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Background: The search for a method that utilizes biomarkers to identify patients with
schizophrenia from healthy individuals has occupied researchers for decades. However,
no single indicator can be employed to achieve the good in clinical practice. We aim
to develop a comprehensive machine learning pipeline based on neurocognitive and
electrophysiological combined features for distinguishing schizophrenia patients from
healthy people.

Methods: In the present study, 69 patients with schizophrenia and 50 healthy
controls participated. Neurocognitive (contains seven specific domains of cognition)
and electrophysiological [prepulse inhibition, electroencephalography (EEG) power
spectrum, detrended fluctuation analysis, and fractal dimension (FD)] features were
collected, all these features were taken together to generate the identification models
of schizophrenia by applying logistics, random forest, and extreme gradient boosting
algorithm. The classification capabilities of these models were also evaluated.

Results: Both the neurocognitive and electrophysiological feature sets showed a
good classification effect with the highest accuracy greater than 85% and AUC
greater than 90%. Specifically, the performances of the combined neurocognitive and
electrophysiological feature sets achieved the highest accuracy of 93.28% and AUC of
97.91%. The extreme gradient boosting algorithm as a whole presented more stably
and precisely in classification efficiency.
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Conclusion: The highest classification accuracy of 93.28% by combination of
neurocognitive and electrophysiological features shows that both measurements are
appropriate indicators to be used in discriminating schizophrenia patients and healthy
individuals. Also, among three algorithms, extreme gradient boosting had better
classified performances than logistics and random forest algorithms.

Keywords: schizophrenia, neurocognition, electrophysiology, electroencephalography, prepulse inhibition (PPI),
biomarker, machine learning, classification

INTRODUCTION

Schizophrenia is one of the most severe mental disorders,
affecting 20 million people worldwide (1). Extensive studies show
that cognitive deficits are one of the core features of significant
neurological dysfunction associated with schizophrenia and are
typically associated with a poor prognosis (2, 3). In addition,
cognitive deficits are no less predictive of schizophrenia and
its level than positive and negative symptoms, if not better
(4, 5). Several specific areas of cognition can be assessed by
a neurocognitive measure battery, which usually involves the
speed of processing, attention, working memory, and verbal
learning (6).

In addition, pre-pulse inhibition (PPI) is considered an
indicator that reflects information processing deficits in patients
with schizophrenia, which is based on electrophysiological
measures (7, 8). Most previous studies show that PPI is
reduced in schizophrenic patients and their unaffected first-
degree relatives (9). However, in comparison to neurocognitive
measurements, PPI presents only a moderate effect size
(Cohen’s d < 0.8) (10). Yang et al. (11) reports a novel
PPI paradigm involving attentional enhancement effects of
PPI while providing a more significant effect size (Cohen’s
d > 1.2). Additionally, electroencephalography (EEG) is a non-
invasive electrophysiological measure widely applied to assess
the neural response of the brain to external stimulation. The
EEG power spectrum describes the distribution of power into
each frequency band and is commonly used in schizophrenia
research (12, 13). Extensive research shows that patients with
chronic schizophrenia have abnormal EEG frequencies at rest
compared with healthy individuals (12, 14–16). Meanwhile, more
advanced EEG analytical methods have been studied in recent
years, such as detrended fluctuation analysis (DFA), a fractal
analytical method to quantify long-range temporal correlations
(LRTCs) in power-law form. A previous study reports strongly
reduced LRTCs in both alpha and beta frequency bands in
patients with schizophrenia (17).

The current gold standard for schizophrenia diagnosis is built
on the International Classification of Diseases, 11th Revision
(ICD-11) or the Diagnostic and Statistical Manual of Mental
Disorders, 5th Edition (DSM-5). These diagnostic methods
rely on descriptive psychopathology, which, to some extent,
reflects the subjective judgment of psychiatrists. Therefore,
there is an urgent need for clinicians to have an objective
measure of characteristics. Nevertheless, frustratingly, due to the
heterogeneity of the etiology and clinical variability, excellent
biomarkers for the diagnosis of schizophrenia are still lacking. In

fact, there is no single indicator that can be adopted in clinical
practice. In recent years, the role of machine learning in auxiliary
diagnosis has received increasing attention throughout the field
of schizophrenia research. In translational medicine and clinical
practices, these methods are widely involved in exploration
for presymptomatic screening, prognostic prediction, and
supporting treatment decisions (18). However, to date, there is a
paucity of literature about building machine learning models on
neurocognitive and electrophysiological biomarkers.

This study developed a comprehensive machine learning
pipeline based on neurocognitive (contains seven specific areas of
cognition) and electrophysiological [PPI, EEG power spectrum,
detrended fluctuation analysis, and fractal dimension (FD)]
features by using logistics, random forest, and extreme gradient
boosting (XGBoost) algorithms and evaluated their classification
capabilities separately.

