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Certain members of the microbiota genus Bifidobacterium are known to

positively influence host well-being. Importantly, reduced bifidobacterial

levels are associated with inflammatory bowel disease (IBD) patients, who

also have impaired epithelial barrier function, including elevated rates of apop-

totic extrusion of small intestinal epithelial cells (IECs) from villi—a process

termed ‘cell shedding’. Using a mouse model of pathological cell shedding,

we show that mice receiving Bifidobacterium breve UCC2003 exhibit significan-

tly reduced rates of small IEC shedding. Bifidobacterial-induced protection

appears to be mediated by a specific bifidobacterial surface exopolysaccharide

and interactions with host MyD88 resulting in downregulation of intrinsic

and extrinsic apoptotic responses to protect epithelial cells under highly

inflammatory conditions. Our results reveal an important and previously

undescribed role for B. breve, in positively modulating epithelial cell shedding

outcomes via bacterial- and host-dependent factors, supporting the notion that

manipulation of the microbiota affects intestinal disease outcomes.
1. Introduction
Bifidobacteria represent one of the first colonizers of the infant gut and are promi-

nent members of the adult gut microbiota [1,2]. They have been linked to a number

of health-promoting activities, including the promotion of anti-tumour immunity

[3], modulation of antimicrobial activities against pathogenic bacteria [4] and pro-

tection against relapse of ulcerative colitis [5,6]. Despite these purported benefits,

the molecular mechanisms underlying these protective effects by bifidobacteria

remain largely unknown, although recently components of their surface, including

the exopolysaccharide (EPS), have been shown to play a significant role in modu-

lating protective effects [7]. It is critical to obtain detailed insights into the mode of

action by which microbiota members sustain and improve host health, as this will

be central to future disease treatment/prevention strategies.

There is a growing body of evidence suggesting that the microbiota influ-

ences intestinal epithelial cell (IEC) function, including gene expression, cell

division and energy balance [8–11]. These symbiotic bacterial/host relation-

ships have co-evolved to the extent that the microbiota is indispensable for

the maintenance of gut homeostasis [12]. Importantly, microbial dysbiosis, as

indicated by a reduction in overall diversity, including specific reductions in

Bifidobacterium, has been linked to inflammatory bowel disease (IBD) [13–15],

underlining the critical importance of host/microbe interactions in maintaining

a steady state within the intestine.
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The epithelium of the small intestine represents the first

line of defence against entry of bacteria into host tissues.

Cell division in the crypt, under physiological conditions, is

counterbalanced by cell shedding from the villi to maintain

homeostasis and integrity of the crypt/villus axis. When the

epithelial cell is shed, a discontinuity in the villus epithelial

monolayer is created, which potentially compromises the

epithelial barrier. In health, epithelial barrier function is main-

tained [16], owing to a dramatic redistribution of apical

junction complex proteins, including zonula occludin 1 (ZO-

1), occludin 1 and E-cadherin, which form a funnel that sur-

rounds the shedding cell and plugs the resulting gap until the

movement of neighbouring epithelial cells restores epithelial

continuity [17–19].

TNF-a is a key cytokine in IBD. We and others have shown

that TNF-a induces apoptosis of villus tip epithelial cells caus-

ing excessive shedding, leading to breakdown of the epithelial

barrier and microulceration [16,20]. Delayed repair of epithelial

defects caused by excessive cell shedding contributes to the

development of macroscopic ulceration [21]. Our studies

with confocal endomicroscopy of patients with IBD in clinical

remission have demonstrated that those patients with high

rates of cell shedding are more likely to relapse than those

with low shedding rates, demonstrating a causative link

between barrier function and the inflammatory response [21].

Given reports of beneficial effects of certain members of

the gut microbiota in IBD and potential roles of microbial

dysbiosis in these diseases, we hypothesized that certain health-

promoting microbiota members, including Bifidobacterium,

may play a role in protecting against the cell shedding response

by modulating IEC function. To determine the contribution of

bifidobacteria in cell shedding, we employed a well character-

ized in vivo mouse model in which pathological cell shedding is

induced by intraperitoneal (IP) administration of lipopoly-

saccharide (LPS), driving mononuclear cell expression of

TNF-a and subsequent caspase-3-positive shedding cells [22].

Our results suggest a particular bifidobacterial strain (i.e.

human isolate B. breve UCC2003) positively modulates the

small intestinal cell shedding response via host MyD88- and

bacterial EPS-dependent interactions which serve to significan-

tly reduce apoptotic signalling in the epithelial compartment.

These data identify a previously unknown mechanism by

which Bifidobacterium protects its host against pathological

cell shedding. These findings may thus have important impli-

cations for the future design of therapeutic strategies in the

context of intestinal diseases.
2. Material and methods
2.1. Animals
C57 BL/6 Jax mice (6–10 weeks) were obtained from Charles

River. Vil-cre MyD88 transgenic mice (i.e. Cre recombinase

expression causes truncation and resulting non-function of

the MyD88 protein in IECs) were obtained from the Wellcome

Trust Sanger Institute (kind gift from S. Clare).

