Zenyaku Kogyo Co., Ltd., Fukushima, Japan). At 48 h after the eCG injection,

mice were sacrificed by cervical dislocation by well-trained individuals and the ovaries were

collected into Minimum Essential Medium Alpha (MEMα, no Nucleosides, Powder; Life

Technologies, CA, USA) supplemented with 5% fetal calf serum (FCS: Life Technologies, CA,

USA) and then GV oocytes with cumulus cells were collected by puncturing antral follicles

with a 26-G needle (Top, Tokyo, Japan). The COCs were washed 3 times and kept in the same

medium at 37.5˚C until they were subjected to treatments.
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In vitro maturation (IVM) of GV oocytes

The suitable duration of maturation in vitro in mouse GV oocytes was evaluated. The fresh

COCs were cultured in 100 μL droplets of MEMα supplemented with 5% FCS, 10 ng/mL

epidermal growth factor (Wako, Osaka, Japan), 2.1 mg/mL sodium bicarbonate, 75 mg/mL

penicillin G salts, and 50 mg/mL streptomycin sulfate under liquid paraffin oil (Kanto

Chemical, Tokyo, Japan) at 37.5˚C in an atmosphere of 5% CO2 in air for 8, 10, 12, 14, or 16

h. After the culture, the fresh COCs were used for IVF to evaluate fertilization and develop-

mental ability.

Vitrification of GV oocytes

Vitrification was carried out by the modified MVC method as previously described [7]. In

brief, COCs were washed 3 times with calcium-free modified Dulbecco’s phosphate-buffered

medium (PB1) [11] + 20% (v/v) FCS at 37.5˚C. The COCs were placed in the equilibration

solution composed of 15% (v/v) EG (Kanto Chemical, Tokyo, Japan) + 20% (v/v) FCS in cal-

cium-free PB1 for 3 min at room temperature (25˚C). After equilibration, the COCs were

exposed to the vitrification solution composed of 30% (v/v) EG + 0.5 M sucrose + 20% (v/v)

FCS in calcium-free PB1 at 25˚C for 1 min and then vitrified using Cryotop [12]. The COCs

were stored in liquid nitrogen (LN) for at least 3 days. The COCs were warmed in 1.0 M

sucrose + 20% (v/v) FCS in calcium-free PB1 at 37.5˚C for 1 min. The COCs were exposed to

the dilution solution composed of 0.5 M sucrose + 20% (v/v) FCS in calcium-free PB1 for 3

min, and then placed in calcium-free PB1 supplemented with 20% (v/v) FCS at 25˚C for 5

min. After warming, the COCs were matured for 14 h in vitro. As a control, COCs were also

collected and then matured in vitro without vitrification. After IVM, the fresh or vitrified

oocytes were used for IVF as follows.

IVF and sperm cryopreservation

IVF was performed as described by Kohaya et al. [7]. For sperm collection, B6D2F1 males

(12 weeks old) were purchased from Charles River Japan (Kanagawa, Japan). Male mice

were sacrificed, cauda epididymides were collected at 25˚C, and the epididymides were

placed in a 35-mm sterile plastic dish containing 400 μL R18S3 (18% (w/v) raffinose and 3%

(w/v) skim milk (Wako)) medium [13]. For freezing, R18S3 containing spermatozoa was

loaded into 0.25-mL plastic straws (Fujihira Industry, Tokyo, Japan). The straws were

exposed to LN vapor for 10 min (about -150˚C) and then plunged into LN and stored for at

least a week. For thawing, the straws were kept in a 37.5˚C water bath for 10 sec, and the

contents were then expelled into a 35-mm sterile plastic dish. The frozen/thawed sperm

were incubated in TYH medium [14] to induce capacitation at 37.5˚C under 5% CO2 in air

for an hour, and then the thawed sperm were added to TYH medium drops containing

matured oocytes (final sperm concentration was 0.2 × 106 sperm/mL) and co-cultured at

37.5˚C for 6 h. After the culture, the COCs were washed 3 times in KSOM-AA medium [15].