MATERIALS AND METHODS

Experimental Subjects
This study enrolled 69 patients with schizophrenia and 50 healthy
controls. The diagnosis was established by the researchers from
interviews using the Structured Clinical Interview for DSM-
IV (SCID) and supplemented by clinical notes. All subjects
were right-handed, and their audiometric assessments (pure tone
audiometry, 1,000 Hz) were normal. The inclusion criteria for the
enrollment of patients with schizophrenia are as follows: 1) all
clinically stable subjects had no history of neurological disorders
or head trauma, 2) no history of electroconvulsive therapy
within the past 6 months, and 3) no history of alcohol/drug
dependence or abuse (except tobacco). Patients were excluded
because of unstable medical conditions or IQ below 70. During
this study, all patients received antipsychotic treatments as usual.
The healthy control group (CON) consisted of subjects matched
to the schizophrenia group (SCZ) in terms of gender, age, years
of education, and smoking history. The exclusion criteria for the
CON include substance abuse, suicidal risk, major head trauma,
and neuropsychiatric disorders. Before signing the informed
consent, each subject received a detailed description of the aims
and procedures for participation in the study. The independent
ethics committee of Beijing Anding Hospital approved the study.
The psychopathological status of the patients was also assessed
by the Positive and Negative Syndrome Scale (PANSS). The
demographic and clinical characteristics of SCZ and CON are
summarized in Table 1.
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Neurocognitive Assessments
The neurocognitive function of the subjects was assessed using
the Repeatable Battery for the Assessment of Neuropsychological
Status (RBANS; Chinese version) (19). The RBANS assesses
five separate cognitive domains: immediate memory (IMM),
delayed memory (DEM), visuospatial and constructional (VC),
attention (ATT), and language functioning (LAN). Besides
RBANS, the Stroop Color-Word Test (Chinese version) (20)
was also administered. Each subject was asked to complete
two interference tasks, and color (INT-C) and word (INT-W)
interference times were recorded. In this part of the experiment,
five RBANS features (IMM, DEM, VC, ATT, LAN) and two
Stroop features (INT-C, INT-W) were extracted.

Electrophysiological Assessments
Prepulse Inhibition Measures
Subjects were comfortably seated in a reclining chair with
their arms fully relaxed in a natural position. Acoustic startle
measured through electromyogram (EMG) signal was recorded
from the right orbiculate oculi muscle. Electrode impedances
were maintained at <5 k�. The eye-blink component of auditory
startle reflexes was quantified by the human EMG startle reflexes
system (EMG XEYE human startle reflex, Tian Ming Hong Yuan
Instruments Company, Beijing, China). In addition, the EMG
was bandpass filtered to 100–1,000 Hz and amplified 10,000
times. Acoustic startle stimuli were presented binaurally through
two headphones. Acoustic signals were characterized by a sound-
level meter (AUDit and System 824, Larson Davis, United States).

PPI was tested according to the same paradigm used in
previous research (11, 21). In short, the precedence effect was
utilized to generate two different perceived spatial relations
between the prepulse and background sound: perceptual
separation and perceptual colocation. A more detailed
description of the PPI paradigm and related theories are
available in previous studies (11, 21). Finally, two features
were extracted from this test (perceived spatial colocation PPI,
PSC-PPI; perceived spatial separation PPI, PSS-PPI).

Electroencephalography Recording and Processing
Electroencephalography Data Preprocessing
Subjects were comfortably seated in a reclining chair. Then, they
closed their eyes and remained relaxed and quiet for 5 min.
Continuous EEG was digitized at 1,000 Hz using the EGI EEG
system (EGI, Electrical Geodesics, Inc., America) with 128-
electrode HydroCelnet referenced to the vertex (Cz). Off-line
preprocessing of EEG data was conducted by using EEGLAB
(v2019.1) (22) and FieldTrip (23) toolboxes in MATLAB
(MATLAB Release 2017b, MathWorks, Inc.). EEG raw data
was first resampled to a 500-Hz sampling rate and bandpass
filtered to 0.5–45 Hz. For each subject, artifact removal was
administered using both continuous raw data and independent
component analysis (ICA, algorithm: runica) within EEGLAB.
ICA components were classified using an EEGLAB plugin
ICLabel tool (24). Eye movement, blink, heartbeat, muscular
activity, or other artifacts were distinguished from the ICA data.
The EEG data were then manually inspected to verify artifact

TABLE 1 | Demographic and clinical characteristics of healthy control and
schizophrenia group.

Factor CON (N = 50) SCZ (n = 69) χ2/t P

Gender (male/female) 38/12 49/20 0.37 0.545a

Age (year) 42.2 ± 8.8 44.8 ± 7.0 −1.80 0.074b

Education (years of schooling) 10.9 ± 3.1 10.8 ± 2.5 0.15 0.882b

Smoking (yes/no) 24/26 35/34 0.09 0.769a

Duration of illness (year) 19.7 ± 8.3

Age at onset (year) 24.5 ± 6.6

CPZe (mg/day) 292.7 ± 265.3

PANSS score 63.3 ± 13.1

Positive Symptoms 12.8 ± 4.5

Negative Symptoms 20.0 ± 6.4

General Psychopathology 30.5 ± 5.6

Mean ± SD are reported for age, education, duration of illness, age at onset, CPZe,
and all PANSS scores.
CON, Health Control Group; SCZ, Schizophrenia Group; CPZe, Chlorpromazine
Equivalent Doses; PANSS, Positive and Negative Syndrome Scale.
a Indicates P-value for chi-square test.
b Indicates P-value for independent sample t-test.

removal. The bad electrodes were replaced with interpolated
data from the remaining electrodes. Finally, all electrodes were
rereferenced to an average reference.