2.2. Bacterial culture and inoculations
Bifidobacterium breve strains UCC2003, UCC2003del and

UCC2003inv were used for animal inoculations. These strains

and corresponding culturing conditions have been previously
described in detail [7]. In brief, colonies were established

from frozen glycerol stocks onto reinforced clostridial agar

(RCA) plates before being subcultured into reinforced clostri-

dial medium and subsequently Man Rogosa Sharpe medium

(Oxoid, Hampshire) under anaerobic conditions. Bacteria

were then purified by centrifugation and washed in PBS con-

taining L-cysteine before being reconstituted in sterile PBS at a

final concentration of approximately 1 � 1010 bacteria ml21.

0.1 ml of inoculum was then administered to mice by oral

gavage in 3 � 24 h doses followed by plating of faecal pellets

on RCA containing 50 mg l21 mupirocin to confirm stable

colonization. Control mice received oral gavage of PBS only.

2.3. Lipopolysaccharide injections and tissue collections
Twenty-four hours after the last doses of B. breve or PBS con-

trol, mice received an IP injection of 1.25 mg kg21 LPS from

Escherichia coli 0111:B4 (Sigma) or sterile saline (control)

and mice were sacrificed 1.5 h post-challenge with LPS. Prox-

imal small intestine was collected in 10% neutral buffered

formalin saline (Sigma) and fixed for 24 h followed by paraf-

fin embedding. Samples of proximal small intestine were also

collected into RNA Later (Qiagen) for transcriptome analysis

or frozen on dry ice for subsequent ELISA analysis. In some

cases, proximal small intestine was also collected into Hanks

buffered saline solution (HBSS) for isolation of IECs.

2.4. Immunohistochemistry
Sections (5 mm) of paraffin-embedded small intestinal tissue

were sectioned and used for immunohistochemistry. Follow-

ing de-parafinization and rehydration, tissue sections were

treated with 1% hydrogen peroxide in methanol to block

endogenous peroxidases. Subsequently, slides were treated

using heat-induced antigen retrieval in 0.01 M citrate acid

buffer (pH 6) followed by incubation with a rabbit polyclonal

anti-active caspase-3 (CC3) antibody (AF835: R&D Systems).

Visualization of caspase-3 positivity was via a peroxidase-

labelled anti-rabbit EnVision secondary antibody (Dako) and

3,30-diaminobenzidine followed by counterstaining with

haematoxylin. For macrophage staining, an antibody against

F4/80 antigen (ab6640: Abcam) was employed using biotiny-

lated anti-rat (BA-9401) and avidin–biotin reagent (PK-6100;

Vector Laboratories).

2.5. Quantification of caspase-3 positivity
IECs were counted on a cell positional basis from villus tip (cell

position (CP) 1) down towards the crypts under 400� magnifi-

cation. Twenty well-orientated hemi-villi were counted per

mouse and analysed using the SCORE, WINCRYPTS [23] and

PRISM analysis software. IECs were defined as ‘normal’ in

cases where staining for active caspase-3 was absent. Immuno-

labelled cells with either unaltered or shedding morphology

were treated as caspase-3 positive. Imaging was performed

with an Olympus BX60 microscope and C10plus digital camera.

2.6. RNA isolation and real-time polymerase chain
reaction

Samples fixed in RNAlater solution were processed through

RNeasy plus mini spin columns to isolate total RNA (Qiagen).
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In brief, samples were homogenized using a rotor stator hand

held homogenizer in buffer RLT before processing through a

QIAshredder column and subsequently RNeasy mini-spin col-

umns. Purified RNA was eluted into RNAase free water.

Reverse transcription was performed using the Quantitect

reverse transcription kit (Qiagen) and cDNA used for real-

time (RT-)PCR analysis. For RT-PCR, transcripts were amplified

using Quantifast SYBR green mastermix (Qiagen) and Quanti-

tect primer assays for TNF-a, TNF-R1 and F4/80 (EMR1).

Expression of the housekeeping gene hypoxanthine–guanine

phosphoribosyltransferase (HPRT) 50-GACCAGTCAACAG

GGGACAT-30 (sense) and 50-AGGTTTCTACCAGTTCCAGC-

30 (antisense) [24] was also determined. Cycling was performed

on a Roche LightCycler 480 using the following conditions:

958C, 5 min then 40 cycles of 958C, 10 s; 608C, 35 s. Relative

quantification of levels of transcript expression was calculated

using the Pfaffl method [25] by comparing cycle threshold

(CT) value of each target gene to the CT value of housekeeper.

Data are presented as a ‘fold change’ in expression (normalized

against control untreated mice per cells).

2.7. Isolation of intestinal epithelial cells and FACS
analysis

IECs were isolated using a modification of the Weiser method-

ology [26]. In brief, whole small intestine was collected in

ice-cold HBSS before being chopped into 0.5 cm2 pieces and

washed in a solution containing 0.154 M NaCl and 1 mM

DTT, and subsequently a solution containing 1.5 mM KCl,

96 mM NaCl, 27 mM tri-sodium citrate, 8 mM NaH2PO4 and

5.6 mM Na2HPO4, pH 7.3. IECs were then isolated by incu-

bation in PBS containing 1.5 mM EDTA and 0.5 mM DTT,

shaking at 200 r.p.m. and at 378C. Purity of epithelial prep-

arations was confirmed by histological analysis of stripped

intestinal mucosa and by FACS analysis of isolated cells. For

FACS analysis, 5 � 106 cells were stained with anti-mouse

CD45-A700 (Biolegend) on ice for 30 min. After two washes

in HBSS containing 0.01 BSA, 2 mM EDTA, 20 mM HEPES

and 0.01% NaN3, propidium iodide was added (Biolegend)

and samples analysed on a Sony FCS SH-800 flow cytometer.