The cumulus cells of oocytes were removed by gently pipetting, and then the survival of the

oocytes was morphologically evaluated. The maturation and fertility of the oocytes were also

evaluated using a Hoffman modulation contrast microscope (IX70; Olympus, Yokohama,

Japan). The maturation of an oocyte was defined as extrusion of a 1st polar body, and fertil-

ized oocytes were determined based on the observation of 2PNs. Only fertilized oocytes

were transferred into 50-μL drops of KOSM-AA and cultured up to 96 h at 37.5˚C under 5%

CO2 in air. Two-cell and blastocyst formation were evaluated at 18 h and 96 h post-fertiliza-

tion, respectively.
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Embryo transfer

After IVF, the 2-cells were surgically transferred into the oviducts of recipients after the induc-

tion of pseudopregnancy as described previously [7]. ICR females (8–24 weeks old) as recipi-

ents for embryo transfer were mated with vasectomized ICR males (15–50 weeks old) on day 0

between 18:00 and 20:00 to induce pseudopregnancy. Six to nine of the 2-cells embryos were

transferred into each oviduct of the recipients on day 1. On day 21, offspring were obtained via

natural birth. If offspring had not been delivered through natural birth on day 22, Caesarean

section was performed.

Statistical analysis

Each experiment included at least three replicates. More than 70 oocytes were used for each

treatment group in the study. All data were subjected to arcsine transformation before statisti-

cal analysis. Statistical analysis was performed by Statcel ver.3 (Add-in software for Microsoft

Excel, OMS Ltd., Japan). To evaluate the IVM period of fresh GV oocytes, analysis of variance

and Tukey-Kramer’s test were used. The rates of survival, maturation, 2PNs formation, 2-cell,

blastocyst formation, and development to term of fresh or vitrified GV oocytes were analyzed

by a two-tailed, Welch’s t-test. Differences were considered to be significant at P< 0.05. Data

are shown as means ± standard errors of the means (SEMs).

Results

Effect of IVM periods on maturation, fertilization, and developmental

ability in vitro

We first examined the IVM period of vitrification of GV oocytes that was optimal for matura-

tion, fertilization, and developmental ability in vitro. Fresh COCs were cultured in IVM media

for 8, 10, 12, 14, and 16 h. We confirmed the extrusion of the 1st polar body to evaluate the

maturation efficiency and the formation of 2 pronuclei (2PNs) to assess the rate of in vitro fer-

tilization (IVF). The rates of the oocytes with a polar body were 93.7 ± 3.9% (12 h), 92.7 ± 5.0%

(14 h), and 90.3 ± 5.1% (16 h), which were dramatically higher than that of 38.6 ± 14.3% (8 h)

(P< 0.05) (Fig 1). At 14 h and 16 h, the rates of 2PNs formation (14 h: 71.0 ± 2.6% and 16 h:

Fig 1. Evaluation of IVM period using fresh mouse oocytes. After IVM and IVF, cumulus cells were removed, and

then 1st polar bodies were observed to determine the maturation rate and 2 PNs were observed to determine

fertilization. The formation of 2-cell and blastocyst were confirmed following the culture. IVF was carried out using

frozen-thawed B6D2F1 mouse sperm. Data are means ± SEM. Different superscripts denote a significant difference

(P< 0.05). The number of oocytes for the data analysis in each group is as follows: 8 h = 70, 10 h = 72, 12 h = 126, 14

h = 108, and 16 h = 103, respectively.

https://doi.org/10.1371/journal.pone.0248050.g001

PLOS ONE Successful vitrification of mouse immature oocytes

PLOS ONE | https://doi.org/10.1371/journal.pone.0248050 March 11, 2021 4 / 10

https://doi.org/10.1371/journal.pone.0248050.g001
https://doi.org/10.1371/journal.pone.0248050


66.0 ± 5.0%) were significantly higher than the rates at the other time points (8 h: 14.3 ± 4.5%,

10 h: 19.4 ± 3.7%, and 12 h: 15.1 ± 1.3%) (Fig 1). In addition, the rates of development to the

2-cell and blastocyst stages were 73.4 ± 2.0% (14 h) and 66.0 ± 5.0% (16 h), which were higher

than the rates of 18.6 ± 4.6% (8 h), 19.4 ± 2.9% (10 h), and 15.9 ± 1.8% (12 h), while most of

the fertilized oocytes developed to blastocysts (Fig 1). Based on these results, the maturation

period of 14 h was used for the following studies.

