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Abstract

Pneumonia may be caused by a wide range of pathogens and is considered the most com-

mon infectious cause of death in humans. Murine acute lung infection models mirror human

pathologies in many aspects and contribute to our understanding of the disease and the

development of novel treatment strategies. Despite progress in other fields of tissue imag-

ing, histopathology remains the most conclusive and practical read out tool for the descrip-

tive and semiquantitative evaluation of mouse pneumonia and therapeutic interventions.

Here, we systematically describe and compare the distinctive histopathological features of

established models of acute pneumonia in mice induced by Streptococcus (S.) pneumoniae,

Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Legionella pneu-

mophila, Escherichia coli, Middle East respiratory syndrome (MERS) coronavirus, influenza

A virus (IAV) and superinfection of IAV-incuced pneumonia with S. pneumoniae. Systematic

comparisons of the models revealed striking differences in the distribution of lesions, the

characteristics of pneumonia induced, principal inflammatory cell types, lesions in adjacent

tissues, and the detectability of the pathogens in histological sections. We therefore identi-

fied core criteria for each model suitable for practical semiquantitative scoring systems that

take into account the pathogen- and model-specific patterns of pneumonia. Other critical

factors that affect experimental pathologies are discussed, including infectious dose, time

kinetics, and the genetic background of the mouse strain. The substantial differences

between the model-specific pathologies underscore the necessity of pathogen- and model-

adapted criteria for the comparative quantification of experimental outcomes. These criteria
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also allow for the standardized validation and comparison of treatment strategies in preclini-

cal models.

Introduction

As one of the most frequent infectious diseases, pneumonia causes a tremendous socioeco-

nomic burden in industrialized countries [1] and is the leading infectious cause of death in

children worldwide [2]. Numerous classes of pathogens can cause acute pneumonia [3] and

the risk of pneumonia is greatly enhanced under conditions of impaired pulmonary host

defense, including preceding viral infections [4], mechanical ventilation [5] and sepsis [6]. The

leading causative pathogen of community acquired pneumonia (CAP) is the Gram-positive

bacterium Streptococcus (S.) pneumoniae [7, 8] which accounts for the majority of bacterial

upper and lower respiratory tract infections and is responsible for millions of deaths annually

[9, 10]. As another cause of CAP influenza A virus (IAV) infection leads to rapid progression

of lung failure with limited treatment options and frequent fatal outcome [3, 11, 12]. More-

over, IAV infections are commonly complicated by bacterial superinfection, mostly caused by

S. pneumoniae, resulting in severe progressive pneumonia associated with increased mortality

[13]. In contrast, the Gram-negative and facultatively intracellular bacterium Legionella (L.)
pneumophila is the causative agent of the severe CAP Legionnaires’ disease, and the second

most commonly detected pathogen in pneumonia in patients admitted to intensive care units

(ICU) in industrialized countries [14, 15]. However, in addition to CAP, ventilator-associated

pneumonia (VAP) is also a major cause of hospital morbidity and mortality in ICUs [16] and

the spectrum of pathogens is shifted in these forms of pneumonia. Here Staphylococcus (S.)
aureus, Klebsiella (K.) pneumoniae, Acinetobacter (A.) baumannii, and Escherichia (E.) coli
have been isolated with varying prevalences [17–19]. More specifically, the Gram-negative K.

pneumoniae is a significant opportunistic pathogen causing severe life-threatening hospital-

acquired respiratory tract infections [20–22] while S. aureus, a Gram-positive bacterium, is

one of the most prevalent pathogens of community- and hospital-acquired lower respiratory

tract infections in humans and accounts for a significant health and economic burden [23–25].

A. baumannii and E. coli are ubiquitous Gram-negative bacteria which have recently emerged

as major causes of community-associated, nosocomial [26, 27] and ventilator-associated pneu-

monia [19, 28] as well as septicemia induced acute lung injury (ALI) [29, 30].

In addition, more recently discovered pulmonary pathogens indicate that novel emerging

diseases may add to the list of highly relevant pneumonias that may also be of interest to be

studied in animal models. For example, the Middle East respiratory syndrome coronavirus

(MERS-CoV) which is transmitted by dromedary camels as vectors [31] has emerged as the

cause of severe human respiratory disease worldwide [32, 33] with elderly and immunocom-

promised individuals particularly in Saudi Arabia being at highest risk [34–36].

The various forms of pneumonia have been successfully reproduced in specific murine

models of experimentally-induced acute pneumonia [37–39]. These models have substantially

contributed to our understanding of the pathogenesis of community- and hospital-acquired

pneumonia as well as emerging lung infections worldwide and are indispensable for the devel-

opment of novel therapeutic strategies [40–42].

Histopathology has been a powerful, reliable, and reproducible read-out tool for the evalua-

tion of morphological changes in animal lung infection experiments for many decades [43,

44]. Qualitative diagnoses are based on a summation of microscopically observable changes in

the morphology and cellular composition of the tissue and cell types involved. For a more
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comparative inclusion of histopathologic information in biomedical research, scoring systems

have been widely applied which allow for a first semiquantitative assessment of lesions com-

pared to controls [44, 45]. Moreover, all preclinical models used for the development of novel

treatment strategies and acceptance by regulatory agencies need to be assessed histopathologi-

cally by board certified pathologists as gold standard for qualitative and semiquantitative eval-

uation of tissue alterations in experimental animals [46–48].

Previous studies have revealed first fundamental differences in histopathologic lesions

caused by different pathogens in mouse lungs [38, 41, 42]. However, scoring schemes for acute

murine pneumonia existing to date are very superficial, addressing only a few, rather unspe-

cific parameters [45, 49, 50]. More importantly, they hardly allow for a differentiating perspec-

tive between distinct pathogens or for group comparisons, e.g., infections of wild type versus

genetically modified mice. Clearly, there is a strong need for more precise and pathogen- as

well as model-specific parameters to allow for an accurate description and semiquantification

of the inflammatory phenotype for reliable and reproducible comparisons between experimen-

tal groups within each model. Therefore, we have recently adapted more specific scoring crite-

ria for S. pneumoniae and S. aureus-induced pneumonia [38, 42]. However, such pathogen-

specific scoring criteria have not been employed for other lung pathogens in mice.