Data were analysed using FLOWJO (TreeStar).

2.8. ELISA
Frozen proximal small intestinal samples were homogenized

in extraction buffer containing protease inhibitors (Roche),

cleared by centrifugation and analysed using a commercial

ELISA kit for TNF-a (eBioscience) as per manufacturer’s

protocol. Measurement of TNF-a immunoreactivity was at

450 nm, using a Fluostar Optima plate reader (BMG Labtech).

2.9. SDS – PAGE and Western blotting
Isolated IECs were lysed in CelLytic MT reagent (Sigma)

before centrifugation at 10 000 rpm for 10 min to pellet cellular

debris. Supernatants were mixed with 2 � Laemmli sample

buffer before being separated by sodium dodecyl sulfate

(SDS)–PAGE with 3–14% acrylamide gel and transferred to

Hybond-P PVDF membrane (GE Healthcare, Buckinghamshire,

UK) and blocking with 5% Marvel milk in with tris(hydroxy-

methyl)aminomethane (Tris). (Tris)-buffered saline containing

Tween 20 (TTBS) immunostaining was performed with 1/
1000 anti-TNF-R1 antibody (Abcam) and 1/5000 goat anti-

Rabbit IgG HRP conjugate (Millipore) on a reduced gel.

Macrophage expression was analysed similarly using antibody

against F4/80 antigen (Abcam) at 1 : 1000 and goat anti-rat

IgG-HRP (SantaCruz, at 1 : 3000), on a non-reduced gel.

Washes were in TTBS. For detection, Immobilon Western

chemiluminescent HRP substrate (Millipore) was applied to

the membrane as recommended by the manufacturer and

signal was detected, using a FluorChem E imaging system

(Protein Simple). Band densities were quantified using FIJI [27].

2.10. Polymerase chain reaction array analysis
Real-rime ready Custom Panel 480–96þ PCR arrays were

obtained (Roche) and quantitative PCR analysis performed.

RNA was extracted from whole small intestinal tissue pre-

served in RNAlater reagent (Sigma), using RNeasy plus

mini kits (Qiagen). Reverse transcription was performed,

using Transcriptor First Strand cDNA Synthesis Kit followed

by analysis of targets using LightCycler 480 Probes Master on

a LightCycler 480 platform (all Roche). Standard protocols as

per manufacturer recommendations were followed. CT

values of target genes were normalized to expression of the

housekeeping gene HPRT and fold change versus control

samples calculated using the delta/delta CT method [25].

2.11. Statistical analysis
Experimental results were plotted and analysed for statistical

significance with PRISM v. 5 software (GraphPad Software).

A p-value of less than 0.05 was used as significant in all cases.
3. Results
3.1. Lipopolysaccharide induces cell shedding from

small intestinal villi in a dose-dependent manner
Caspase-3 is activated in IECs during their extrusion from the

tips of small intestinal villi [18,28]. Similar to previous

reports, we found that control C57 BL/6 mice receiving IP

PBS injection showed low levels of cell shedding as evi-

denced by low level expression of cleaved caspase-3 (CC3)

in the epithelial cell layer (figure 1a). Recent studies have

demonstrated that following IP injection of mice with LPS

isolated from Escherichia coli 0111:B4, a potent cell shedding

response is induced, similar to that observed in relapsing

IBD patients [22]. In agreement with these studies, we

found a significant increase in CC3-mediated cell shedding

at 1.5 h post-injection of 1.25 mg kg21 LPS, not only at the

villus tip, but also along the shoulders and sides of the

villus (figure 1b). Effects of LPS on the cell shedding response

were found to be dose-dependent, in agreement with

previous observations [22] (data not shown).

3.2. Bifidobacterium breve modulates
lipopolysaccharide-induced cell shedding

Various members of the microbiota are known to promote a

healthy gut [29], although the precise mechanisms behind

this remain incompletely understood. We reasoned that

because the integrity of the intestinal epithelium is intrinsically
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Figure 1. LPS challenge induces cell shedding from small intestinal villi. C57 BL/6 mice were administered either (a) PBS (control) or (b) LPS by IP injection and
proximal small intestines removed after 1.5 h. Processed tissue was sectioned and stained by immunohistochemistry for CC3 (i.e. brown cells indicate shedding
event), also highlighted by arrows. A representative picture for each group is shown (12 mice per group, two independent experiments).
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Figure 2. Bifidobacterium breve UCC2003 protects against LPS-induced cell shedding. C57 BL/6 mice received three daily oral gavage doses of (a) PBS or (b)
approximately 1 � 109 B. breve UCC2003 followed by IP challenge with LPS 24 h later. Representative images are shown. Formalin-fixed, paraffin-embedded intes-
tinal sections were sectioned and stained with anti-CC3 and (c) quantified using the WINCRYPTS and SCORE programs, 20 well-orientated hemi-villi were counted per
mouse. Data are mean+ s.d., n ¼ 12 (two independent experiments) analysed with a Mann – Whitney U-test.
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linked to the well-being of the host and because the microbiota

