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Simple Summary: Magnetic Resonance Imaging (MRI) is a consolidated imaging tool for the multi-
parametric assessment of tissues in various pathologies from degenerative and inflammatory diseases
to cancer. In recent years, the continuous technological evolution of the equipment has led to the
development of sequences that provide not only anatomical but also functional and metabolic infor-
mation. In addition, there is a growing and emerging field of research in clinical applications using
MRI to exploit the diagnostic and therapeutic capabilities of nanocompounds. This review illustrates
the application of the most advanced magnetic resonance techniques in the field of nanomedicine.

Abstract: In the last decades, nanotechnology has been used in a wide range of biomedical applica-
tions, both diagnostic and therapeutic. In this scenario, imaging techniques represent a fundamental
tool to obtain information about the properties of nanoconstructs and their interactions with the
biological environment in preclinical and clinical settings. This paper reviews the state of the art of
the application of magnetic resonance imaging in the field of nanomedicine, as well as the use of
nanoparticles as diagnostic and therapeutic tools, especially in cancer, including the characteristics
that hinder the use of nanoparticles in clinical practice.
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1. Introduction

Nanomedicine is the application of the principles and methods of nanoscience and
nanotechnology to medicine, with the aim of developing more sensitive and faster medical
methods and of understanding the processes and mechanisms of life activities at the micro
or nano level [1–6]. Today, nanotechnology is involved in a wide range of biomedical
applications as well as vaccine and drug delivery, imaging, nanosensors, nano-assisted
therapies, and engineering [7–13]. Nanotechnology has advanced rapidly in recent years,
bringing significant benefits by treating diseases with greater accuracy and efficacy and by
enabling new methods for tumor theranostics [14–16]. Nanoparticles integrating imaging,
targeting, and therapeutic agents in a single instrument are more useful than separate
therapeutic or diagnostic agents [17,18]. In addition, these vehicles are easily transported
through leaky blood vessels and the lymphatic system into tumor tissue, either passively
(EPR effect) or in conjunction with active targeting agents. The EPR effect improves the
access and accumulation of these agents in cancer tissues and increases their efficacy [19,20].
Although oncology is the main area of nanotechnology research, there is growing awareness
of the potential use of nanotechnology in non-oncology areas [21].

There has been an important development in the discovery of nanomaterials since
they have been introduced as tools for drug delivery. A new, revolutionary way of using
nanoparticles is magnetic resonance imaging (MRI) [12,22,23]. The basis of MRI is the inter-
action between radiofrequency pulses and magnetic moments of hydrogen atoms [24,25].
To achieve this interaction, a high, static magnetic field is required [26,27]. MRI is commonly
used in clinical settings because it provides morphologic data with high spatial resolution
and enables the assessment of functional parameters such as perfusion, water diffusion,
and many others [18,28–33]. Recently, the improvement of high-sensitivity receiving coils,
especially cryogenically cooled coils, and the use of higher magnetic field strengths have
enabled microimaging with spatial resolution as low as 20–50 µm in small animals [34].
The purpose of this article is not only to summarize the status of the application of MRI
in the field of nanomedicine but also to analyze the characteristics that hinder the use of
nanoparticles in the clinical setting.

1.1. Nanoparticles

Inorganic nanomaterials, such as silica, iron oxide, and gold, are increasingly used in
nanotechnology, especially as diagnostic vehicles, drug delivery devices, and hyperther-
mia tools [35–38]. Based on their composition, they can be divided into organic (lipids,
polymers, liposomes, polymeric micelles, dendrimers, engineered peptides, and nucleic
acids) and inorganic agents (carbon nanoparticles, metals, and metal oxide nanoparticles).
It is believed that linking agents into a single nano-platform can improve the physical
properties of the individual agents [39,40]. These combined agents maintain the physical
properties of each component agent when linked with the bifunctional agents. Nowadays,
nanomaterials are at the forefront of inorganic nano-theranostics, especially in imaging as
contrast agents in MRI, in therapy as drug carriers, and as hyperthermia agents [15,41–45].