Power Spectrum Features
The power spectral density (PSD) of each electrode was evaluated
using the Fast Fourier Transform (FFT, Welch method, 2s
sliding window, 50% overlap, 0.5-Hz frequency step), yielding
an EEG spectrum ranging from 0.5 to 45 Hz. The frequency
bands were selected as follows: delta (1.0–4.0 Hz), theta (4.0–
8.0 Hz), alpha (8.0–14.0 Hz), beta (14.0–30.0 Hz). D, T, A,
and B denote delta, theta, alpha, and beta frequency bands,
respectively. AL and AR were computed by averaging the power
in the alpha band for the left (Fp1, F3, C3, P3, O1, F7, T3,
T5) and right hemispheres (Fp2, F4, C4, P4, O2, F8, T4, T6).
(D + T)L and (D + T)R were averaged by summing the power
of delta and theta in the left and right hemispheres. AFp and
AO were calculated by averaging the alpha band power for
the Fp channels (Fp1, Fp2) and the O channels (O1, O2). The
absolute power (Abs) and relative power (Rel) in each frequency
band were computed for each electrode. A/T ratio, A/B ratio,
(D + T)/(A + B) ratio, (D + T)/(A + B) ratio, (D + T)L/(D + T)R
ratio, AFp/AO ratio were calculated for Abs as well as Rel. In PSD,
20 features were extracted. For detailed features information,
see Table 2.

Detrended Fluctuation Analysis Features
Detrended fluctuation analysis is an analytical method based on
scale-free theory for estimating long-range temporal correlations
(LRTCs) in power-law form (25). That is, if a time series data
has a non-random temporal structure with slowly decaying
autocorrelations, DFA can quantify the rate of decay of these
correlations as indexed by the DFA power-law exponent. Some
evidence suggests that the DFA reflects brain maturation and may
prove useful as a potential biomarker for the pathophysiology
of neurodevelopmental disorders (26). DFA calculation was
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TABLE 2 | Statistical comparison of neurocognitive and electrophysiological
features.

Features CON (N = 50) SCZ (n = 69) t P a

IMM *** 89.24 ± 19.73 54.70 ± 15.30 10.75 0.000

VC ** 89.92 ± 20.65 78.81 ± 15.47 3.36 0.003

LAN *** 91.88 ± 16.30 77.68 ± 12.51 5.38 0.000

ATT *** 104.34 ± 15.94 91.09 ± 12.26 5.13 0.000

DEM *** 90.66 ± 19.16 64.39 ± 18.32 7.57 0.000

INT-C ** 4.21 ± 3.88 7.39 ± 5.95 −3.30 0.003

INT-W ** 16.78 ± 9.27 24.69 ± 12.85 −3.71 0.001

PSC-PPI (%) ** 31.70 ± 26.15 11.26 ± 29.07 3.95 0.001

PSS-PPI (%) *** 50.65 ± 25.92 14.70 ± 25.30 7.57 0.000

Abs-D (µV2) 10.43 ± 12.57 11.01 ± 13.61 −0.23 0.824

Abs-T (µV2) * 3.30 ± 3.60 6.67 ± 7.96 −2.79 0.014

Abs-A (µV2) 7.19 ± 8.18 9.78 ± 10.56 −1.45 0.264

Abs-B (µV2) 0.80 ± 0.73 0.99 ± 1.07 −1.09 0.376

Abs-A/T 2.79 ± 3.25 2.25 ± 2.41 1.03 0.393

Abs-A/B 9.17 ± 7.99 10.77 ± 9.32 −0.98 0.397

Abs-(D + T)/(A + B) 3.67 ± 6.58 2.27 ± 2.55 1.61 0.202

Abs-(D + T)L/(D + T)R 1.00 ± 0.26 1.05 ± 0.33 −1.01 0.393

Abs-AL/AR 0.98 ± 0.33 0.97 ± 0.28 0.22 0.824

Abs-AFp/AO ** 1.49 ± 1.75 0.69 ± 0.61 3.51 0.002

Rel-D * 3.64 ± 1.54 2.98 ± 1.31 2.53 0.028

Rel-T * 1.37 ± 0.65 1.85 ± 1.01 −2.94 0.010

Rel-A 2.32 ± 1.16 2.55 ± 0.89 −1.22 0.376

Rel-B 0.36 ± 0.15 0.34 ± 0.18 0.72 0.550

Rel-A/T 2.46 ± 2.45 2.01 ± 1.82 1.14 0.376

Rel-A/B 8.35 ± 6.62 9.71 ± 6.61 −1.11 0.376

Rel-(D + T)/(A + B) 2.69 ± 2.53 2.18 ± 2.36 1.13 0.376

Rel-(D + T)L/(D + T)R 1.02 ± 0.13 1.05 ± 0.14 −1.10 0.376

Rel-AL/AR 0.98 ± 0.13 0.98 ± 0.12 0.37 0.754

Rel-AFp/AO 0.76 ± 0.42 0.80 ± 0.24 −0.61 0.592

DFA-D 0.73 ± 0.04 0.75 ± 0.07 −2.06 0.082

DFA-T * 0.68 ± 0.05 0.70 ± 0.06 −2.38 0.039

DFA-A ** 0.77 ± 0.09 0.71 ± 0.09 3.42 0.003

DFA-B *** 0.66 ± 0.07 0.61 ± 0.06 4.21 0.000

FD 1.60 ± 0.04 1.61 ± 0.04 −0.70 0.550

Mean ± SD are reported for all features.
a Indicates P-value for independent sample t-test, and false discovery rate (FDR)
was used to adjust P-value.
CON, Health Control Group; SCZ, Schizophrenia Group; IMM, immediate memory
score; VC, visuospatial/constructional score; LAN, language score; ATT, attention
score; DEM, delayed memory score; INT-C, color interference time; INT-W, word
interference time; PPI, prepulse inhibition; PSC-PPI, perceived spatial co-location
PPI; PSS-PPI, perceived spatial separation PPI; Abs, absolute power spectra; Rel,
relative power spectra; D, T, A, B denote delta, theta, alpha, and beta frequency
band, respectively; L, left; R, right; Fp, frontal pole; O, occipital; DFA, detrended
fluctuation analysis; FD, fractal dimension.
*P < 0.05; **P < 0.01; ***P < 0.001.