is expected to impact on epithelial cross-talk, such health-

promoting species might play a role in regulating cell

shedding. To test this, groups of C57 BL/6 mice were initially

dosed with vehicle control (PBS) or with 1 � 109 B. breve
UCC2003 (isolated from a healthy infant) in 3 � 24 h doses

orally to establish stable colonization [7]. Colonization was

confirmed by faecal CFU counts on day 4 (electronic sup-

plementary material, figure S1). Mice were then administered

LPS to induce pathological cell shedding, followed by sacrifice

at 1.5 h. Following dosing with B. breve UCC2003 and induction
of cell shedding with LPS, mice showed a marked reduction in

the levels of CC3-positive shedding cells compared with LPS-

treated control mice receiving PBS gavage (figure 2a,b). Cell

count analysis confirmed significant reduction ( p , 0.01) in

cell shedding at the majority of positions along the length of

the villus in B. breve UCC2003-treated mice (figure 2c). Thus,

B. breve appears to modulate epithelial integrity/survival

during periods of inflammatory insult.

Previous studies have indicated that bifidobacteria may

modulate the composition of other microbiota members,

and within the context of IBD, studies have linked
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microbiota disturbances with active disease. Thus, to determine

if bifidobacterial colonization impacts the gut microbiota, we

analysed the community composition using a 16S rRNA-

based sequencing approach. We found minor changes to

the community structure in B. breve UCC2003 versus control

treated mice (C57 BL/6), but overall, no notable differences

(but expected increase in Actinobacteria in the B. breve
UCC2003 group) in microbiota class abundance between the

treatment groups (electronic supplementary material, figure

S2). Bifidobacterial colonization takes place along the gastroin-

testinal (GI) tract including the small/large intestine and

caecum. RNAscope analysis showed that B. breve UCC2003

was found in intimate contact with the IECs of the small intes-

tine in colonized C57 BL/6 mice (electronic supplementary

material, figure S3). Together, these data suggest that coloniza-

tion with B. breve does not produce significant shifts in the

overall gut microbiota community structure and that the

observed protective effects after colonization are more likely

to be related to direct effects of B. breve, possibly through

interactions with the IECs.
3.3. The mechanism of protection against
lipopolysaccharide-induced cell shedding is TNF-a
independent

LPS-induced cell shedding is caused by the release of TNF-a

from lamina propria tissue-resident macrophages, which

binds to TNF-receptor 1 (TNF-R1), on IECs [22], thereby driv-

ing the apoptotic response. Conditioning of macrophage

responses by the microbiota has been reported previously

[30] and, consistent with these data, bacteria such as B. breve
have been described to possess immunomodulatory properties

[31]. Thus, to determine whether the cell shedding outcome, as

modulated by B. breve, was caused by reduced expression of

TNF-a from macrophages, we isolated RNA and protein

from whole small intestine of control and B. breve UCC2003-

treated C57 BL/6 mice following LPS-mediated induction of

cell shedding. As shown in figure 3a, no significant difference

( p . 0.05) in levels of TNF-a protein was observed bet-

ween groups, and this was confirmed at the transcriptional

level (data not shown). We also found no significant changes

( p . 0.05) in expression of TNF-a in the plasma of B. breve
UCC2003-treated versus control mice following LPS-induced

cell shedding (figure 3b), nor any significant difference ( p .

0.05) in the numbers/levels of F4/80þmacrophages infiltrating

the small intestine (figure 3c–f). Together, these data suggest

that modulation of the reduced cell shedding response is inde-

pendent of TNF-a induction. Because the microbiota may be

able to interact directly with IECs, we postulated that B. breve
modulates a signalling pathway downstream of the TNF-a

ligand. To test whether expression of TNF-R1 was altered in

the epithelium following dosing with B. breve UCC2003, IECs

were isolated from whole small intestinal tissue using a modi-

fied Weiser methodology [32], after which purity of the IEC

population was confirmed by histological analysis of stripped

intestinal tissue and FACS analysis (figure 3g,h). Subsequent

quantitative RT-PCR and western blot analysis of isolated

IEC populations showed no significant changes ( p . 0.05) to

expression of the TNF-R1 transcript or protein following

exposure to B. breve UCC2003 (figure 3i–k), suggesting that

there is no impairment of signalling at the level of the receptor.
3.4. Functional epithelial MyD88 signalling is required
for Bifidobacterium breve-mediated protection
against cell shedding

IECs sample microbe-associated molecular patterns (MAMPS)

of the intestinal luminal contents using a variety of receptors

including members of the nucleotide-binding oligomerization

domain (NOD) family, the C-type lectin receptor (CLR) family

and the Toll-like receptor (TLR) superfamily. MyD88 is a criti-

cal adaptor protein in signalling downstream of the majority

of the TLR family members [33]. We thus used epithelial-

specific (Vil-Cre) MyD88 knockout mice to determine

whether B. breve elicits its protective effects via epithelial TLR

signalling pathways.