Here, we systematically describe and compare the histopathologies at their peaks of inflamma-

tion and injury of nine previously established acute lung infection models induced by S. pneumo-
niae, S. aureus, K. pneumoniae, A. baumannii, L. pneumophila, E. coli, MERS-CoV, IAV and

superinfection with IAV and pneumococci. We provide model-specific criteria that can be used

for appropriate histological quantitative comparisons, e.g., when different therapeutic interven-

tions are evaluated within these established models. Whole mouse lung sections were used to

obtain complete overviews, particularly of the distributions of lesions and inflammatory patterns.

On the basis of the different and oftentimes quite pathogen- and model-specific changes we iden-

tified the most suitable evaluation criteria for each model that will allow for more accurate semi-

quantitative assessments of the severities and distributions of pneumonic lesions.

Materials and methods

Ethics statement

The lung tissues examined here were derived from experiments primarily conducted for pur-

poses other than this study and most have been published elsewhere [38, 41, 42, 51–53], except

for the A. baumannii and E. coli experiments that will be published elsewhere. All animal pro-

cedures and protocols were approved by institutional ethics committees of Charité-University

of Berlin, Justus-Liebig University of Giessen, Philipps University of Marburg, University Hos-

pital of Jena and local governmental authorities (Landesamt für Gesundheit und Soziales

(LAGeSo) Berlin, Regierungspräsidium (RP) Gießen and Darmstadt, Landesamt für Verbrau-

cherschutz (TLV) Thüringen), respectively. Permit numbers were G 0356/10, A-0050/15 (S.

pneumoniae), G 0358/11 (S. aureus), G 75/2011, G 110/2014 (K. pneumoniae), A 0299/15 (A.

baumannii), G 0175/12 (L. pneumophila), 02-049/12 (E. coli), 114/2012 (MERS-CoV), G 0152/

12, and G 0044/11 (IAV and superinfection). All animal studies were conducted in strict accor-

dance with the Federation of European Laboratory Animal Science Associations (FELASA)

guidelines and recommendations for the care and use of laboratory animals, and all efforts

were made to minimize animal discomfort and suffering.

All mice, except for MERS-CoV infected mice, were monitored at 12 hour intervals

throughout the experiment to assess appearance, behavior, grooming, respiration, body

weight, and rectal temperature. Humane endpoints were defined (body temperature <30˚C,

body weight loss = 20%, cumbersome breathing, accelerated breathing in combination with
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staggering, pain or paleness) but not reached by any of the mice at the indicated time points of

termination of the experiments. MERS-CoV infected mice were monitored once daily and

appearance, behavior, grooming, respiration and body weight were protocolled. Here, a single

humane endpoint (loss of body weight of>15%) was defined but not reached by any of the

mice employed due to their favourable clinical outcome at the infection dose used.

Mice

For all experimental infection models, except of K. pneumoniae, female mice (aged 8–12 weeks

and weighing 17–22 g) were randomly assigned to groups (n = 2–4) per cage whereas in the K.

pneumoniae model female and male mice (aged 23–25 weeks and weighing 22–24 g) were used

for model specific reasons [41]. Furthermore, for all experimental infection models, specific-

pathogen-free (SPF) mice on C57BL/6 (all except for MERS-CoV) or BALB/c (as previously

used for the MERS-CoV model [52, 54]) background were used and housed in individually

ventilated cages under SPF conditions with a room temperature of 22 ± 2˚C and a relative

humidity of 55 ± 10%. A 12 hour light/ 12 hour dark cycle was maintained and the animals

had unlimited access to standard pellet food and tap water. All experimental details of the

infection models compared here were applied following previously published and well estab-

lished protocols that partly vary in terms of infection doses, routes of infection and time point

of examination due to pathogen- or model specific reasons, as given below.

For bacterial infections, except for E. coli, mice were anesthetized intraperitoneally with

ketamine (80 mg/kg) (Ketavet; Pfizer, Berlin, Germany) and xylazine (25 mg/kg) (Rompun;

Bayer, Leverkusen, Germany). For experimental viral infections, mice were anesthetized using

inhalation of isoflurane (Forene; Abbott, Wiesbaden, Germany). For lung histology, all mice

except of the MERS-CoV model were humanely euthanized by exsanguination via the caudal

Vena cava after anesthesia by intraperitoneal injection of premixed ketamine (160 mg/kg) and

xylazine (75 mg/kg). MERS-CoV infected mice were humanely euthanized by cervical disloca-

tion after isoflurane anesthesia.

Bacterial infections

S. pneumoniae (serotype 3 strain, NCTC 7978), S. aureus Newman (NCTC 10833), K. pneumo-
niae (serotype 2, ATCC 43816), A. baumannii (RUH 2037), L. pneumophila (serogroup 1 strain,

JR 32) were cultured as described [37, 38, 40, 55, 56] and resuspended in sterile PBS. Mice were

anesthetized intraperitoneally (i.p.) with ketamine (80 mg/kg) and xylazine (25 mg/kg) and trans-

nasally inoculated with 5 x 106 CFU S. pneumoniae (n = 14 mice), 5 x 107 CFU S. aureus (n = 4), 5

x 108 CFU A. baumannii (n = 8), in 20 μl PBS. Mice transnasally infected with L. pneumophila
(n = 8) received 1 × 106 CFU in 40 μl PBS. Mice infected with K. pneumoniae (n = 16) received

3.5 x 105 CFU intratracheally in 50 μl NaCl (0.9%) via Microsprayer1 Aerosolizer (Model IA-1b,

Penn-Century, Inc., Wyndmoor, PA) using intubation-mediated intratracheal instillation through

intact airways [57] which has previously been optimized for this model [41, 57–59].

E. coli (ATCC 25922) from -80˚C glycerol stock was added to LB broth (Carl Roth, Karls-

ruhe, Germany) and incubated for 12 hours at 200 rpm and 37˚C with 5% CO2. Optical den-

sity of 0.03 was adjusted in LB broth followed by incubation until midlogarithmic phase for 1.5

hours at 200 rpm and 37˚C. After centrifugation, the pellet was resuspended in sterile 0.9%

NaCl at 8 x 105 CFU E. coli / 200 μl and administered intraperitoneally (n = 10).