Nanoparticles can be used as drug carriers to improve the pharmacokinetics of drug de-
livery and reduce systemic toxicity. Thanks to the application of specific imaging techniques
that exploit the physical, chemical, and optical properties of nanomaterials, it is possible to
obtain imaging information about drug delivery to the target tissue noninvasively or to
achieve thermal and photocontrolled drug release [46,47].

The ability to relate to the material at the nanoscale through external stimuli is of
great importance.



Cancers 2022, 14, 1626 3 of 17

An externally generated magnetic field can control the flow and release of magnetic
nanomaterials, making them functional diagnostic and therapeutic tools. Various mag-
netic nanoparticles have been used, but a particular focus has been on small nanoparticles
composed of iron oxide, called superparamagnetic iron oxide nanoparticles [35,48]. Super-
paramagnetic nanomaterials have excellent magnetic properties because they combine the
high magnetization of bulk magnetite with the paramagnetic nature of Fe ions. Outside
of a magnetic field, these nanomaterials have no magnetic moments [49]. In contrast, if
a magnetic field is applied, the magnetic moments align with the field and behave like
a paramagnet, but with a higher magnetic susceptibility [50,51] (Figure 1).
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Plasmonic nanoparticles are also used in nanotheranostics [52,53]. Plasmons refer
to collective oscillations of electrons surrounding the material. At optical frequencies
near optical resonance, this local electron density oscillates with the incident electromag-
netic excitation. This phenomenon can be used in various fields, such as diagnostics
and drug delivery. In addition, they are useful hyperthermia tools for photothermal
treatment [54]. Carriers such as gold (plasmonic material) can release energy in the form
of heat, which then diffuses into the environment when excited by light near or at their
optical resonance frequency [55,56].

1.2. Magnetic Resonance Imaging

Imaging is an important tool for tumor assessment in both preclinical and clinical
settings [57–63]. It provides data on the tumor’s size, location, and relationship to adja-
cent tissues. In addition, imaging can provide data on the biological characteristics of
cancers [64], making it possible to assess tumor biology directly in vivo [65–68]. Because
modern cancer therapies essentially target the recognized biological features of the cancer,
imaging provides noninvasive data that can be used both to improve drugs and to assist in
therapeutic management [69].

MRI has now become a fundamental tool in oncology research and in the clinical
management of cancer patients. Among imaging modalities, MRI provides unique and
multiparametric access to anatomic, physiologic, biochemical, and molecular details of
tumors with excellent spatial and temporal resolution [70–79].

Conventional (or standard) MRI imaging is based on longitudinal relaxation (T1),
transverse relaxation (T2), and proton density (PD) sequences [64]. The technique for
image intensity and contrast in standard MRI is based on the relaxation properties of
water protons and total water content in tissues [80,81]. Free water shows a dark signal
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in T1-weighted (-W) images and a bright signal in T2-W images [64,70]. The PD image is
related to water content because the image is acquired with minimal T1-W and T2-W to
eliminate signal loss due to T1 and T2 relaxations [31,82].

2. Functional Magnetic Resonance Imaging

It is well known that a visual inspection of morphologic factors provides only partial
data on tissue characteristics [73,77]. Advances in MR technology link morphologic data
with functional data about the biological microenvironment of the tissue [83,84]. Functional
MR data provide quantifiable information about underlying tissue characteristics [44,64].
The combination of objective biomarkers with morphologic data makes functional MRI
a powerful tool that provides comprehensive information about lesion heterogeneity and
therapy-induced changes in heterogeneity [28,85,86]. Functional MRI has additional po-
tential in the early stages of treatment efficacy evaluation and should be useful in drug
development [86]. Some functional analyses are already part of clinical practice: diffusion-
weighted MRI (DW-MRI) and perfusion imaging (DCE-MRI) [13,45,68]. Other technologies,
such as metabolic imaging with MRI, are still in the experimental phase.