C57 BL/6 MyD882/2 villin-cre mice (i.e. IEC MyD88 KO

mice) colonized with B. breve UCC2003, showed similar rates

( p . 0.05) of LPS-induced cell shedding to PBS gavaged IEC

MyD882/2 mice. In comparison, control mice (i.e. C57 BL/6

MyD88þ/þ villin-cre) showed the expected protection ( p ,

0.01) against cell shedding in the presence of B. breve UCC2003

(figure 4a–d). Furthermore, RT-PCR analysis of IEC homogen-

ates showed increased expression ( p , 0.001) of TLR2 in

B. breve UCC2003-colonized mice when compared with control

mice (i.e. PBS, figure 4e). Taken together, these data indicate

that functional MyD88 signalling, potentially via TLR2 is

required for modulating the protective effect of B. breve against

cell shedding outcomes.

3.5. Bifidobacterium breve exopolysaccharide plays a
role in modulating protection against
lipopolysaccharide-induced cell shedding

Recently, a number of functions modulated by bifidobacteria

have been shown to be mediated through surface-associated

EPS including resistance to gut infection [7]. Interestingly,

the eps gene clusters represent a relatively conserved feature

of bifidobacterial genomes, including those of the species B.
breve [34]. In order to investigate the role of EPS in modulat-

ing the response against cell shedding, we used a deletion

mutant (B. breve UCC2003-EPSdel) that expresses neither

EPS1 nor EPS2 [7]. Mice were stably colonized by dosing

with B. breve EPS-positive or EPS-negative strains followed

by challenge with LPS (electronic supplementary material,

figure S1). Strikingly, when colonized with the B. breve
UCC2003-EPSdel, no significant protection ( p . 0.05) against

cell shedding was observed in control (i.e. PBS) versus

colonized mice (figure 5a,b).

Bifidobacterium breve UCC2003 controls EPS biosynthesis via

a bidirectional gene cluster which results in expression of either

EPS1 (B. breve UCC2003) or EPS2 (B. breve UCC2003-EPSInv) [7].

Thus, to gain further insights into the role of a different EPS in the

protective cell shedding response, we undertook studies using

B. breve UCC2003-EPSInv. Colonization with EPS2 expressing

B. breve (i.e. B. breve UCC2003-EPSInv) also failed to show any

significant protection ( p . 0.05) against LPS-induced cell shed-

ding, suggesting considerable variation in the protective

response dependent upon EPS genetic and chemical structure

and organization (figure 5c,d). All strains are directly compared

in electronic supplementary material, figure S4.

Together, these studies emphasize the striking strain var-

iant specificity that is observed with regard to the individual
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b-actin) of whole small intestinal homogenates, with (e) columns show relative density of F4/80 from (from d ) whole intestinal homogenates. ( f ) Columns
show F4/80 expression via RT-PCR+ SD. (g) Representative histology image of epithelial cell stripping protocol (modified Weiser method) leaving lamina propria
intact (as indicated by arrows) and (h) FACS analysis for purity (anti-CD45). (i) Columns shown TNF-R1 expression via RT-PCR+ SD and ( j ) western blotting for
protein expression in isolated intestinal epithelial cells, with (k) columns showing relative density of TNF-R1 (from ( j )). n ¼ 9 mice per group, representative of
three experiments analysed with ANOVA Kruskal – Wallis test with Dunn’s multiple comparison test (a), and with Mann – Whitney U-test (b,e,f,i,k).
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protective effects of these bacteria following LPS-induced cell

shedding. This is probably regulated by the specific molecules

produced by each strain, including the EPS. This highlights the

critical need to fully genetically characterize ‘probiotic’ strains

of bacteria to enable a detailed dissection of their functional

effects in vivo for optimal translation to human patients.
3.6. Bifidobacterium breve exopolysaccharide attenuates
inflammatory and apoptosis signalling

In order to gain further insights into the changes taking place

in the small intestine following colonization with B. breve
UCC2003 and the influence of EPS, whole small intestinal
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samples from control (i.e. PBS) and colonized (EPS-positive

B. breve UCC2003 and EPS-negative B. breve UCC2003-del)

mice following challenge with LPS were analysed using a

custom RT-PCR array (figure 6: 49/84 targets are shown;

full set of data is displayed in electronic supplementary
material, figure S5) to look for transcriptional changes to

key inflammatory transcripts and those involved in the

apoptotic cascade. Interestingly, small intestinal samples

from B. breve UCC2003-EPSdel-colonized mice (figure 6a;

electronic supplementary material, figure S5a,b) showed
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significant increases (more than twofold and p , 0.01) in IL-6