performed using the Neurophysiological Biomarker Toolbox
(NBT).1 First, all electrodes were filtered in delta, theta, alpha, and
beta oscillations, respectively. Then, the amplitude envelope was
generated from each frequency band. Finally, the DFA value for
each electrode was estimated per participant and stored for each
frequency band separately. DFA-D, DFA-T, DFA-A, DFA-B were

1https://github.com/NBT-Analytics/NBTpublic

computed by averaging all electrodes in delta, theta, alpha, and
beta frequency bands.

Fractal Dimension Features
Brain complexity can be described as the highly structured
temporal structure observed in the EEG signal between pure
randomness (e.g., white noise) and the absence of variability
(constancy or pure periodicity). The EEGLAB plugin myFractal2
was used to calculate FD for each electrode. Finally, the FD
feature was extracted by averaging the FD value of all electrodes.

Statistical Analyses
Statistics were performed in RStudio (Version 1.2.5033, RStudio,
Inc., Boston, United States) with R software (Version 3.6.3).
The demographic and primary clinical data include gender,
age, years of education, smoking history, duration of illness,
age of illness onset, chlorpromazine equivalent doses, PANSS
total score, PANSS positive score, PANSS negative score,
and PANSS general psychopathology score. All demographic
and clinical variables except gender and smoking history
were expressed as means and SDs. The independent t-test
and the chi-square test were conducted to evaluate potential
differences in demographic, clinical variables neurocognitive, and
electrophysiological between CON and SCZ. The false discovery
rate (FDR) was computed to adjust P-values for multiple testing
based on the Benjamini-Hochberg method (27). P < 0.05 (two-
tailed) was considered as indicative of statistical significance.
PASS version 11.0 (NCSS, LLC., Kaysville, UT, United States) was
used for statistical power calculation.

Classification
All analyses were carried out using R 3.6.3 software. To choose
the optimal features for SCZ and CON classification, the
classification ability of each feature was first evaluated. A self-
compiled function was used to compute Cohen’s d-values of
each feature. Receiver operating characteristic curve (ROC)
analysis of each feature was created using the package of
pROC in R. ROC values of every feature containing accuracy,
sensitivity, specificity, and area under ROC curve (AUC) was
used for analyses.

All features were then divided into two different categories:
neurocognitive and electrophysiological sets. The rfe function (R
caret package) was used for feature selection by the multivariate
recursive feature elimination method (28). The main idea of
multivariate recursive feature elimination is to build the model
repeatedly and then select the best (or worst) features, put the
selected features aside, and then repeat the process over the
remaining features until all the features have been traversed. In
this process, the order to be eliminated is the order of the features.
The rfe was first fitted to all features using the bagged tree
algorithm. Each feature was ranked according to its importance
to the model. In each iteration of feature selection, the ranked
features were retained, the model was refitted, and performance
was assessed. The final selection of features in each set was based
on 10-fold cross-validation.

2https://github.com/rami-codes/myFractal
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Then, two optimal subsets (neurocognitive and
electrophysiological selected feature sets) and one combination
feature set (containing two subsets) were obtained. After feature
selection, the logistics algorithm (R stats package), the random
forest algorithm (29) (R randomForest package), and the
Extreme Gradient Boosting XGBoost algorithm (30) (R xgboost
package) were utilized to estimate the classification models
from the three features sets. When dealing with medium-sized
structured data or table data, it is generally considered that the
algorithm based on decision tree is the best. Random forest is an
ensemble method to build decision trees. Intuitively speaking,
each decision tree is a classifier, and then, for an input sample, N
trees have N classification results. The random forest integrates
all the classified voting results and specifies the classification
with the most votes as the final output. The classification results
of several weak classifiers are voted to form a strong classifier,
which is the idea of the random forest. XGBoost is another
ensemble machine learning algorithm that uses a decision tree as
a weak classifier and then integrates these weak classifiers into a
strong classifier. In the process of integration, different weights
are usually given according to classification accuracy of weak
classifiers. Moreover, after adding weak classifiers, the data is
usually reweighed to strengthen the classification. Shortly after
the XGBoost was put forward, 17 of the 29 champions in Kaggle
Data Challenge 2015 used the XGBoost method, which defeated
the neural network method.

Finally, the performance of these models is validated using
the 10-fold cross-validation method. The results of the validation
were then averaged. The classification performance was evaluated
by accuracy, sensitivity, and specificity. Besides this, the
performance of each model was also evaluated using ROC curves.

RESULTS

Demographics and Clinical
Characteristics
SCZ (N = 69) and CON (N = 50) were well matched for gender,
age, years of education, and smoking history. There were no
significant differences between SCZ and CON in the distribution
of these characteristics (Table 1).