Viral infections and superinfection

For initial transduction of human DPP4 for subsequent infection of BALB/c mice with

MERS-CoV (hCoV EMC) viruses were cultured and prepared as described [52, 54, 60]. Mice
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were transduced transnasally with 20 μl of an adenovirus vector encoding human DPP4 and

mCherry with a final titer of 2.5 x 108 PFU per inoculum (AdV-hDPP4; ViraQuest Inc.),

resulting in hDPP4 expression in the epithelial compartment of the lung [60] and transnasally

infected with a final titer of 7 x 104 TCID50 of MERS-CoV in 20 μl DMEM (n = 17) under iso-

flurane anesthesia (Forene; Abbott, Wiesbaden, Germany).

Influenza A/PR/8/34 virus (H1N1; PR8) was grown as described [42] and mice were trans-

nasally infected with 100 PFU PR8 in 50 μl PBS (n = 4) under isoflurane anesthesia.

For superinfection experiments, the IAV infection procedure was applied as described

above with 40 PFU PR8 in 50 μl PBS. 8 days after viral infection, S. pneumoniae was cultured

as described [37] and resuspended in sterile PBS. Mice were anesthetized intraperitoneally and

transnasally inoculated with 1 x 103 CFU S. pneumoniae in 20 μl PBS (n = 4).

Histopathology

Mice were humanely euthanized at model-specific time points as indicated (Table 1). Between 2

and 6 repetitions of the entire experimental procedures were performed in each model with

similar group sizes in each repetition. Lungs were carefully removed after ligation of the trachea

to prevent alveolar collapse, immersion-fixed in formalin pH 7.0 for 24 to 48 hours (MERS-CoV

for 7 days), embedded in paraffin, cut in 2 μm sections and stained with hematoxylin and eosin

(HE) after dewaxing in xylene and rehydration in decreasing ethanol concentrations. Bacteria

were visualized using the Giemsa and Gram (modified by Brown and Brenn) stains. For the dis-

play of whole lung overviews, HE stained slides of entire lung sections were automatically digi-

tized using the Aperio CS2 slide scanner (Leica Biosystems Imaging Inc., CA, USA) and image

files were generated using the Image Scope Software (Leica Biosystems Imaging Inc.).

Three evenly distributed whole-organ horizontal sections throughout the entire lungs were

microscopically evaluated to assess the distribution and character of pathologic alterations,

generating a modified panel of specific lung inflammation parameters adapted to each patho-

gen used (Table 1 and Table 2). All examinations were performed by trained veterinary experi-

mental pathologists.

Immunohistochemistry

For immunohistochemical detection of S. pneumoniae and IAV (H1N1), antigen retrieval was

performed with microwave heating (600 W) in 10 mM citric acid (750 ml, pH 6.0) for 12 min-

utes (min). Lung sections were then incubated with a purified rabbit antibody polyclonal to S.

pneumoniae (1:2,000, kindly provided by S. Hammerschmidt) or with a purified goat antibody

polyclonal to IAV H1N1 (1:4,000, OBT155, Bio-Rad, Puchheim, Germany) at 4˚C overnight.

Incubation with an immuno-purified rabbit or goat antibody at the same dilution served as

negative controls. Subsequently, slides were incubated with a secondary, alkaline phosphatase-

conjugated goat anti-rabbit (1:500, AP-1000, Vector, Burlingame, CA) antibody for 30 min at

room temperature. The alkaline chromogen triamino-tritolyl-methanechloride (Neufuchsin)

was used as phosphatase substrate for color development. All slides were counterstained with

hematoxylin, dehydrated through graded ethanols, cleared in xylene and coverslipped.

Results

S. pneumoniae

Transnasal infection of mice with S. pneumoniae, serotype 3 resulted in a broad spectrum of

tissue lesions and immune cell infiltrations that are typical of aerogenic bacterial pneumonia.

Specific for this model, lesions widely expanded down to the periphery of the lung lobes (Fig
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1A) with inflammation closely surrounding the airways and blood vessels. Pneumococcal

spread led to an early immune response which was mainly characterized by predominantly

intrabronchial (Fig 1B) and intraalveolar (Fig 1C) infiltrations of neutrophils provoking a lob-

ular, suppurative bronchopneumonia with consolidation of affected lung areas. Large areas of

coagulation and liquefaction necrosis (Fig 1D, arrowhead) as indicated by cellular fragmenta-

tion, decay, and loss of cellular details, accumulation of cellular and karyorrhectic debris as

well as karyorrhexis, karyopyknosis, and karyolysis with consecutive hemorrhage were also

present. The perivascular interstitium was widely expanded by edema due to vascular leakage

[53] with massive extravasation of neutrophils recruited into perivascular spaces (Fig 1E). Fur-

thermore, suppurative and necrotizing vasculitis accompanied by hyaline thrombi within

small-sized blood vessels were occasionally present, indicating early histological evidence of

incipient septicemia. Increased pulmonary vascular permeability [53] also led to expanded

areas of protein-rich alveolar edema which presented as homogenous, lightly pink material

Table 2. Pathogen and model-specific presence of lesion patterns in mouse models of acute pneumonia.

Evaluation criteria S. pneumo-

niae

S. aureus K. pneumo-

niae

A. bauman-

nii

L. pneumo-

phila

E. coli MERS-CoV IAV IAV +

S. pneumo-

niae

Expansion to peripheral lung

regions

++ - ++ ++ - diffuse ++ ++ ++

Pulmonary atelectasis ++ ++ + ++ - - + + ++

Peribronchial inflammation ++ + + + + - + ++ ++

Perivascular inflammation ++ + + + + + + + ++

Interstitial inflammation + + + + ++ ++ ++ ++ ++

Intraalveolar inflammation ++ ++ ++ ++ + - + + ++

Bronchial epithelial cell necrosis + + + + - - + ++ ++

Alveolar wall necrosis ++ + + + + + ++ ++ ++

Infiltration by neutrophils ++ ++ ++ ++ + ++ ++ + ++

Infiltration by macrophages + ++ + + ++ - ++ ++ +

Infiltration by lymphocytes - + - - + - ++ ++ ++

Abscess formation - ++ ++ + - - - - -

Granuloma formation - - - - ++ - - - -

Alveolar edema ++ + ++ + - - + ++ ++

Perivascular edema ++ - ++ + + - - + +

Perivascular lymphocytic cuffing - ++ - + ++ - ++ ++ +

Hyperplasia of type II alveolar

epithelial cells

- - - - - - + ++ +

Vasculitis ++ - + - + + ++ - +

Fibrinoid degeneration of

vascular walls

- - - - - - ++ - -

Vascular thrombosis +/- - - ++ - ++ ++ - -

Hemorrhage (interstitial,

intraalveolar)