and Tnfrs15 when compared with control and LPS-chal-

lenged mice. Moreover, numerous other apoptotic and

inflammatory genes were significantly upregulated (more

than twofold, p , 0.01) including Bad, Cycs (cytochrome c,

Somatic), casp4, Fas, Traf5 and Tnfrs9. In contrast, in EPS-

positive-colonized mice (i.e. B. breve UCC2003), our analysis

showed only subtle changes to the expression of the majority

of the targets when compared with PBS-treated control mice

challenged with LPS (figure 6b; electronic supplementary

material, figure S5c,d ). In addition, while significant elevation

(more than twofold and p , 0.05) in IL-6 and Tnfrs15 was

observed following colonization with B. breve UCC2003,
Tnfrs15 expression was markedly decreased versus B. breve
UCC2003-EPSdel-colonized mice (threefold versus 16-fold

increase). These data suggest that signalling via EPS may

downregulate inflammatory and apoptotic networks, which

would otherwise lead to elevated cell shedding.
4. Discussion
We report that colonization of mice with B. breve significan-

tly reduces pathological/apoptotic epithelial cell shedding,
through a previously unknown mechanism involving

bifidobacterial EPS-MyD88 signalling.

The gut microbiota appears central to maintaining epi-

thelial barrier integrity and, importantly, disturbances in the

microbiota appear pivotal in IBD pathogenesis. Indeed, IBD

patients (paediatric and adult cohorts) have been shown to

possess a reduced overall microbiota diversity and reduc-

tions in specific genera including Clostridium, Bacteroides,
Faecalibacterium and (of particular interest here) Bifidobacterium
[6,15,35]. Previous clinical trials have shown that adminis-

tration of bifidobacterial strains can reduce the incidence of

relapse in patients suffering from IBD [36]. Following LPS-

induced cell shedding, we observed that a priori administration

of B. breve UCC2003 (which is a human-isolated strain, thus

more translationally relevant) conferred a significant level of

protection, which manifested as significantly reduced cas-

pase-3 positivity within the villus epithelium (figure 2a–c).

Previous studies have highlighted that bifidobacterial

supplementation may also modulate the wider microbiota

in mouse models [37]. However, our data indicate that

while there are modest differences between PBS and

B. breve-colonized mice (as indicated by taxa abundance),

there are no notable differences (with high variability

between animals), suggesting limited effects on overall micro-

biota profiles (electronic supplementary material, figure S2).
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These data therefore suggests a more direct link between bifi-

dobacteria and maintenance of epithelial integrity in the

prevention of intestinal inflammation.

Previous studies have indicated that Bifidobacterium pre-

dominantly colonizes the colon of infants and adults, as

determined from faecal or mucosal scrapings, or biopsy

samples [38,39]; however, in this work (using a murine

model), we have described SI-specific responses. From a

translational perspective, in humans, these protective cell

shedding responses may result from bifidobacteria cross-

talk in the lower SI. Although difficult to measure in

humans, previous studies have indicated Bifidobacterium colo-

nization in the lower SI (i.e. the ileum, as we observe in our

model). Notably, select studies using ileostomy effluents

and illeum biopsies have indicated bifidobacteria (specifically

B. animalis subsp. lactis and B. breve, respectively) are present

in this area of the infant and adult GI tract [40,41]. Therefore,

in the human context, we may observe direct SI signalling via

resident bifidobacteria and/or remote SI feedback signalling

from colonic bifidobacteria epithelium cross-talk, which

could be tested in future clinical intervention studies.

As previously mentioned, studies have shown that this

experimental model of LPS-induced cell shedding is driven

by an induction in expression of TNF-a from the intestinal

mucosa [22,42]. One of the key functions of the gut microbiota

is induction of tolerogenic or anti-inflammatory immune

responses and thus we hypothesized that bifidobacteria may

reduce cell shedding as a direct result of inhibiting TNF-a

and macrophages—a potential source of TNF. However, we

were unable to detect any changes in levels of TNF-a expression

or macrophage infiltration from B. breve UCC2003-treated or

control (i.e. PBS) mice (figure 3a–f), suggesting that the protec-

tion conferred by Bifidobacterium strains is TNF-a independent.

Previous studies have indicated that colonization of B. breve
UCC2003 during homeostatic conditions does not induce

differences in splenic TNF-a-positive macrophage numbers

when compared with non-colonized controls [7]. Coupled

with the lack of change in expression in TNF-R1 following colo-

nization (figure 3i–k), it appears that macrophages, TNF-a

production and TNF-R1 signalling are not involved in modulat-

ing this protective response and suggests that B. breve UCC2003

acts preferentially from the luminal side through interactions

with IECs. We cannot exclude the potential for EPS to block sig-

nalling via TNF-R1. However, TNF-R1 expression appears to be

restricted to the basolateral surface of epithelial cells and thus

B. breve would not be expected to have direct access to this cel-

lular compartment for direct inhibition via binding [43].

Furthermore, quantification of downstream effectors (electronic

supplementary material, figure S5) including FADD, TRAF2

and caspase 2 and 8 does not significantly differ between

B. breve UCC2003 and B. breve UCC2003-del-colonized mice,

which suggests EPS does not play a key role via TNF-R1.