Survival, maturation, and fertility of GV oocytes with cumulus cells

vitrified with the calcium-free medium supplemented with EG by the MVC

method

In our previous report, exposure for 3 min in the equilibration solution was adopted for

mouse MII oocytes [7–9] and mouse embryos [16]; however, it remains unknown whether 3

min is a suitable equilibration time for GV oocytes. We next assessed the optimal exposure

time for GV oocytes. COCs were exposed in the equilibration solution for 3, 5, or 7 min and

then vitrified. As a result, we found that the survival, fertilization, and developmental rates of

vitrified mouse GV oocytes were not affected by 3, 5, and 7 min exposure times (S1 Fig), and

we adopted 3 min as the exposure time for this study. We examined the survival, maturation,

and fertility of vitrified GV oocytes compared to fresh oocytes after 14 h IVM and subsequent

IVF. The rates of survival, maturation, and fertilization after IVF are shown in Fig 2. The vitri-

fied GV oocytes showed high survival rate (94.3 ± 2.0%). There were no significant differences

between fresh and vitrified GV oocytes in maturation rate (94.6 ± 3.6% and 94.3 ± 2.1%)

(P> 0.05). We observed a decrease in the fertilization rate in vitrified oocytes (46.6 ± 4.9%)

compared with fresh oocytes (73.0 ± 7.1%). Although the 2-cell and blastocyst rates were lower

in vitrified oocytes (2-cell: 50.0 ± 4.0%; blastocyst: 46.6 ± 3.0%) than in fresh oocytes (2-cell:

74.3 ± 7.5%; blastocyst: 71.6 ± 8.0%), most fertilized oocytes developed to the 2-cell and blasto-

cyst stages following vitrification.

Vitrified GV oocytes showed a high ability to develop to term

Based on the results of the in vitro study, we further examined whether vitrified GV oocytes

can be developed to term. Vitrified/warmed COCs were cultured to the 2-cell stage in vitro
after IVM and IVF. The 2-cells were then transferred into pseudopregnant females. In the

fresh oocytes group, 72 embryos were transferred to 5 recipients, and 36 pups were delivered

Fig 2. Rates of survival, maturation, fertilization, and development of vitrified oocytes compared with fresh

oocytes. IVF was performed after IVM for 14 h. Data are means ± SEM. Different superscripts denote a significant

difference (P< 0.05). The number of oocytes for the data analysis in each group is as follows: Fresh = 74 and

Vitrified = 88, respectively. n.d., no data.

https://doi.org/10.1371/journal.pone.0248050.g002
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(50.0 ± 8.4%), whereas in the vitrified oocytes group, 88 embryos were transferred to 5 recipi-

ents, and 33 pups were obtained (37.5 ± 4.6%) (Table 1). There were no significant differences

in development to term between the fresh and vitrified groups (P> 0.05). All pups were mor-

phologically normal and healthy (Fig 3).

Discussion

In the present study, we successfully produced mice that were delivered from vitrified GV

oocytes. For decades, the cryopreservation of mouse GV oocytes has achieved high survival

and maturation rates in vitro by various methods and approaches; by slow freezing [17] and by

vitrification using Cryotop [18–20], Open pulled straw [21], EM grid [22], and Cryoloop [23],

however, the fertilization and developmental abilities are still lower than those in fresh oocytes.

In particular, there have been no reports that succeeded in generating live offspring since

Aono et al [5] published. Aono et al. [5] previously showed the successful production of live

mice delivered from vitrified GV oocytes by the 10-step pre-equilibrium method for the first

time. They achieved a high blastocyst rate (42.9%) from vitrified GV oocytes following IVM

and IVF. Likewise, we achieved a high blastocyst rate (46.6 ± 3.0%) delivered from vitrified

COCs. In addition, our study demonstrated that the embryos delivered from vitrified GV

oocytes developed to term with a high success rate (37.5 ± 4.6%) as compared to that of the

10-step pre-equilibrium method (about 10%). The rate was not significantly different from

that obtained with fresh GV oocytes (50.0 ± 8.4%). Although the 10-step pre-equilibrium

method seems to show a similar rate of development to blastocysts, this method requires 10

steps before vitrification as mentioned above. Conversely, our method used in the present

work can be simply performed and reduces the amount of steps.

Table 1. In vivo development of 2-cells delivered from vitrified mouse oocytes after IVM and IVF.

Oocyte status No. of transferred embryos Pregnancy/transfer (%) Offspring (%)

Fresh 72 5 / 5 (100) 36 (50.0 ± 8.4)

Vitrified 88 5 / 5 (100) 33 (37.5 ± 4.6)

There were no significant differences (P> 0.05).

https://doi.org/10.1371/journal.pone.0248050.t001

Fig 3. A representative image of offspring by transferring of the 2-cells delivered from vitrified GV oocytes.