++ + + + - - ++ + +

Pleuritis ++ - ++ - - - - - ++

Steatitis of mediastinal adipose

tissue

++ - ++ - - - - - ++

Suggested method for

visualization of pathogens*
HE,

Gr

Gr HE,

Gi

Gr

Gi

Gr

Gi

Gr

Gi

IHC IHC IHC

Gr

-, absent; +, minor; ++, major

* HE, Hematoxylin and Eosin; Gr, Gram; Gi, Giemsa stain; IHC, immunohistochemistry

https://doi.org/10.1371/journal.pone.0188251.t002
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within the alveolar spaces in the HE stain (Fig 1F, asterisk). A distinctive histopathological fea-

ture of pneumococcal pneumonia was the occurrence of massive suppurative to necrotizing

pleuritis (Fig 1G, arrowhead) and steatitis (Fig 1H) with widespread dispersion of bacteria into

the thoracic cavity, likely accounting for the painful and morbid clinical behavior with rapid

progression in affected mice. Myriads of pneumococci were clearly visible as bluish to purple

dots of approximately 1 μm in size in the standard HE stain, mostly located on the pleural sur-

face, in the mediastinal adipose tissue or within perivascular spaces in the lungs.

S. aureus

In contrast, transnasal infection with S. aureus resulted in multifocally extensive but non-expan-

sive bronchopneumonia predominantly located near the lung hilus (Fig 2A), affecting the bron-

chi, alveoli and interstitium. The main inflammatory cell population consisted of neutrophils,

leading to mainly suppurative (Fig 2B and 2C) lesions with a tendency towards abscess forma-

tion. In contrast to pneumococci, macrophages were also present albeit at lower numbers than

neutrophils. (Fig 2C). Similar to Klebsiella and streptococci, large areas of necrosis and hemor-

rhage (Fig 2D) were present. The perivascular areas were predominantly infiltrated by lympho-

cytes and fewer neutrophils (Fig 2E). Compared to the S. pneumoniae model mentioned above

[53], vascular permeability seemed only slightly increased as reported before [38] and perivascu-

lar edema (Fig 2E) as well as protein-rich alveolar edema (Fig 2F, asterisk) were also present

albeit to a lesser extent. Neither pleuritis nor steatitis were observed consistent with a rather

favorable clinical outcome under the conditions used. Furthermore, staphylococci were largely

undetectable by HE stain which was possibly due to the low bacterial spread within the lungs.

K. pneumoniae

Intratracheal infection of mice with K. pneumoniae resulted in severe widely expansive bron-

chopneumonia with increased lesion severity in the lung periphery (Fig 3A). Recruited

Fig 1. Infection with S. pneumoniae. (A—H) Lung histology of mice after transnasal infection with S. pneumoniae (5 x 106 CFU/ mouse)

revealed widely expansive (A), suppurative to necrotizing bronchopneumonia (a-d), predominantly infiltrated by neutrophils within bronchial

lumina (B) and alveoli (C) and large areas of necrosis and hemorrhage (D, arrowhead). Additional features included marked neutrophilic

infiltration and edema of perivascular spaces (E), severe alveolar edema (F, asterisk) and necropurulent pleuritis (G, arrowhead) and

steatitis (H). (A—H) Representative images are shown. Bars (A), 1 mm; (B—D, F—H), 20 μm; (E), 50 μm.

https://doi.org/10.1371/journal.pone.0188251.g001
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immune cells predominantly consisted of neutrophils, leading to suppurative (Fig 3B) to

abscessing (Fig 3C) bronchopneumonia with hemorrhage and necrosis as well as neutrophilic

interstitial pneumonia (Fig 3D) in less affected areas. Increased vascular permeability as

reported [40] was associated with massive alveolar (Fig 3D, asterisk) and perivascular edema

(Fig 3E), admixed with myriads of bacteria easily recognizable as purple dots in the HE stain.

Suppurative to necrotizing vasculitis, pleuritis (Fig 3F, arrowhead), and steatitis were also pres-

ent and associated with marked bacterial spread and the rapid lethal clinical outcome.

A. baumannii

After transnasal infection with A. baumannii, mice developed a widely expansive (Fig 4A)

bronchopneumonia with predominantly infiltrating neutrophils causing a suppurative (Fig

4B) to abscessing inflammation with areas of hemorrhage within alveoli and interstitium and

large areas of parenchymal necrosis as well as alveolar edema. Perivascular spaces had mild to

moderate edema and infiltration of lymphocytes and neutrophils (Fig 4C). Vascular thrombo-

sis was a common change (Fig 4D, arrowhead) in small-sized blood vessels. Similar to staphy-

lococci, Acinetobacter was invisible by HE stain and neither pleuritis nor steatitis were present.

L. pneumophila

Transnasal infection of mice with L. pneumophila resulted in slightly different lesion patterns

depending on the time point of examination after infection. At 48 hours after infection, non-

expansive interstitial pneumonia was found in close proximity to the hilus (Fig 5A) with

Fig 2. Infection with S. aureus. (A—F) Transnasal infection of mice with S. aureus (5 x 107 CFU/ mouse)

resulted in non-expansive (A), suppurative (B, C) to necrotizing (D) bronchopneumonia with infiltration of

neutrophils and lymphocytes into perivascular spaces (E) and protein-rich alveolar edema (F, asterisk). (A–F)

Representative images are shown. Bars (A), 1 mm; (C, D, F), 20 μm; (B, E), 50 μm.

https://doi.org/10.1371/journal.pone.0188251.g002
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Fig 3. Infection with K. pneumoniae. (A—F) Intratracheal infection of mice with K. pneumoniae (3.5 x 105

CFU/ mouse) resulted in expansive (A), suppurative (B) to abscessing (C) bronchopneumonia as well as

neutrophilic interstitial pneumonia (D) with severe alveolar (D, asterisk) and perivascular (E) edema, massive

fibrinopurulent and necrotizing pleuritis (F, arrowhead) and steatitis. (A–F) Representative images are shown.