To delineate these protective luminal bifidobacterial–

epithelial interactions, we used epithelial-specific MyD88 KO

mice; MyD88 is a key adaptor protein downstream of

microbe-TLR signalling. Notably, mice carrying truncated epi-

thelial MyD88 (i.e. C57 BL/6 MyD882/2 villin-cre) showed no

protection against cell shedding after colonization of B. breve
UCC2003 (figure 4c,d); this was in stark contrast to MyD88-

positive control animals, which again showed significant

protection against LPS-induced cell shedding (figure 4a,b).

Furthermore, we observed significant increases in IEC TLR2

expression in B. breve UCC2003-colonized mice (figure 4e).
Interestingly, previous work has indicated that TLR2 may

enhance ZO-1 associated intestinal epithelial barrier integrity

[44], and other studies indicate that mice deficient in MyD88

signalling have increased susceptibility to intestinal inflam-

mation [12]. In a UV model of apoptosis, MyD88 signalling

appears to reduce caspase-3 and in turn increase cell survival,

and more recently B. bifidum has been shown to reduce apoptosis

in vitro (necrotizing enterocolitis IEC-6 cell model), as also indi-

cated by reduced CC3-positive cells [45]. Thus, our data, in

tandem with these studies, indicate that B. breve UCC2003 may

regulate epithelial integrity in response to LPS-induced cell

shedding (as marked by caspase-3) via these central MyD88

signalling mechanisms, potentially downstream of TLR2.

Having determined the importance of host adaptor

MyD88, we next sought to determine if there was a specific

bifidobacterial molecule central to the observed protective

response. Because we have previously shown that surface

EPS of B. breve UCC2003 can regulate the host response [7],

we investigated the ability of an EPS mutant B. breve
UCC2003-EPSdel (complete deletion of eps biosynthetic clus-

ter) to modulate LPS-induced cell shedding. Notably, mice

receiving B. breve UCC2003-EPSdel showed no significant

protection against cell shedding when compared with EPS-

positive (i.e. B. breve UCC2003) colonized mice (figure 5a,b),

suggesting an important role for this EPS in microbe–host

cross-talk. Importantly, EPS structures can be recognized via

TLR2 (and signal via MyD88), and previous work with the

polysaccharide A (PSA) capsule of Bacteroides fragilis highlights

that PSA can modulate dendritic cell and T regulatory cell func-

tion via TLR2 signalling [46,47]. Additionally, previous work

has highlighted that a strain of B. breve (Yakult strain) can

also induce IL-10 producing T regulatory cells via TLR2; how-

ever they did not determine if this was via an EPS-specific

mechanisms [48]. Furthermore, recent studies using Bacillus
subtilis have demonstrated that the EPS capsule of this bacter-

ium is able to protect against intestinal inflammation in a

murine model of colitis (in this instance via TLR4), providing

further support for the likely role of bifidobacterial EPS in the

effects observed in these studies [49]. Notably, the probiotic

genus Lactobacillus also produces distinct EPSs, which are

structurally similar to those observed in bifidobacteria [50].
Recently, within an in vitro system (HT29-19A epithelial cell

line), the EPS from Lactobacillus acidophilus 5e2 was shown to

increase IL-8 expression and also TLR2 expression (we also

observe that B. breve UCC2003 induces IEC TLR2 expression),

and additionally upregulation of TLR2 was found to poten-

tially ‘sensitize’ epithelial cells to subsequent stimulation

with peptidoglycan (a TLR2 agonist) [51]. Furthermore, the

authors also observed a modest increase in TLR4 expression

after addition of EPS, but did not detect any significant modu-

lation of IL-8 responses after priming with EPS and subsequent

addition of LPS, which may indicate less of a role for EPS–

TLR4 interactions [51]. From a more systemic perspective, in

the instance that Lactobacillus or indeed B. breve UCC2003

potentially translocate across the epithelial barrier, it could

by hypothesized they directly influence macrophage function.

Previous studies have shown that L. casei Shirota can dampen

down inflammatory macrophage responses, and L. rhamnosus
EPS has also been shown to modulate macrophage function

in vitro, but on this occasion induced proinflammatory

responses [52,53]. Ideally, we would test our B. breve strains

in TLR2 and/or TLR4 KO animals; unfortunately, previous

work has shown that these mice do not respond to LPS and
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thus would not have a cell shedding response, making these

further studies not possible. However, in studies using RNA-

scope, we found significant numbers of B. breve UCC2003

associated with the villi in colonized mice (electronic sup-

plementary material, figure S3), suggesting that direct

signalling interactions between the bacteria (possibly via EPS

and TLRs, and B. breve UCC2003 colonization increases TLR2

expression) and IECs may play an important role in modulat-

ing this response. These data, alongside our findings, suggest

that B. breve EPS may regulate cell shedding by acting as TLR

ligands via MyD88, leading to protective epithelial responses.