Statistical Comparisons of All Extracted
Features Between Schizophrenia Group
and Control Group
The statistical analysis results of all features are presented in
Table 2. The means and standard deviations of all features are
shown. In total, all neurocognitive features were statistically
different between SCZ and CON. It can also be observed that
all PPI features differed significantly between the two groups.
Among the EEG power spectrum features, only absolute theta
power (Abs-T), absolute power AFp/AO ratio (Abs-AFp/AO),
relative delta power (Rel-D), and relative power theta (Rel-T)
showed statistically significant differences. In addition, the DFA
of CON is lower than that of SCZ (DFA-T) in the theta band as
well as both alpha and beta bands of CON being significantly

higher than that of SCZ (DFA-A, DFA-B). None of the FDs
differed significantly between SCZ and CON. Among all features,
the P-values for IMM, LAN, ATT, DEM, PSS-PPI, and DFA-B
were less than 0.001.

Cohen’s d and Classification
Performance of Single Feature
To choose optimal features to distinguish SCZ from CON, the
Cohen’s d and the ROC values were first evaluated for each
feature. The ROC values included accuracy (%), sensitivity (%),

TABLE 3 | Cohen’s d and the classification performance of single feature.

Features Cohen’s d Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

AUC
(%)

IMM 1.42 84.03 73.91 98.00 91.87

VC 0.60 69.75 95.65 34.00 64.65

LAN 0.90 76.47 75.36 78.00 75.74

ATT 0.86 77.31 85.51 66.00 77.84

DEM 1.16 83.19 82.61 84.00 86.58

INT-C 0.59 64.71 53.62 80.00 66.00

INT-W 0.65 67.23 53.62 86.00 71.26

PSC-PPI 0.69 70.59 76.81 62.00 70.61

PSS-PPI 1.16 80.67 79.71 82.00 84.32

Abs-D 0.04 53.78 49.28 60.00 50.00

Abs-T 0.50 67.23 62.32 74.00 67.13

Abs-A 0.27 68.07 86.96 42.00 61.71

Abs-B 0.20 60.5 72.46 44.00 57.88

Abs-A/T 0.19 37.82 7.25 80.00 48.7

Abs-A/B 0.18 67.23 91.3 34.00 58.43

Abs-(D + T)/(A + B) 0.30 63.87 81.16 40.00 56.96

Abs-(D + T)L/(D + T)R 0.19 53.78 23.19 96.00 54.26

Abs-AL/AR 0.04 42.86 43.48 42.00 51.54

Abs-AFp/AO 0.62 68.07 76.81 56.00 67.68

Rel-D 0.46 66.39 82.61 44.00 63.1

Rel-T 0.53 63.03 62.32 64.00 64.35

Rel-A 0.23 63.87 78.26 44.00 56.23

Rel-B 0.13 53.78 36.23 78.00 56.12

Rel-A/T 0.21 56.3 52.17 62.00 52.87

Rel-A/B 0.21 65.55 89.86 32.00 58.35

Rel-(D + T)/(A + B) 0.21 63.03 79.71 40.00 55.59

Rel-(D + T)L/(D + T)R 0.20 58.82 56.52 62.00 56.61

Rel-AL/AR 0.07 47.06 46.38 48.00 47.8

Rel-AFp/AO 0.11 60.5 66.67 52.00 59.13

DFA-D 0.38 57.14 30.43 94.00 58.52

DFA-T 0.43 61.34 62.32 60.00 61.57

DFA-A 0.61 68.07 63.77 74.00 70.1

DFA-B 0.73 71.43 75.36 66.00 71.94

FD 0.13 54.62 46.38 66.00 53.46

AUC, area under receiver operating characteristic curve; IMM, immediate memory
score; VC, visuospatial/constructional score; LAN, language score; ATT, attention
score; DEM, delayed memory score; INT-C, color interference time; INT-W, word
interference time; PPI, prepulse inhibition; PSC-PPI, perceived spatial co-location
PPI; PSS-PPI, perceived spatial separation PPI; Abs, absolute power spectra; Rel,
relative power spectra; D, T, A, B denote delta, theta, alpha, and beta frequency
band, respectively; L, left; R, right; Fp, frontal pole; O, occipital; DFA, detrended
fluctuation analysis; FD, fractal dimension.
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specificity (%), and AUC (%). Table 3 shows these indexes from
the neurocognitive and electrophysiological features. As can be
seen in Table 3, a total of 14 features had d-values that exceeded
the range of medium effect sizes (Cohen’s d = 0.5) (31), which
is generally consistent with the statistical result. These include
IMM, VC, LAN, ATT, DEM, INT-C, INT-W, PSC-PPI, PSS-PPI,
Abs-T, Abs-AFp/AO, Rel-T, DFA-A, and DFA-B. Among them,
the Cohen’s d-values of LAN, ATT, DEM, and PSS-PPI were
all greater than 0.8, indicating a large effect size, whereas the
Cohen’s d-value of IMM reached 1.42, suggesting a minimal effect
size. In Table 3, it is evident that the neurocognitive features
performed better than the electrophysiological features in terms
of ROC values. IMM was the most suitable neurocognitive
feature for classification with an accuracy of 84.03%, and its
AUC reached 91.87%. Five neurocognitive features (IMM, LAN,
ATT, DEM, and INT-W) had AUC values greater than 70%,
demonstrating functional discrimination capacities of features
(32). The PSS-PPI was the best potential electrophysiological
feature with an accuracy of 80.67% and an AUC of 84.32%. All
four electrophysiological features (PSC-PPI, PSS-PPI, DFA-A,
and DFA-B) had AUCs greater than 70%.