2.1. Diffusion-Weighted Imaging MRI

DWI provides quantitative information about tissue microstructure based on differ-
ences in water proton mobility and cell density assessment [87,88]. The random movement
of water molecules is related to the extent of the cellularity of the tissue as well as to
intact cell membranes, and the apparent diffusion coefficient (ADC) is a parameter for
quantitative assessment [89,90] (Figure 2). Intravoxel incoherent motion (IVIM) assessment,
a bi-exponential model for evaluating a DWI signal, enables the acquisition of the pure tis-
sue coefficient (Dt), the pseudodiffusion coefficient (Dp), and the perfusion fraction (pf) [91].
Conventional DWI assessment is based on the theory that water diffusion in voxels obeys
a Gaussian law [92]. In tissues, diffusion is affected by the presence of molecular obstacles
and deviates from Gaussian law. To describe this deviation from the Gaussian distribution,
a mathematical model known as diffusion kurtosis imaging (DKI) was proposed by Jensen
et al. in 2005. The quantitative parameters extracted by DKI are the mean of the mean
kurtosis coefficient (MK), which reflects the deviation of tissue diffusion from a Gaussian
model, and the mean of the diffusion coefficient (MD), which assesses the correction for
non-Gaussian bias [93,94].
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2.2. Dynamic Contrast-Enhanced-MRI

DCE-MRI guarantees the possibility of obtaining information about tissue perfusion
and microvascular structure [57]. This is achieved by analyzing the SI changes in a tissue
after the introduction of a contrast agent [95–97]. DCE-MRI can assess tissue perfusion
and the microvascular status of tissues. It has also been used to visualize changes in tumor
perfusion caused by therapies [98–100]. The clinical significance of DCE-MRI in predicting
and evaluating the response to therapy and the optimal methodology remains to be de-
termined [96,101]. Perfusion analysis can be performed quantitatively, semiquantitatively,
or qualitatively [96,97].

Quantitative assessment involves the evaluation of the pharmacokinetic parameters
of a contrast agent [102]. The main parameter evaluated is Ktrans, which represents the
leakage of the contrast agent between the blood plasma and the extravascular extracel-
lular space and reflects the flow and permeability [99,103]. Because Ktrans is associated
with many variations and many different methods are reported, quantitative DCE-MRI is
challenging to reproduce in a standardized manner because it is highly variable.

Qualitative DCE assessment involves analyzing a kinetic curve by a simple visual
assessment, as confirmed by Fusco et al. [104]. One of the limitations of this approach is
the ROI placement, which depends on the user [54].

In semiquantitative analysis, the shape of the time-intensity curve (TIC) is de-scripted,
which provides information about wash-in, wash-out, and peak enhancement [102]. There-
fore, the semiquantitative approach is the most reliable method compared with quantitative
or qualitative methods because several critical points are skipped [94].

2.3. BOLD-MRI

Hypoxia is a critical point in aggressive cancer biology and resistance to traditional or
targeted treatments. There are several factors that cause low oxygen tension, such as the
rapid growth of the tumor and the low microvascular density, which leads to a change in
tissue morphology and increases the intracellular tension and stiffness of the tissue.

In addition, the tumor is surrounded by an extensive desmoplastic stroma, which con-
tributes to disruption of the structure of tumor vessels and mechanical stress on endothelial
cells and thus tumor vessels [105].

Blood oxygenation-dependent imaging (BOLD) is a technique used to produce func-
tional MRI (fMRI) images that are the result of changes in regional blood concentrations of
oxyhemoglobin and deoxyhemoglobin, and are a measure of oxygenation [106].

The physical basis of the techniques is based on the iron ions of deoxyhemoglobin,
which contain unpaired electrons and have a paramagnetic property that shortens the
transverse relaxation time of protons in close proximity [107]. This is reflected in the tissue
T2* value, which correlates negatively with deoxyhemoglobin concentration and thus
arterial blood PO2 [108].

2.4. MR Spectroscopy

MR Spectroscopy (MRS) is an instrument that provides metabolic information
through electromagnetic signals in the radiofrequency range generated by atomic nuclei
in molecules [109]. Since the surrounding structures determine the electrical environ-
ment, the subsequent resonant frequencies affect the chemical groups and molecules
present. MRS provides concentrations of some specific metabolites. However, there are
still some open questions to be addressed by this tool [110].

First, it is necessary to obtain a homogeneous magnetic field to resolve the fact that the
resonance frequencies of the different metabolites are very close to each other. Second, it is
difficult to obtain reliable data of good quality from some tissues, e.g., bone-air interfaces.