To probe these EPS–epithelial interactions further, we took

advantage of the bidirectional eps gene cluster in B. breve
UCC2003, which can express two genetically and importantly

chemically distinct surfaces EPSs [7]. All previous studies used

EPS1 (i.e. with B. breve UCC2003), but we also determined

responses following EPS2 (i.e. B. breve UCC2003-EPSInv) colo-

nization. Strikingly, and contrary to our expectations, we found

that this isogenic strain was unable to confer protection against

LPS-induced cell shedding (figure 5c,d). Importantly, EPSs are

composed of repeating mono- or oligosaccharides linked by

various glycosidic linkages, and the three-dimensional struc-

tures and other physiochemical features of EPSs can vary

widely [54]. The variability in chemical composition of these

two B. breve EPSs (previous work suggests the EPSs may

include glucose, galactose and/or the N-acetylated versions

of these two sugars in different ratios or composition [7])

could, in part, explain the different modulatory properties of

this molecule in relation to receptor-ligand binding, and

further highlights the issues with significant strain (or in this

case isogenic), variation in effects on host responses. Impor-

tantly, these different EPS-epithelium protective responses do

not appear to be linked to colonization ability as all strains

colonized mice at similar levels (electronic supplementary

material, figure S1). Previous limited studies have indicated

that specific chemical structures of EPSs such as PSA of

B. fragilis (comprised an unusual repeating tetrasaccharide

moiety, free carboxyl, phosphate and amino groups, that con-

tribute to its zwitterionic nature) are important for function

[46]. Additionally, in vitro studies on L. reuteri strains (DSM

17938 and L26 Biocenol) indicate both EPSs are high-molecu-

lar-weight D-glucan polysaccharides with differing spatial

conformations, which may relate to induction of different

cytokine responses. However, the direct chemical structures

involved in this modulation have yet to be defined [55].

Future challenges will include studies to fully chemically

characterize the different strains of ‘probiotic’ bacteria, as

evidently significant differences in response to small strain

variations (including variations in EPS expression and struc-

ture and also other MAMPS) may impact beneficial host

responses [56,57].

We have previously shown that EPS-positive B. breve
UCC2003 does not induce inflammatory host responses after

colonization, which we hypothesize is to the advantage of

the bacterium and host for maintaining efficient symbiosis

and homeostasis [7]. Interestingly, when we probed the down-

stream signalling transcriptional events after colonization and

LPS challenge, we determined that presence of EPS1 (i.e.

B. breve UCC2003) appeared to attenuate apoptosis-induced

signalling activation, in stark contrast to mice colonized with

the B. breve UCC2003-EPSdel strain, which had significantly

elevated apoptotic gene expression (figure 6; electronic sup-

plementary material, figure S5). Importantly, previous work
has demonstrated that activation of MyD88 can downregulate

several of these genes including Fas (CD95) [58]. Fas is a cell

surface receptor and member of the TNF superfamily, and

when bound by its ligand induces apoptosis through the

assembly of a multiprotein complex called DISC, which in

turn activates caspase 8 (i.e. extrinsic apoptosis pathway)

[59]. Further evidence of an EPS-specific mechanism attenuat-

ing epithelial apoptosis comes from the observation that Bad,

Cycs, casp4, Traf5 and Tnfr9 are upregulated in the intestinal

mucosa of mice colonized by B. breve UCC2003-del compared

with B. breve UCC2003-colonized mice. Bad is a pro-apoptotic

(BH3-only) member of the bcl-2 family that antagonizes the

anti-apoptosis proteins bcl-2, bcl-xl and bcl-2, allowing acti-

vation of bax/bak oligomers and release of cytochrome c
from the mitochondria. Within the same pathway, Cycs

encodes the haem protein cytochrome c, which forms a multi-

protein complex called the apoptosome, which activates a

cascade of caspases which cause apoptotic cell death [60].

Traf5 is a scaffold protein that forms a multiprotein complex

with TRAF2, RIP1 and the TNF receptor, and can potentially

mediate the activation of apoptosis and NF-kB [61]. We have

previously shown that NF-kB1 inhibits LPS-induced apoptotic

cell shedding, whereas NF-kB2 stimulates apoptotic cell shed-

ding [22]. TNFRF9 (CD137) is expressed on T cells and has been

reported to enhance their cytolytic activity [62]. These data

strongly suggest that, mechanistically, B. breve UCC2003, via

EPS, may block intrinsic and extrinsic apoptosis signalling (via

activation of MyD88) during inflammation to protect epithelial

cells under highly apoptotic conditions.

In summary, we have demonstrated that certain bifidobac-

teria (i.e. B. breve UCC2003) are able to protect against

pathologic cell shedding induced by IP injection of LPS, and

that this protection appears to be independent of TNF-a pro-

duction by resident tissue macrophages. Using wild-type and

mutant B. breve, we have demonstrated that a specific EPS is

able to confer this protection and, using knockout mice, have

shown that this protection appears contingent on functional

(MyD88) signalling downstream of the epithelial TLR family

members and modulation of pro-apoptotic gene pathways.

Understanding how health-promoting species of bacteria such

as the Bifidobacterium genus interact with the intestinal epi-

thelium and how these species confer their protective effects

may drive progress towards understanding how pathologic

cell shedding in IBD patients is linked to changes in the intesti-

nal microbiota and how intervention strategies could positively

impact disease progression. Future human studies could be

considered to address issues of microbial dysbiosis, the relation-

ship to the cell shedding response, to what extent microbial

dysbiosis is linked to periods of remission and relapse in such

patients, and how bifidobacterial supplementation could be

used to reduce relapse in IBD patients.
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