Bars (A), 1 mm; (B, D, F), 20 μm; (E), 50 μm; (C), 100 μm.

https://doi.org/10.1371/journal.pone.0188251.g003

Fig 4. Infection with A. baumannii. (A—D) Lung histology of mice after transnasal infection with A. baumannii

(5 x 108 CFU/ mouse) revealed expansive (A), suppurative (B) to abscessing bronchopneumonia with

perivascular inflammation and edema (C) and vascular thrombosis (D, arrowhead). (A—D) Representative

images are shown. Bar (A), 1 mm; (C, D), 20 μm; (B), 50 μm.

https://doi.org/10.1371/journal.pone.0188251.g004
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prominent alveolar wall necrosis (Fig 5B). At the 6 day-time point, specifically the numbers of

infiltrating macrophages were clearly increased, leading to accentuated perivascular granu-

loma formation (Fig 5C, arrowhead). Here, marked lymphocytic cuffing of most blood vessels

as well as highly activated endothelial cells (Fig 5D, arrowhead) were observed. At both time

points, neither pleuritis nor steatitis were present. Bacteria were invisible in the HE stained

sections.

E. coli

After intraperitoneal infection, the hematogeneous spread of E. coli to the lungs had resulted

in diffuse, interstitial suppurative pneumonia, diffusely affecting the entire lungs, modelling

sepsis-induced ALI (Fig 6A). The interalveolar interstitium was heavily infiltrated with neutro-

phils (Fig 6B) with most prominent aggregation around blood vessels (Fig 6C), consistent with

bacterial entry via the circulation. Numerous hyaline thrombi were present within small-sized

blood vessels (Fig 6D, arrowhead), suggestive of disseminated intravascular coagulopathy

(DIC) due to bacterial septicemia. Large, rod-shaped bacteria were easily detectable only out-

side the lungs, mostly present in the adipose tissue surrounding the esophagus, possibly due to

local spread of E. coli via the abdominal cavity.

MERS-coronavirus

Transnasal infection with MERS-CoV following adenoviral transduction of human DPP4

yielded an expansive, (Fig 7A) interstitial pneumonia with severe alveolar epithelial cell necro-

sis and infiltration of mainly macrophages, lymphocytes, and fewer neutrophils (Fig 7B). Only

Fig 5. Infection with L. pneumophila. (A—D) At 48 hours and 6 days post transnasal infection with L.

pneumophila (1 x 106 CFU/mouse), mice developed non-expansive (A), necrotizing to histiocytic interstitial

pneumonia (B) with granuloma formation around blood vessels (C, arrowhead) and prominent lymphocytic

perivascular cuffing with highly activated endothelial cells (D, arrowhead) at the 6 day-time point. (A—D)

Representative images are shown. Bar (A), 1 mm; (B—D), 20 μm.

https://doi.org/10.1371/journal.pone.0188251.g005
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moderate peribronchial (Fig 7C) and perivascular (Fig 7D) lymphocytic infiltrations were

present while most venous blood vessels had marked fibrinoid degeneration and necrosis of

Fig 6. Infection with E. coli. (A—D) Following intraperitoneal infection with E. coli (5 x 108 CFU/ mouse),

mice developed diffuse (A), neutrophilic interstitial (B) and perivascularly accentuated (C) pneumonia with

marked vascular thrombosis (D, arrowhead). (A—D) Representative images are shown. Bar (A), 1 mm; (B—

D), 20 μm.

https://doi.org/10.1371/journal.pone.0188251.g006

Fig 7. MERS-coronavirus. (A—F) Transnasal infection with MERS-CoV (7 x 104 TCID50/ mouse) resulted in

expansive (A), necrotizing, mixed-cellular bronchointerstitial pneumonia (B) with peribronchial and

perivascular infiltration of lymphocytes (C, D), marked fibrinoid degeneration of blood vessels (D, asterisk),

alveolar edema (E, arrowhead) and hemorrhage (F, arrowhead). (A–F) Representative images are shown.

Bar (A), 1 mm; (B, C, E, F), 20 μm; (D), 50 μm.

https://doi.org/10.1371/journal.pone.0188251.g007
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vascular walls (Fig 7D, asterisk). Additional hallmarks of MERS-CoV infection were large

areas of protein-rich alveolar edema (Fig 7E, arrowhead), pronounced hemorrhage within

perivascular and alveolar spaces, and interstitium (Fig 7F, arrowhead), and the formation of

hyaline thrombi within small-sized blood vessels.

Influenza A virus

After transnasal infection with IAV, mouse lungs displayed a diffusely distributed bronchoin-

terstitial pneumonia restricted to single lung lobes only (Fig 8A). Alveolar necrosis was promi-

nent and alveolar septae were diffusely distended by infiltrating inflammatory cells (Fig 8B).

Bronchial epithelial cells were markedly necrotic (Fig 8C, arrowhead) and extensively scaled

off into the bronchial lumen. Alveoli and interstitium were filled with macrophages and lym-

phocytes as major effector cells (Fig 8D) and prominent perivascular lymphocytic cuffing (Fig

8E) was a characteristic change. Furthermore, large areas of alveolar edema (Fig 8F, asterisk)

and, albeit to a much lesser extent, areas of hemorrhage within alveoli and interstitium were

present, suggesting vascular damage and increased permeability.

Superinfection of influenza A virus pneumonia with S. pneumoniae

When mice had been infected with IAV prior to infection with S. pneumoniae, a combination

and exponentiated phenotype of both models was observed 24 hours later. Lesions were widely

expansive to the lung periphery but restricted to single lung lobes pre-damaged by IAV (Fig

9A). The character of pneumonia included massive infiltration of neutrophils into alveoli

(Fig 9B) and bronchi, typical features of severe, suppurative bronchopneumonia. Bronchial

epithelium was almost entirely necrotic and bronchi were filled up with pus (Fig 9C). Peri-

vascular spaces were edematous and infiltrated by neutrophils and lymphocytes (Fig 9D)

whereas only mild lymphocytic perivascular cuffing (Fig 9E) was present. A severe protein-

rich alveolar edema was seen, similar to that seen in the S. pneumoniae mono-infection (Fig

Fig 8. Influenza A virus. (A–F) After transnasal infection, IAV (100 PFU/ mouse) resulted in diffuse (A),

necrotizing (B), bronchointerstitial pneumonia (B, C) with marked necrosis and sloughing of bronchial

epithelial cells (C, arrowhead), lympho-histiocytic intraalveolar and interalveolar interstitial infiltration (D),

prominent perivascular cuffing of lymphocytes (E) and protein-rich alveolar edema (F, asterisk). (A–F)

Representative images are shown. Bar (A), 1 mm; (B—D, F), 20 μm; (E), 50 μm.

https://doi.org/10.1371/journal.pone.0188251.g008
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9F). Pneumococci were difficult to visualize by HE stain, possibly due to the lower infectious

dose used here when compared to the mono-infection.