Classification Performances of
Combined Features
As mentioned in the methods, the REF method was used to select
the neurocognitive and electrophysiological feature sets that
could optimally distinguish between CON and SCZ. In addition,
10-fold cross-validation was used for feature selection to
prevent overfitting. Finally, the neurocognitive selected features
(NSF) subset contained immediate memory, delayed memory,
attention, language functioning, color interference time, and
word interference time. The electrophysiological selected features
(ESF) subset contained PSC-PPI, PSS-PPI, Abs-T, Abs-A, Abs-
AFp/AO, Abs-(D + T)/(A + B), Rel-D, Rel-T, Rel-A/B, DFA-A,
and DFA-B. All selected features (ASF) included two subsets as
described above. Then, the logistics, random forest and XGBoost
algorithms were implemented to build classification models from
the NSF subset, ESF subset, and ASF set. On this basis, these
models were evaluated using a 10-fold cross-validation method.

Finally, the fitted values for the probability of people with
schizophrenia ranged from 0 to 1. Accuracy, sensitivity, and
specificity were calculated by setting cutoff points at 0.5 of the
fitted values, and then the ROC curves were evaluated and AUCs
were calculated based on the fitted values. These model evaluation
indicators (accuracy, sensitivity, specificity, and AUC) are shown
in Table 4. Figure 1 shows the ROC curves for each model to
represent the differences of ROC curves more clearly. As can be
seen from Table 4 and Figure 1, the model containing all selected
feature sets exhibits the best classification performance regardless
of the algorithm used (logistics accuracy of 87.39%, random
forest and XGBoost accuracy of 93.28%). The NSF subset models
and the ESF subset models showed roughly comparable levels
of classification accuracy, but the NSF subset models performed
better than the ESF subset in terms of AUC values. Besides
this, the XGBoost algorithms performed more consistently and
accurately in both accuracy and AUC among all the compared

TABLE 4 | Classification performances of combined features.

Feature set Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

AUC (%)

NSF subset models

Logistics algorithm 82.35 88.41 74.00 89.88

Random forest algorithm 88.24 82.61 96.00 96.59

XGBoost algorithm 89.08 89.86 88.00 93.99

ESF subset models

Logistics algorithm 82.35 86.96 76.00 90.84

Random Forest algorithm 84.87 91.30 76.00 91.88

XGBoost algorithm 88.24 89.86 86.00 90.52

ASF set models

Logistics algorithm 87.39 92.75 80.00 92.54

Random forest algorithm 93.28 94.20 92.00 97.36

XGBoost algorithm 93.28 91.30 96.00 97.91

NSF subset, Neurocognitive Selected Features subset include IMM, LAN,
ATT, DEM, INT-C, INT-W features; ESF subset, Electrophysiological Selected
Features subset include PSC-PPI, PSS-PPI, Abs-T, Abs-A, Abs-AFp/AO, Abs-
(D + T)/(A + B), Rel-D, Rel-T, Rel-A/B, DFA-A, DFA-B; ASF set, All Selected Features
set include NSF subset and ESF subset.

algorithms. The ASF set model with the XGBoost algorithm
achieved the highest accuracy of 93.28% and an AUC of 97.91%.
Statistical power was calculated by tests for one ROC curve
procedure in PASS software. The power analysis showed that 50
patients and 69 healthy subjects were sufficient to have more than
90% statistical power at a two-sided alpha of 0.05 for significance
level (Supplementary Table 1).

To better present the differences in the classification ability of
these three algorithms, scatterplots were drawn with the fitted
values of the NSF subset as the horizontal coordinates and
the fitted values of the ESF subset as the vertical coordinates
(Figure 2). It is apparent that the fitted values of the random
forest and XGBoost algorithm are more densely distributed
in this plot compared to the logistics algorithm, which also
suggests that the random forest and XGBoost algorithms provide
better performance in distinguishing schizophrenia patients from
healthy individuals.

DISCUSSION

Classification Performance of
Neurocognition in Schizophrenia
First, this study sought to determine which feature set was more
beneficial in distinguishing between schizophrenic patients and
healthy control subjects to construct the model. The second aim
of the project was to identify which machine learning algorithm
performed better in terms of classification ability and robustness.

The highest classification accuracy was 84.03% based on a
single neurocognitive feature, achieved by immediate memory.
A high level of immediate memory is considered as a predictor
of improved cognitive impairments in schizophrenic patients
(33). This also implies a potential opportunity for evaluating
the prognostic or medical effect by using an immediate memory
score. Other neurocognitive indicators performed well. For
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FIGURE 1 | Receiver Operator Characteristics (ROC) curves for classification of schizophrenia patients and controls based on different combinations of features
using logistics (A), random forest (B), and XGBoost algorithm (C). NSF subset, Neurocognitive Selected Features subset include IMM, LAN, ATT, DEM, INT-C, INT-W
features; ESF subset, Electrophysiological Selected Features subset include PSC-PPI, PSS-PPI, Abs-T, Abs-A, Abs-AFp/AO, Abs-(D+T)/(A+B), Rel-D, Rel-T,
Rel-A/B, DFA-A, DFA-B. ASF set, All Selected Features set include NSF subset and ESF subset. The red, green and blue lines show the ROC curves for the NSF
subset, ESF subset and ASF set, respectively. The AUC of logistics models based on NSF subset, ESF subset, ASF set was 89.88%, 90.84%, 92.54%. The AUC of
random forest models based on NSF subset, ESF subset, ASF set was 96.59 91.88%, 97.36%. The AUC of XGBoost models based on NSF subset, ESF subset,
ASF set was 93.99%, 90.52%, 97.91%.

