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Abstract
Background: The learning of global genetic regulatory networks from expression data is a
severely under-constrained problem that is aided by reducing the dimensionality of the search
space by means of clustering genes into putatively co-regulated groups, as opposed to those that are
simply co-expressed. Be cause genes may be co-regulated only across a subset of all observed
experimental conditions, biclustering (clustering of genes and conditions) is more appropriate than
standard clustering. Co-regulated genes are also often functionally (physically, spatially, genetically,
and/or evolutionarily) associated, and such a priori known or pre-computed associations can
provide support for appropriately grouping genes. One important association is the presence of
one or more common cis-regulatory motifs. In organisms where these motifs are not known, their
de novo detection, integrated into the clustering algorithm, can help to guide the process towards
more biologically parsimonious solutions.

Results: We have developed an algorithm, cMonkey, that detects putative co-regulated gene
groupings by integrating the biclustering of gene expression data and various functional associations
with the de novo detection of sequence motifs.

Conclusion: We have applied this procedure to the archaeon Halobacterium NRC-1, as part of
our efforts to decipher its regulatory network. In addition, we used cMonkey on public data for
three organisms in the other two domains of life: Helicobacter pylori, Saccharomyces cerevisiae, and
Escherichia coli. The biclusters detected by cMonkey both recapitulated known biology and enabled
novel predictions (some for Halobacterium were subsequently confirmed in the laboratory). For
example, it identified the bacteriorhodopsin regulon, assigned additional genes to this regulon with
apparently unrelated function, and detected its known promoter motif. We have performed a
thorough comparison of cMonkey results against other clustering methods, and find that cMonkey
biclusters are more parsimonious with all available evidence for co-regulation.

Background
The statistical elucidation of genetic regulatory networks
from experimental data (commonly mRNA expression
levels) is an important problem that has been the center

of a large body of work [29,43]. Because this problem is
underconstrained (the number of free parameters is far
greater than the dimensionality of the data), many efforts
include some means for dimensionality reduction. A com-
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mon practice for reducing the dimensionality of this prob-
lem space has been to cluster genes into co-expressed groups
based on their expression profiles, prior to network infer-
ence. Such a practice has the additional advantage that, if
done properly, the signal-to-noise in the data can thereby
be reduced through signal averaging. The genes in such
clusters are often assumed to be co-regulated, i.e. to share
the same regulatory controls, thereby implying biological
relevance for such a pre-clustering step. However, gene
transcript levels can be correlated either by chance (due to
experimental noise or systematic error) or because of indi-
rect effects, and therefore they might not actually be
directly co-regulated. The integration of additional bio-
logically-relevant evidence into a clustering procedure
may be used to provide constraints on the identification
of groups of co-regulated genes.

Co-regulated genes are often functionally (physically, spa-
tially, genetically, and/or evolutionarily) linked
[33,34,58,63,66,67]. For example, genes whose products
form a protein complex are likely to be co-regulated.
Other types of associations among genes, or their protein
products, that (can) imply functional couplings include
(a) presence of common cis-regulatory motifs; (b) co-
occurrence in the same metabolic pathway (s); (c) cis-
binding to common regulator(s); (d) physical interaction;
(e) common ontology; (f) paired evolutionary conserva-
tion among many organisms; (g) common synthetic phe-
notypes upon joint deletion with a third gene; (h) sub-
cellular co-location; and (i) proximity in the genome, or
in bacteria and archaea, operon co-occurrence. These
associations can be either derived experimentally or com-
putationally (either pre-computed ahead-of-time, e.g.
[23,60,62], or on-the-fly during the clustering process);
indeed it is common practice to use one or more of these
associations as a post-facto measure of the biological qual-
ity of a gene cluster. However, it is important to note that
some of these data types, to varying degrees, can contain a
high rate of false positives, or may imply relationships
that have no implication for co-regulation. Therefore in
their consideration as evidence for co-regulation, these
different sources of evidence should be treated as priors,
with appropriately different weights, based upon prior
knowledge (or assumptions) of their quality and/or rele-
vance.

Because a biological system's interaction with its environ-
ment is complex and gene regulation is multi-factorial,
genes might not be co-regulated across all experimental
conditions observed in any comprehensive set of tran-
script or protein levels. Also, genes can be involved in
multiple different processes, depending upon the state of
the organism during a given experiment. Therefore, a bio-
logically-motivated clustering method should be able to
detect patterns of co-expression across subsets of the

observed experiments, and to place genes into multiple
clusters. So-called biclustering (clustering both genes and
experimental conditions), is a widely studied problem
and many different approaches to it have been published
[6,25,52,76,80,86,98]. Unlike standard clustering meth-
ods, most biclustering algorithms place genes into more
than one cluster. Because biclustering is an NP-hard prob-
lem [25], no solution is guaranteed to find the optimal set
of biclusters. However, many of these procedures have
successfully demonstrated the value of biclustering when
applied to real-world biological data (e.g. [6,56,88]).