Finally, metabolites are present in tissues at minimal concentrations compared with
water, so their signals are very weak and a certain minimum concentration of metabolites
is required [110].
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Proton MRS (1H MRS) is the most commonly used method for analyzing cancer
metabolism. In addition to 1H MRS, other nuclei, such as 19F, 13C, 31P are currently used
to evaluate metabolic changes and enzymatic activities in cancer tissues [111] (Figure 3).
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3. Radiomics

Radiomics is an emerging field in radiology for cancer evaluation [112]. It is well
known that radiomic data can be associated with the histologic grade, TNM, response
to treatment, and prognosis. The approach of radiomics analysis is based on target seg-
mentation, feature extraction, feature selection, and model building [66,113,114]. Target
segmentation is a manual approach and is the major criticism of this process, because it is
time-consuming, and because it correlates with variability in target delineation, leading to
the problem of reproducibility in feature determination [115–118].

The data extracted from radiomicroscopy, when combined with other clinical data
and correlated with outcome, can create accurate, robust, and evidence-based clinical
decision support systems (CDSS) [62,119]. The rationale for radiomics is that quantitative
variables based on individual voxels are more sensitive to various clinical endpoints than
the qualitative radiologic, histopathologic, and clinical data routinely used in clinical
practice [120–124]. An extension of radiomics is radiogenomics, which aims to correlate
imaging data with some known genetic predictors of response to therapy and metastatic
spread, with potential prognostic utility [92,125]. In this way, radiogenomics could provide
the highest level of personalized risk assessment ever developed, making it possible to
further advance precision medicine, improve patient selection for various tumor treatments,
predict response to therapy and potential resistance, and assess which patients might benefit
from adjuvant therapy.

4. Nanoparticles and MRI Contrast Agents: Physical Principles and Clinical Setting

MR contrast agents induce static field distortions, affecting the relaxation time of
the nuclei. Gadolinium (Gd3+) has a large magnetic dipole moment and seven unpaired
electrons; it thus has excellent characteristics to accelerate T1 relaxation of water molecules
that are near the Gd metal ion [126].
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A local reduction in T1 relaxation (positive contrast) or T2 relaxation (negative con-
trast) causes an improved image contrast [127]. Since T1 and T2 times are linked to the
concentration, the relaxivities are correlated to iron concentration (r1 and r2). The longitu-
dinal relaxivity r1 is influenced by the molecular tumbling time, proton residence lifetime,
and coordinating number. In contrast, the transverse relaxivity r2 is proportionate to the
square of the magnetic nanoparticle radius and the magnetic saturation [128]. Since the
T1 relaxation is correlated to inner-sphere procedures (chemical energy exchange), super-
paramagnetic nanoparticles are more efficient in T2 uses. In magnetic core–nonmagnetic
shell particles, the magnetic field experienced by the water protons (T2) and the degree of
chemical exchange (T1) decrease with increased shell thickness.

Additionally, when nanoparticles are assembled, inferior r1 contrast related to less-
ened surface area and increased r2 contrast related to the magnetic moments’ coupling is
supposed. A relaxivity ratio (r2/r1) is frequently employed as an additional evaluation
of contrast medium effectiveness. An optimal T2 contrast agent should have a high r2/r1
ratio and a high r2 value. When the ratio is less than 5, the contrast should be chosen as
a T1 contrasting; if the ratio is greater than 5, as a T2 contrasting [129].

Nanoparticles have the property of shortening local water T1 or T2, as the electronic
magnetic moments of nanomaterial atomic components interact with the nuclear moments
of surrounding water molecules [130].

There are several aspects playing a role in the final intensity of the interaction as
well as in the MRI signal. One crucial aspect is the strength and the site of the nanomate-
rial’s magnetic moments and the consequent relation between the crystal core and water
components. Furthermore, even if the general rule is that paramagnetic agents shorten
both T1 and T2, they can have different effects on relaxation times. In fact, T2 relaxation
time is mainly influenced by nanoparticles with strong coupling between atomic compo-
nents, while T1 relaxation time is affected by paramagnetic atoms or chelates in normal
concentrations [94,131].