FIGURE 2 | The horizontal/longitudinal coordinate axis represents the probability of people with schizophrenia (%). NSF subset, Neurocognitive Selected Features
subset include IMM, LAN, ATT, DEM, INT-C, INT-W features; ESF subset, Electrophysiological Selected Features subset include PSC-PPI, PSS-PPI, Abs-T, Abs-A,
Abs-AFp/AO, Abs-(D + T)/(A + B), Rel-D, Rel-T, Rel-A/B, DFA-A, DFA-B; ASF set, All Selected Features set include NSF subset and ESF subset. (A–C) Scatter plots
from two features set (NSF subset and ESF subset) using logistics, random forest and XGBoost models.

instance, the delayed memory score also received an excellent
classified effect (accuracy of 83.19% and AUC of 86.58%). The
classification accuracy of the combined neurocognitive feature
set was slightly higher than that of any single feature classifier
(accuracy of 89.08% and AUC of 93.99%).

Previous studies demonstrate the importance of
neurocognitive-based machine learning techniques for
diagnosing schizophrenia. Vacca et al. (34) employed several
machine learning techniques (logistics regression, decision tree,
random forest, k-nearest neighbor, neural network, support
vector machine) to distinguish between 86 schizophrenic
patients and 115 healthy subjects. The best methods turned
out to be support vector machine and neural network with
accuracies of 87 and 84.8%. Antonucci et al. (35) investigated
the discriminatory performance of genetic, environmental, and
neurocognitive classifiers by using support vector classification
and repeated nested cross-validation. The cognitive classifier
showed an accuracy of 88.7%, followed by environmental
(65.1%) and genetic (55.5%) classifiers. The findings of the
two studies are in line with the current study, revealing

that neurocognition is a robust indicator in differentiating
schizophrenia from healthy people.

Classification Performance of
Electrophysiology in Schizophrenia
PPI deficits are involved in the biological bases of schizophrenia
and proposed as a potential biomarker for genetic studies
with more than 50% of PPI variance attributed to genetic
factors (36). Mackeprang et al. (37) argue that PPI was not
affected by antipsychotic treatment and, instead, was a stable
vulnerability index for schizophrenia. Mena et al. (38) used
longitudinal data to examine whether PPI deficits exhibit a
temporary effect in the acute phase of schizophrenia. The result
suggests that the PPI remained reduced at the 3 months post-
discharge assessment, implying that the PPI was a biomarker of
schizophrenia. However, in practice, the PPI did not separate
schizophrenic subjects from healthy controls (39). In comparison
to neurocognitive and other electrophysiological measures, the
PPI showed a medium Cohen’s d-value of below 0.6 (40). The
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previous study establishes a novel PPI paradigm by using a
precedence effect–based perceived separation, which produced a
Cohen’s d-value of 1.27 and an AUC of 85.2% (11). The current
study analyzes whether PSC-PPI and PSS-PPI single features
could distinguish SCZ from CON. The accuracy of PSS-PPI was
80.67%, and the AUC was 84.32%.

In addition, other single markers were tested for their
ability to identify schizophrenia based on the EEG power
spectrum, detrended fluctuation analysis, and fractal dimension.
DFA is a method to evaluate the large-scale functional neural
dysconnectivity of schizophrenic patients at the temporal level.
It was found that DFA was substantially attenuated in both
alpha and beta frequency bands in patients. DFA-B presented
the highest accuracy of 71.43% and AUC of 71.94% in a
single EEG feature.

Compared with the best single electrophysiological feature
(PSS-PPI), the combined electrophysiological feature increased
the accuracy from 80.67 to 88.24% and the AUC from 84.42
to 91.88%. Devia et al. (41) report that the EEG signals from
a free-viewing paradigm distinguished patients from healthy
subjects with an overall accuracy of 71%. Thilakavathi et al. (42)
analyzed the EEG power spectrum and found that the vector
machine classifier produced an accuracy of 88% when features
were combined together. Laton et al. (43) used a combination
of oddball and mismatch event-related potentials and increased
accuracy from 79.8 to 84.7% for a single feature. The above
findings suggest that it is essential to select the appropriate
EEG feature set to better distinguish between schizophrenic and
healthy individuals.

Classification Performance of Combined
Neurocognitive and Electrophysiological
Features in Schizophrenia
The results show that both neurocognitive and
electrophysiological feature sets had a good performance
with accuracy values greater than 80% and AUC values greater
than 85%. Specifically, the combined neurocognitive and
electrophysiological features delivered the highest accuracy of
93.28% and AUC of 97.91%. In fact, the XGBoost algorithm
as a whole presented a more stable and accurate classification
efficiency in this study. As previous research indicates, XGBoost
had several advantages in terms of speed and accuracy over
other tree-based ensemble methods, such as Random Forests,
AdaBoost, and the traditional gradient boosted trees (30).