Distributions, expansions and symmetry

Prior to processing for histopathology, small tissue samples from experimentally infected

mouse lungs are commonly removed for molecular analyses of gene and/ or protein expression

or other readout systems to receive additional information. To obtain representative data from

such samples that can be correlated with the histological changes, it is crucial to know about

the homogeneity of the distribution of lesions. Also, some experimental protocols recommend

to use the left and right halves of the lungs, respectively, for different analytical procedures,

again anticipating lesion homogeneity and symmetry. However, when we analyzed the distri-

butions and bilateral symmetry of lung lesions for each of the infection models, we found a

wide spectrum of distinct distributions and asymmetries (Fig 10). In principle, lesion distribu-

tions followed the route of pathogen entry into the lungs. However, the tendencies to spread

towards the periphery of the lobes after aerogenous infection varied between different patho-

gens despite similar aerogenous infection routes. Mostly centrally focused lesions induced by

S. aureus and L. pneumophila remained close to the hilus with no trend towards peripheral

expansion. Infection with S. pneumoniae, A. baumannii and MERS-CoV resulted in lesions

closely surrounding major airway segments with centrifugal expansion towards the periphery.

In contrast, lesions induced by K. pneumoniae were mostly located in the periphery of the

lobes and airways and much weaker adjacent to the hilus despite aerogenous infection. Hema-

togenously-induced sepsis with E. coli was associated with an entirely diffuse distribution of

lesions affecting the whole lung with myriads of inflammatory hot spots, commonly surround-

ing blood vessels. IAV-induced lesions were restricted to individual lung lobes only with a

rather homogeneous distribution within affected lobes. Superinfection of S. pneumoniae into

an IAV-pneumonia resulted in a pattern virtually identical to that seen after IAV infection

Fig 9. Superinfection of influenza A virus pneumonia and S. pneumoniae. (A–F) Superinfection with S.

pneumoniae (1 x 103 CFU/ mouse) of mice that had been infected with IAV (40 PFU/ mouse) earlier resulted

in severe expansive (A), suppurative bronchopneumonia (B) with marked necrosis of bronchi which were filled

up with pus (C). In addition, perivascular infiltration of neutrophils, lymphocytes and monocytes with

prominent edema (D) as well as mild purely lymphocytic, dense perivascular cuffing in other areas (E) and

protein-rich alveolar edema (F, asterisk) were present. (A–F) Representative images are shown. Bars (A), 1

mm; (B—F), 20 μm.

https://doi.org/10.1371/journal.pone.0188251.g009
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alone. Except for blood borne E. coli pneumonia which was consistently and evenly distributed

throughout the entire lungs, affected areas in all other models tested here were randomly dis-

tributed more or less asymmetrically between the right and left halves of the lungs and also

between adjacent lobes (Fig 10).

Visualization of pathogens using special stains and

immunohistochemistry

For more than 100 years, a wide range of special stains have been used for the histological

visualization of pathogens and other relevant structures, based on their more or less specific

affinities to certain dyes. Here, Gram stain modified by Brown and Brenn was used for the

visualization of Gram-positive bacteria, including S. pneumoniae (Fig 11A, arrowhead), as eas-

ily recognizable, dark blue cocci. In contrast, Giemsa stain was conducted predominantly for

the detection of Gram-negative bacteria such as K. pneumoniae (Fig 11B, arrowhead) which

then turned into light blue to greenish rods.

For more specific pathogen detection on slides, particularly for viruses, immunohisto-

chemistry is the method of choice. Here, S. pneumoniae and IAV were detected by immuno-

histochemistry using specific anti-S. pneumoniae or anti-IAV antibodies, respectively. S.

pneumoniae-positive signals were obtained as myriads of red cocci predominantly in the peri-

vascular interstitium (Fig 11C), within neutrophils in alveoli and interstitium, and on pleural

surfaces as well as in mediastinal adipose tissue. In addition, pneumococci were also visualized

in the marginal sinuses of tracheal lymph nodes, both in macrophages and extracellularly. IAV

antigen was localized to the apical surface and cytosol of intact and necrotic bronchial epithe-

lial cells (Fig 11D) and within alveolar macrophages.

Selection of criteria suitable for scoring systems for each pathogen

The diversity of lesions and in particular the presence or absence of specific patterns in several

of the models used (Table 1) strongly suggested that a uniform scoring scheme for the

Fig 10. Distributions, expansions and symmetries of affected lung parenchyma. Infection of murine lungs with different bacterial or viral

pathogens resulted in striking differences in the distributions, expansions and symmetries of pneumonic lesions that were highly reproducible

for each pathogen. Mainly centrally located lesions induced by S. aureus and L. pneumophila remained close to the hilus with no trend towards

peripheral expansion. Infection with S. pneumoniae, A. baumannii and MERS-CoV resulted in lesions closely surrounding the airways and

blood vessels close to the central major airway segments with centrifugal expansion towards the periphery. In contrast, lesions induced by K.

pneumoniae were mostly located in the periphery of the lobes and airways and much weaker adjacent to the hilus. Hematogenous infection

with E. coli was associated with entirely diffuse distribution of lesions affecting the whole lungs with myriads of inflammatory hot spots,

commonly surrounding blood vessels. IAV-induced lesions were restricted to individual lung lobes with a rather homogeneous distribution

within affected lobes. Which lobes were affected followed a rather random and inconsistent pattern. Superinfection of S. pneumoniae into an

IAV-pneumonia resulted in a pattern virtually identical to that seen after IAV infection alone. Except for E. coli induced pneumonia, virtually all

lung lesions were distributed asymmetrically between the left and right lung halves with no tendency of either half to be more often or more

strongly affected.

https://doi.org/10.1371/journal.pone.0188251.g010
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semiquantification of mouse pneumonia is inconceivable. Instead, scoring systems should take

into account the more or less pathogen-specific lesion patterns that can be distilled from the

comparative characterizations given above. For this purpose, we carved out the most charac-

teristic lesion patterns that appear suitable for the development of specific scoring schemes for

each model (Table 2).