Vitrified/warmed oocytes were matured and fertilized in vitro and then cultured until the 2-cell stage. The embryos

were transferred into pseudopregnant mice.

https://doi.org/10.1371/journal.pone.0248050.g003
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High in vitro developmental abilities of mouse GV oocytes after vitrification were obtained

by both the 10-step pre-equilibrium method [5] and our method used in the present work. In

contrast, the ability to develop to term of oocytes vitrified with our method was better than

that of the 10-step pre-equilibrium method. One possible reason for this is the absence or pres-

ence of calcium and DMSO in the vitrification solution. In our previous reports, we also dem-

onstrated that the calcium-free medium supplemented with EG dramatically improved the

fertility, and the ability to develop to term of vitrified oocytes was approximately equal to that

of fresh oocytes [7, 8]. EG has less toxicity than DMSO [24], which is used as a permeable cryo-

protectant combined with EG in the 10-step pre-equilibrium method [5]. Moreover, EG can

help suppress the increase of intercellular calcium [25], which is related to the exocytosis of

cortical granules and induces zona hardening [26]. Based on these findings, we suggested that

the medium without calcium and supplemented with EG is suitable for the vitrification of

mouse MII oocytes. However, the role of an increase in intercellular calcium in GV oocytes

was still unclear. More recently, Wakai and Fissore [27] showed that a calcium leak constitu-

tively occurs from the endoplasmic reticulum, and this calcium leak ceases around the

resumption of meiosis from the GV stage. They also found that mitochondria absorb calcium

during the calcium oscillations, and the mitochondrial redox and increase of ATP production

are stimulated by the calcium oscillations in GV oocytes [27]. These findings suggest that

extracellular calcium from a general vitrification solution might interfere with intercellular cal-

cium homeostasis and result in low maturation and fertility after vitrification; therefore our

calcium-free medium supplemented with EG is suitable not only for mouse MII oocytes but

also for GV oocytes.

Another possibility is that our MVC method is more appropriate for mouse GV oocyte vit-

rification than the 10-step pre-equilibrium method. To date, the MVC method using Cryotop

[12] has been used for the vitrification of oocytes in several species including bovine oocytes

[28], ovine oocytes [29], rat oocytes [10], and porcine oocytes [30]. These reports suggest that

the MVC method by Cryotop [12] would be one of the most effective vitrification methods for

mammalian oocytes. In 2015, Abedpour and Rajaei [18] demonstrated the vitrification of

mouse GV oocytes by the MVC method using Cryotop; however, the fertilization and blasto-

cyst rates were still low (44.1% and 20%, respectively). The reason that the fertilization and

blastocyst rates were low might have been that they removed cumulus cells before vitrification.

Previously, we reported that vitrified cumulus oocyte complexes (COCs) could preserve high

fertility in mouse oocytes at the MII stage [7, 8]. In line with these reports, Lee et al. [19]

showed that the maturation percentage after GV oocyte vitrification was significantly higher in

the COC than in denuded oocytes. It is well known that cumulus cells communicate with the

oocyte by gap junctions. Gap junctions are necessary for oocytes to resume meiosis and

acquire cytoplasmic maturation and subsequently developmental competence [31]. Cumulus

cells are also important for fertilization because chemokines secreted from cumulus cells

induce sperm capacitation and enhance fertilization [32]. Vincent et al. [33] also demonstrated

that the presence of cumulus cells minimizes the release of cortical granules in mice. Accord-

ingly, there is no doubt that minimizing the disruption of cumulus cells by handling during

oocyte collection and cryopreservation is essential to maintaining fertility after cryopreserva-

tion of the GV oocytes in mice. For these reasons, GV oocytes vitrified by our method might

achieve a strong ability to develop to term.

In conclusion, the present study demonstrated that mouse GV oocytes were efficiently vitri-

fied with cumulus cells using the calcium-free medium supplemented with EG by the MVC

method. The present report could contribute to efficient mouse production, and to the further

development of human-assisted reproductive technologies.
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Supporting information

S1 Fig. The effect of exposure time during vitrification on survival, maturation, fertiliza-

tion and development. Data are means ± SEM. ANOVA and Tukey-Kramer’s test were used

for quantification. There are no differences among the group (P > 0.05). The number of

oocytes for the data analysis in each group is as follows: 3 min = 88, 5 min = 97, and 7

min = 101, respectively.

(TIF)
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