In this scenario, nanoparticles emerged as potential contrast agents. Larger super-
paramagnetic iron oxide nanoparticles (SPIO) have the ability to shorten both T2 and T2*
relaxation; SPIOS are also taken up by the reticuloendothelial system and are thus suitable
for detecting liver lesions [77,132]. They act as negative contrast agents, as they are captured
by Kupffer cells, but not by cancer cells [133].

Today, SPIO nanoparticles represent a new field of inquiry, being involved in several
stages of scientific development [134].

In order to enhance the signal in magnetic resonance, several methods to hyperpolarize
nuclei have been developed. This approach has been recently used to optimize the detection
of injected MRI contrast media.

The method used to produce novel, polymer-based contrast media consists of coupling
hydrophilic components with paramagnetic agents, such as gadolinium or manganese.
Recently, chemical exchange saturation transfer (CEST) has been proposed as a novel
system for MRI as well as for 19F-MR, enabling highly sensitive imaging [135]. This
approach increases agent relaxivity as well as stability in the blood, while extravasation
from the endothelium is limited. Regarding size, the hydrophilic polymer agents are usually
smaller than nanoparticles but larger than low molecular weight compounds [136]. The
strategy used to prepare a polymer-based MRI contrast medium is based on modifications
of functional moieties or site-specificity [137].

Antibodies show improvements when compared to other polymers, in a specific
coupling with an antigen. The system currently used to obtain antibody-contrast agents
is based on the technique for creating antibody-labeled radioactive probes. Among those
polymers, dendrimer-based MRI contrast agents have been the most widely studied [138].
Typically, dendrimers are synthesized using two different methods. On one hand, the
branches are prepared separately and thereafter conjugated to the main core. On the other
hand, the first step consists of the preparation of the main core. Therefore, dendrimer-based
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agents consist of a vast array of types, resulting from changes of the main core, the coupling
agents, or the branch number [139].

The system to synthetize dendrimer agents consists of a polyethylene glycol (PEG) modi-
fication. This combination is particularly useful, as it enhances the effects on relaxivity [140].

New methods have been developed to better couple MRI and intravital microscopy in
order to obtain a wide spectrum of information. In fact, thanks to its high spatial resolution,
MR enables the depiction of the distribution of the micelles, while it is possible to receive
information regarding the cellular and subcellular levels using intravital microscopy [141].

A method was developed to prepare compounds where the MR contrast agent is incorpo-
rated into micelles in combination with quantum dots (QDs), with their inherent fluorescence.

The weakness of fluorescence in imaging is limited tissue penetration, but the
UV-near infrared (NIR) wavelength can overcome this problem thanks to its good
penetration properties [142].

Today, magnetic iron oxide nanoparticles (IONP) or superparamagnetic iron ox-
ide nanoparticles (SPIO) are used in some clinical settings as targeted MRI contrast
agents through adjustment with targeting ligands that connect to specific tumor biomark-
ers [143,144]. For example, antibodies, peptides, or antibody parts coupling with ligands
that have a major expression in tumor cells (e.g., EGFR, HER2/neu, αvβ3 integrin, uPAR,
and prostate-specific membrane antigen), if linked to IONPs, provide targeted collection
and retention of the IONPs in tumor tissues, resulting in T2 contrast for the detection
of tumors by MRI [145]. Moreover, receptor-mediated endocytosis enhances the intratu-
moral transport and retention of particles in cancer cells for the sensitive imaging of drug
transport and cancer responses to treatment [146].

5. Nanomedicine, Treatment and Magnetic Resonance Imaging Assessment

Nanoparticles allow the delivery of therapeutic agents to a target point, and this
new manner to address drugs is called a nanoparticle-based drug delivery system (Nano-
DDS) [147]. Nevertheless, one limit of these agents is possible accumulation in the liver
instead of targeted tissues [148]. To elude this and delay their circulation, the agents
are often attached to polyethylene glycol (PEG) polymer chains on the surface through
PEGylation to improve accumulation within the target [149]. Tumor tissues can be targeted
passively due to the intensification of cancer vasculature permeability and consequent
accumulation of PEGylated nanoparticles of approximately 30–150 nm [150]. In active
targeting, nanoparticles with antibody, peptide, or protein coatings connect specifically to
the surfaces of cancer cells [151].