Discussion

Different mouse models of acute pneumonia differ widely, with an obvious strong dependence

on pathogen-specific features of virulence and spread, route of infection, infectious dose and

other factors. Here, we provide a detailed descriptive overview of histopathological features

and distributions of lesions within infected lungs and compare them between nine relevant

and commonly used infection models at their peaks of injury and inflammation. The models

employed here all represent well established protocols that have been optimized and success-

fully used in previous studies, with model-specific variations in infection doses, routes of path-

ogen administration and analyzed time points [37–42, 51, 52, 54–56]. Our model-specific

description parameters (Table 2) provide a rational for the selection of histopathological quan-

tification criteria, in order to best reflect the model-specific lesion and distribution characteris-

tics, which appear to be most relevant. Clearly, the severity of lesions in terms of outcome of

quantification systems will depend on several other factors that will have to be addressed sepa-

rately in each model, such as the infection dose, time point of examination or therapeutic

interventions.

Fig 11. Visualization of pathogens. Pathogens were visualized using special stains commonly used for

bacterial detection, including the Gram stain for Gram-positive pneumococci (A, dark blue, arrowhead), and

Giemsa stain of Klebsiella (B, light blue, arrowhead). Immunohistochemical staining methods were employed

to localize specific antigens of S. pneumoniae (C, red, arrowhead) and IAV (D, red, arrowhead). Triamino-

tritolyl-methanechloride (Neufuchsin) was used as chromogen (red) and hematoxylin (blue) as counterstain.

Bars (a–d), 20 μm.

https://doi.org/10.1371/journal.pone.0188251.g011
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The model-associated characteristics of tissue lesions and immune cell infiltrates are widely

consistent with well-established properties of the different pathogens used. For example, the

destructive tissue damage with mostly neutrophilic infiltrations as seen in S. pneumoniae, S.

aureus, and A. baumannii, are typically seen with extracellular bacteria that express cytotoxic

virulence factors, such as pneumolysin and hydrogen peroxide [61] from S. pneumoniae or

immunogenic cell wall components such as lipoteichoic acid (LTA) from S. aureus [62, 63]. On

the other hand, the intracellular pathogen L. pneumophila which primarily infects macrophages

[64] resulted in a histiocytic infiltrate at 48 h that developed into granulomatous inflammation

at 6 days after infection, typical of a TH1-response [65, 66]. However, several of the pathogens

used were associated with additional distinctive features. For example, histology revealed

marked pleuritis and steatitis due to pathogen invasion into adjacent extrapulmonary tissues

after infections with S. pneumoniae and K. pneumoniae. This massive bacterial spreading

throughout the thoracic cavity was exclusively present in these two models and most likely asso-

ciated with sepsis, responsible for the rapid clinical progression and unfavourable outcome [41,

67]. However, only K. pneumoniae had the tendency of abscess formation which was not seen in

pneumococcal pneumonia. Infection with S. aureus and A. baumannii also resulted in similar

lesion patterns, except for Acinetobacter-induced lesions widely expanding to the lung periphery

while Staphyloccocus-induced pneumonia was restricted to the lung hilus. A second difference

between the two was the presence of prominent vascular thrombosis in A. baumannii-induced

pneumonia which was absent from Staphylococcus pneumonia. The clinical outcome of mice

infected with A. baumannii and S. aureus was more favourable when compared to infection

with S. pneumoniae or K. pneumoniae [38] which may be explained by the lack of bacterial

spreading throughout the thoracic cavity and adjacent tissues, and possibly sepsis. E. coli infec-

tion was included here as a model for sepsis-associated ALI [29, 30, 68] and consequently

induced wide spread vascular thrombosis and vasculitis, most likely due to its blood borne entry

into the lungs and concurrent septicemia with disseminated intravascular coagulopathy and

associated vascular lesions. Vascular thrombosis with or without vasculitis was also observed in

other models, including S. pneumoniae, A. baumannii and MERS-CoV, however, to a much

lesser extent and only within the most strongly affected areas. MERS-CoV and IAV-associated

lesions clearly reflected the known cellular tropisms of these viruses with necrosis of alveolar

walls or bronchial epithelial cells, respectively, being the most characteristic histopathologic fea-

tures [69–72]. Typical of virally induced lesions, the inflammatory cell infiltrates in MERS-CoV

and IAV infections were dominated by lymphocytes with no or only few neutrophils. Neverthe-

less, the two viral models could be clearly distinguished from each other by additional histologi-

cal characteristics. Only the MERS-CoV infection led to a marked vascular phenotype with

necrosis and degeneration of blood vessels, vasculitis, and consecutive vascular thrombosis as

well as pronounced hemorrhages [69, 73]. In contrast, IAV-induced pneumonia did not display

any of these features, but was dominated by marked perivascular lymphocytic cuffing and alveo-

lar edema [42, 74]. Subsequent superinfection with low-dose S. pneumoniae potentiated the

severity of the IAV-induced lesions and aggravated the course of pneumonia. However, it did

not alter the principal histological characteristics of IAV-pneumonia. The patterns seen after

single infection with S. pneumonia were not repeated in this superinfection model, likely owing

to the much lower inoculation dose which is usually rapidly cleared from virus-naive lungs.

When the distributions of lesions were compared among the 9 models tested, four distinct

patterns could be clearly distinguished. The most common pattern, where lesions were focused

around central airways and blood vessels close to the lung hilus with the periphery less or not

affected can likely be explained by the aerogenous route of infection and pathogen entry. The

opposite pattern characteristic of K. pneumoniae infection where the periphery of the lobes

was more strongly affected than their hilus areas despite a similar aerogenous route of
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infection may be due to the aerosolic intratracheal application [75] of these bacteria which is

typical of and necessary in this model [41, 57–59]. These differences are therefore more likely

attributable to the model-specific route of infection rather than pathogen-specific properties.