Potential Limitations
There are several potential limitations to this study. First, this
is a single-center study with limited sample size. Due to the
relatively small number of subjects in the study, caution should
be exercised when attempting to generalize these findings to
clinical applications. Second, there is a lack of drug-naïve patient
groups. Drugs may have potentially confounded the findings
of the classification performances of these models and clinical
status. Third, it is related to the duration of the disease.
Nevertheless, no correlation was found between all features and
CPZe as well as duration of illness (Table 5). The last one

is model interpretability. Indeed, classic statistical regression
models, such as linear regression, perform better in terms
of interpretability than black-box machine learning models.
Perhaps it is for this reason that the acceptance of machine
learning among clinicians is lacking. However, schizophrenia
is likely to be etiologically heterogeneous, resulting in poor
prediction performance of a linear model. Linear regression

TABLE 5 | Correlation between all features and CPZs, duration of
illness in patients.

Features CPZe Duration of illness

r P r P

IMM 0.100 0.398 −0.050 0.671

VC 0.000 0.991 −0.020 0.861

LAN −0.100 0.432 0.140 0.245

ATT −0.090 0.478 0.070 0.563

DEM 0.080 0.518 0.020 0.849

INT-C −0.010 0.955 −0.010 0.955

INT-W −0.180 0.132 −0.010 0.926

PSC-PPI −0.150 0.233 0.080 0.507

PSS-PPI −0.200 0.101 0.190 0.115

Abs-D 0.050 0.677 0.040 0.768

Abs-T −0.050 0.708 0.120 0.330

Abs-A 0.050 0.667 0.140 0.264

Abs-B 0.140 0.254 0.130 0.283

Abs-A/T 0.150 0.222 −0.010 0.912

Abs-A/B −0.050 0.674 0.050 0.705

Abs-(D + T)/(A + B) −0.090 0.456 −0.010 0.937

Abs-(D + T)L/(D + T)R −0.010 0.952 0.120 0.321

Abs-AL/AR −0.080 0.496 0.100 0.421

Abs-AFp/AO 0.030 0.799 −0.010 0.953

Rel-D 0.040 0.763 −0.060 0.610

Rel-T −0.210 0.078 0.070 0.547

Rel-A 0.080 0.513 0.030 0.803

Rel-B 0.010 0.926 −0.020 0.879

Rel-A/T 0.150 0.211 −0.020 0.893

Rel-A/B −0.040 0.740 0.070 0.544

Rel-(D + T)/(A + B) −0.100 0.405 −0.020 0.880

Rel-(D + T)L/(D + T)R 0.130 0.280 0.050 0.677

Rel-AL/AR −0.170 0.159 0.080 0.519

Rel-AFp/AO −0.020 0.850 0.090 0.478

DFA-D 0.080 0.503 0.160 0.197

DFA-T −0.010 0.947 0.080 0.496

DFA-A −0.040 0.720 −0.040 0.752

DFA-B 0.040 0.740 0.180 0.137

FD 0.130 0.281 −0.080 0.519

P-value for spearman rank correlation analysis, and false discovery rate (FDR) was
used to adjust P-value.
CPZe, Chlorpromazine Equivalent Doses; IMM, immediate memory score; VC,
visuospatial/constructional score; LAN, language score; ATT, attention score; DEM,
delayed memory score; INT-C, color interference time; INT-W, word interference
time; PPI, prepulse inhibition; PSC-PPI, perceived spatial co-location PPI; PSS-
PPI, perceived spatial separation PPI; Abs, absolute power spectra; Rel, relative
power spectra; D, T, A, B denote delta, theta, alpha, and beta frequency band,
respectively; L, left; R, right; Fp, frontal pole; O, occipital; DFA, detrended fluctuation
analysis; FD, fractal dimension.

Frontiers in Psychiatry | www.frontiersin.org 8 April 2022 | Volume 13 | Article 810362

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


fpsyt-13-810362 March 31, 2022 Time: 15:23 # 9

Tian et al. Detecting People With Schizophrenia

cannot model the inherent complexity of data sets (such as feature
interaction). Therefore, when choosing an appropriate machine
learning model, we usually need to weigh the accuracy and
interpretability of the model.

In future research, to provide a simple, robust, and reliable
model for detecting schizophrenia, first-episode, drug-naïve
patients with schizophrenia will be recruited. Moreover, patients
with depression and bipolar disorder will also be invited to
participate in a future study to assess the specificity of the
model and to determine whether the severity of these features
varies across psychiatric disorders. Besides this, additional
EEG features may be identified in the classification. Further
research may also be conducted to evaluate the efficacy of
interventions and prognosis.

CONCLUSION

In this study, a comprehensive machine learning pipeline
was provided to detect patients with schizophrenia by
applying logistics, random forest, and extreme gradient
boosting (XGBoost) algorithm classifiers to neurocognition,
electrophysiology, and their combination. The highest
classification accuracy of 93.28% was achieved by combining
neurocognitive and electrophysiological features, suggesting that
these measurements are appropriate indicators for discriminating
schizophrenia patients from healthy individuals. Also, among
these three algorithms, XGBoost has better classification
performances than the other two algorithms. These results
suggest that neurocognitive and electrophysiological features
can be used along with machine learning for potential
clinical applications.
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