Nanomaterial-based drug delivery systems represent a revolutionary tool to suit the
desired drug also in a remote site. Doxil is the first FDA-approved nanomaterial-based
drug delivery system, with excellent anticancer properties in preclinical studies. However,
focusing on clinical performance, Doxil reported superior efficacy over conventional ther-
apy only against a restricted type of cancer cells; this is the consequence of the interaction
of drug with tumor processes and tumor complex microenvironments. For instance, a nano-
material delivery system has a high difficulty of diffusion in the interstitial structure of
a pancreatic tumor [152,153]. To surmount the physical obstacle of the stroma, nanoparticles
targeting uPAR, which is greatly expressed in cancer cells and tumor-associated stromal
cells, have been created. The uPAR-targeted ligand, derived from the amino-terminal
fragment (ATF) peptide of urokinase plasminogen activator, was conjugated onto am-
phiphilic polymer-coated IONPs carrying conditional release chemotherapy drug, Gem
(ATF-IONP-Gem). uPAR-targeted ATF-IONP-Gem caused significant growth inhibition in
pancreatic tumors [154].

The tissue concentration of nanoparticles in a cancer is correlated to its microstructure.
Consequently, nanoparticles cannot always be transported into cancer cells in an adequate dose.

Cancers vary in cellularity and ultrastructure. Other aspects to consider in this scenario
are treatment and immune response status. The particles should be selected considering the
tumor microenvironment. To realize nanoparticles that amplify the therapeutic effects and
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reduces unexpected results, it is determinant to assess the morphological characteristics of
the nanoparticle drug, the exact dose that can achieve the target, and the manner in which
the drug can be transported over a useful time. 3D micro-imaging is essential to see the
distribution and therapeutic effects of nanoparticles [155].

IONPs can be linked to anticancer drugs, such as doxorubicin, methotrexate, camp-
tothecin, for therapeutic purposes. Quan et al. reported human serum albumin-stabilized
IONPs for the delivery of DOX into tumors guided by MRI, documenting a significant
increase in the blood half-life of DOX and drug accumulation in tumors [40].

Faraj et al. assessed magnetic single-walled carbon nanotubes as efficient drug delivery
nanocarriers in a breast cancer murine model using DWI, showing that ADC was a sensitive
imaging biomarker for the assessment of treatment-induced changes [51,156].

Photothermal cancer therapy (PTT) is another novel treatment that exploits the use
of near-infrared (NIR)-irradiated light-absorbing nanoparticles to induce tumor ablation
through local hyperthermia. Even if this treatment has been shown to be valuable in various
preclinical studies [34], the outcome is variable, depending on several biological features.
Therefore, the treatment should be tailored to the individual patient and case [157].

Recently, DWI has been used as a tool for monitoring thermal therapies and to provide
insight on tissue damage after injury [89]. Zhang et al. found a time- and temperature-
dependent dynamic change of the MRI signal intensity (using T2* WI and ADC map) in
tumor microenvironments before any morphological changes due to the effective eradi-
cation of tumor blood vessels. Based on the distribution of nanoagents, they also showed
that PTT caused a heterogeneous thermal injury of the lesion [126,158].

Fu et al. studied PTT using DWI as a tool for therapy monitoring and early prognosis
of treatment. DWI was performed at different time points after PTT, and the tumor ADCs
were assessed and compared. They demonstrated that photothermal agents, magnetic
guidance, and drug–light intervals could affect PTT efficacy. ADC value changes at early
time points after PTT (less than 48 h) were well-correlated with tumor growth suppression.
The changes were most sensitive to conditions that can extend survival for more than
four weeks, in which cases the 48 h ADC values were increased by more than 80% [87].

Ye et al. found that the combined use of MRI and photoacoustic imaging (PAI)
techniques helped them to monitor the vascular permeability and temperature status
following treatment, promising to help guide PTT in future translational investigation [151].