Similarly, the very homogenous distribution of E. coli induced pneumonia likely followed the

diffuse blood borne entry of the pathogen into the lungs after intraperitoneal infection. Again

unique among the pathogens tested here, the IAV-associated pattern affected entire but only

select lung lobes with almost complete sparing of others. This distribution probably followed a

random spread of the virus along major airways but why some lobes remained virtually unaf-

fected after transnasal infection remains hard to explain. Apart from helping to understand

differences in pathogen spread, the uneven and often quite asymmetrical distributions have a

tremendous impact in practical terms when acute mouse pneumonia is sampled for molecular

studies. When quantitative data on mRNA or protein expression levels or other biochemical

information are to be compared with one another or with tissue lesions, it is imperative that

only identically affected areas are compared. Since this is impossible to predict or recognize on

the macroscopical level for most models, the practice of sampling different regions of such

lungs for different readout systems appears highly problematic.

Another implication of the distinct lesion characteristics, immune cell reactions and distri-

butions among the different models appears highly relevant for histological scoring systems

that aim at first quantitative comparisons [45]. To narrow down the list of parameters appro-

priate for each pathogen and exclude features that are likely irrelevant for some of the models,

we selected 23 single histopathologic criteria for the design of semiquantitative scoring systems

suitable for each model. These criteria are partly composed of standard parameters such as the

determination of the affected lung area, the distribution of lesions or the type of pneumonia

induced. However, numerous other and more model-specific parameters were identified

which precisely describe particular aspects and allow for a differentiation between the models,

such as the presence of perivascular edema, vascular thrombosis, pleuritis or steatitis. Appro-

priate scoring systems may thus encompass more general parameters when different patho-

gens are compared to one another or more pathogen-specific parameters in case specific

pathogen features are in the focus of an experiment. For example, some of the parameters

selected here have proven helpful in the discovery and semiquantification of different pheno-

types of mouse pneumonia following genetic engineering of pathogens or mice [38, 51, 76].

However, scoring systems that claim universality for all mouse models of acute pneumonia

seem neither generally applicable nor meaningful for all specific experimental goals. Even the

list of 23 parameters selected here may become inappropriate or insufficient when genetic

changes on the pathogen or host side may result in different types of lesions, immune cell

responses, time courses or other relevant features. In those cases, the list selected here may

have to be adjusted or extended to better meet the specific challenges of each new study.

As standard hematoxylin and eosin (HE) staining of tissue sections failed to visualize most

pathogens, traditional special stains as well as immunohistochemical techniques were

employed, depending on specific staining properties of the pathogens and the availability of

appropriate antibodies. While S. pneumoniae, K. pneumoniae and E. coli were easily visible in

HE stained tissue sections in areas with low density of inflammatory cells, e.g., in perivascular

spaces, they were very difficult to identify in heavily infiltrated and consolidated lung paren-

chyma. In contrast, S. aureus, A. baumannii, L. pneumophila and both viruses were entirely

invisible by HE staining and thus had to be visualized by appropriate histotechnical stains or

immunohistochemistry. Both approaches will likely also allow for a rough quantification of

pathogen numbers in tissues when appropriate image analysis tools are used.

In this first comparative study of its kind, we examined previously established models with

their optimized routes of infection, time points, and infection doses and volumes specific for
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each model to reach peaks of lung injury and inflammation. Variations of such factors can be

expected to result in different lesion severities, composition of the cellular infiltrates, and for

some models in different expansions of lesions within the lung. Still, the conditions used here

are all based on observations that have evolved during extensive previous establishment studies

of these models [37–39, 41, 42, 51, 52, 54, 56–58, 60, 77–79]. Among the most important rea-

sons, most human pathogens are not pathogenic for mice under non-experimental conditions

and the decisive factor for obtaining a useful pneumonia model appears to be the determina-

tion of the appropriate infection dose and route of infection. In addition, the exact time points

of tissue analysis after infection had to be determined for virtually all models with care to

obtain a useful model, including a precise definition of the strain or variant of the pathogen

used [51, 53, 80, 81]. Another variable to consider is the mouse strain used. Except for BALB/c

mice which were used in the MERS-CoV infection model here for model-specific reasons [60],

all models were conducted with C57BL/6 mice which is among the most commonly used

mouse strain in infection research and therefore allows for comparisons with similar studies.

However, variations of the strain or genetic background may have a dramatic impact on the

type, severity and outcome of inflammation, particularly in innate immune responses [82–84].

Again, the criteria suggested here for scoring procedures should allow to recognize and quan-

tify such differences related to changes in infection dose and volume, time point of examina-

tion, strain and age of mice used, pathogen variant and other variables.

Histopathology of the lungs may be complex and requires fundamental knowledge in spe-

cies-specific anatomy, physiology, organ-specific immunology, pathology, and histotechnical

procedures. Furthermore, various background lesions in mice, including strain specific spon-

taneous degenerative or inflammatory conditions and the possibility of accidental infections

unrelated to the experiment should not be confused with experimental outcome. Thus, despite

our efforts to specify and simplify the criteria relevant for model-specific assessment and quan-

tification of lesions, it appears crucial that trained histopathology experts be involved in the

microscopical examination of mouse lungs [46, 85].

Clearly, in addition to descriptive or semiquantitative histology, a number of other parameters

may be useful for quantitative comparisons between experimental groups to determine the role of

specific cell types, molecules, and therapeutic interventions, depending on the strategy and goal of

the study [44]. Such parameters could include flow cytometric immune cell identifications and

quantifications, ELISA or quantitative RT-PCR for the probing of cytokines, chemokines or

matrix proteins involved in lung pathology and remodeling, and plaque/colony forming assays

for the identification or quantification of pathogens, as previously published for most of the mod-

els used here [38, 41, 42, 51–53, 86, 87]. All of these methods, however, lack the spatial resolution

that only histological assessments offer. Only the combination of these techniques will lead to a

better understanding of the disease in the complex context of the entire lung pathology.

In conclusion, we have identified a spectrum of pathogen- and model-specific lesion char-

acteristics in mouse models of acute pneumonia. Our findings underscore the necessity of

model-specific criteria for the accurate histopathological characterization and quantitative

assessments of experimental pneumonia. This comparative landscaping of acute mouse pneu-

monia histology provides a comprehensive framework for future studies on the role of individ-

ual pathogen or host factors, complex disease mechanisms, and novel therapeutic strategies

that could help to treat pneumonia in human patients.
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