Feng et al. investigated the effectiveness of a polydisulfide-based biodegradable
macromolecular contrast agent, (Gd-DTPA)-cystamine copolymers (GDCC), in assessing
the efficacy of indocyanine green-enhanced photothermal cancer therapy using dynamic
contrast-enhanced MRI (DCE-MRI) in breast cancer xenografts in mice. The effectiveness
was evaluated by DCE-MRI with a GDCC of 40 KDa (GDCC-40) at 4 h and 7 days after
the treatment. The uptake of GDCC-40 by the cancer cells was fit to a two-compartment
model to obtain tumor vascular parameters, such as fractional plasma volume (fPV),
endothelium transfer coefficient (KPS), and permeability surface area product (PS). The
research demonstrated that the fPV, KPS, and PS values of the treated lesions were smaller
(p < 0.05) than those of untreated lesions at 4 h and recovered to pretreatment values
(p > 0.05) at 7 days after the treatment [115].

Table 1 summarizes the relevant literature reviewed in the field of nanomedicine
and MRI.
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Table 1. Studies assessing MRI application in nanomedicine and theranostics.

Author Year Technique Nanoparticle Target

Jiang et al. [149] 2019 Magnetic resonance imaging
(MRI)/fluorescence probes

Gadodiamide into fluorescent
silica nanoparticles (NPs)

Prostate-specific membrane
antigen (PSMA)

receptor-positive PCa cells

Mason et al. [150] 2021
Hand-held magnetic particle

detector and a small-bore
MPI scanner

Iron oxide Breast cancer (intraoperative
assessment of tumor margins)

Ye at al. [151] 2018

Magnetic resonance
temperature imaging (MRTI)

and diffusion-weighted
MRI (DWI)

Near-infrared (NIR) irradiated
light-absorbing nanoparticles

Monitoring the vascular
permeability and temperature

status following PTT

Lee et al. [154] 2013 MRI

Urokinase plasminogen
activator receptor

(uPAR)-targeted magnetic iron
oxide nanoparticles

(IONPs) + gemcitabine (Gem)

With MRI contrast enhancement
by IONPs MRI detection in
residual tumors following

targeted delivery into
uPAR-expressing tumor and

stromal cells

Lee et al. [155] 2016

Magnetic resonance imaging
(MRI) and real-time

upconversion luminescence
imaging (UCL)

Transcatheter intra-arterial
infusion of targeted multimodal

Nd3+-doped upconversion
nanoparticle (UCNP)+anti-
CD44-monoclonal antibody

Discrimination of liver tumors
from normal hepatic

tissues in rats

Quan et al. [40] 2011 MRI

Human serum albumin
(HSA)-coated iron oxide

nanoparticle (HINP)
formula + doxorubicin

Tumor suppression effect on 4T1
murine breast cancer

xenograft model

Ng et al. [156] 2013 DWI

CRLX101 (cyclodextrin-based
polymer particle containing the

DNA topoisomerase I
inhibitor camptothecin)

Temporal changes in ADC
specified early CRLX101

treatment response

Fu et al. [87] 2016 Diffusion-weighted magnetic
resonance imaging (DW-MRI) Photothermal therapy (PTT) DW-MRI can be an accurate

prognosis tool for PTT

Zhang et al. [158] 2015 MRI
Nanoparticle-mediated

photothermal therapy (PTT)
using graphene oxide (GO)

Time- and
temperature-dependent

dynamic change of the MRI
signal intensity in

intratumor microenvironment

Feng et al. [115] 2009
Dynamic contrast-enhanced

magnetic resonance
imaging (DCE-MRI).

(Gd-DTPA)-cystamine
copolymers (GDCC)

DCE-MRI with GDCC-40 is
effective for assessing tumor

early response to dye-enhanced
photothermal therapy and

detecting tumor relapse
after treatment

6. Conclusions

The recent advances in scanners and magnetic resonance sequences enable the in-
creasingly ultrastructural study of body tissues and represent a fundamental tool for the
diagnosis and staging of tumor lesions. The ability to exploit the magnetic properties of mi-
croparticles, hitherto used in nanomedicine, is opening a new scenario in the application of
magnetic resonance techniques to theranostics, with enormous diagnostic and therapeutic
potential in different types of cancer.
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