We have previously described a procedure, the INFERELA-
TOR [22], for learning global regulatory influences from
expression data using continuous models of transcript lev-
els. For this analysis (and most regulatory network infer-
ence algorithms), a pre-clustering step is desired to reduce
the dimensionality of the data and enable noise reduction
through signal averaging of clustered gene profiles. Low-
level (but still significantly coherent) changes in expres-
sion of the clusters play an important role in constraining
the model parameters, and the inclusion of these condi-
tions in the biclusters can be important. Thus, a trade-off
needs to be found between including as many experi-
ments as possible in each cluster (to increase the con-
straints on the model parameters), while enforcing that
these experiments be co-expressed. Different biclustering
methods have different models of a "perfect" bicluster; for
example constant rows/columns, coherent values, coher-
ent "evolution" [56]. For our modeling purposes, only
methods which derive biclusters with coherent, or corre-
lated, gene profiles, such as those of Cheng and Church
[25], Yang et al. [98], and Lazzeroni and Owen [53] are
suitable. For example, algorithms which identify biclus-
ters with constant levels of activation and/or repression
[6,86] and/or which discretize the data [80] do not con-
tain low or intermediate-levels of expression changes to
constrain the regulatory network inference; indeed they
often do not generate biclusters with many experimental
conditions at all. Our analysis and previous reviews [6] of
the Cheng and Church (CC) algorithm [25] show that it is
not suitable for large-scale expression analysis. It, and the
Plaid models of Lazzeroni and Owen [53] both produce
biclusters that focus on low-variance sub-matrices of the
expression data. The FLOC algorithm of Yang et al. [98]
(an update to the CC algorithm which can handle missing
values) provided the early inspiration for this work, which
is essentially a re-formulation of their δ-cluster model
with a basic probabilistic model for the expression data.
This enables a more rigorous and intuitive integration of
the model of expression data with models for the addi-
tional data types, as well as with prior distributions for
constraining bicluster sizes and redundancy.
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Guided by these motivations and requirements, we herein
describe an algorithm that detects genes putatively co-reg-
ulated over subsets of experimental conditions by inte-
grating the biclustering of gene expression data and
multiple gene association networks with the de novo detec-
tion of cis-regulatory motifs. We applied this method to a
global expression data set collected for the archaeon Halo-
bacterium NRC-1, to find co-regulated gene sets as part of
our ongoing efforts to model its regulatory network, and
we present detailed evidence for the biological utility of
this procedure as part of our modeling procedure. In addi-
tion, we used cMonkey to compute co-regulated gene
clusters for three additional organisms in the two remain-
ing domains of life: Helicobacter pylori, Saccharomyces cere-
visiae, and Escherichia coli. The biclusters are presented to
the biologist using the interactive visualization tools, the
Gaggle [79] and Cytoscape [78], at our web site [4].

Results
In this section we summarize the results of the application
of our algorithm to four organisms, and describe its use-
fulness as a first step in our modeling of the Halobacterium
regulatory network in conjunction with the Inferelator
[22]. We perform a detailed analysis of its capabilities and
assess its global performance, both internally and in com-
parison to other biclustering methods. The complete set
of biclusters for all organisms are available for exploration
using Cytoscape and the Gaggle [78,79] at our web site [4].

The bacteriorhodopsin regulon in Halobacterium
The induction of phototrophic growth of Halobacterium
NRC-1 under anaerobic conditions triggers the synthesis
of bacteriorhodopsin (bR; a complex of the protein Bop
and retinal), a light-driven proton pump that is further
assembled into a purple membrane. Br is the major com-
ponent of Halobacterium phototrophy, one of two anaero-
bic ATP generation pathways utilized by the organism
[14]. Four genes responsible for bR synthesis (Bop and
isoprenoid synthesis genes), bop, brp, bat, and crtB1, are
co-regulated by Bat [13] through a common transcription
factor motif that was characterized by saturation mutagen-
esis (the Bat UAS) [12]. This is the most well-studied reg-
ulon in Halobacterium, and the only one whose cis-
regulatory motif has been experimentally verified. Biclus-
ter #11 (Fig. 1) recapitulates much of what is known
about this regulon, including all four bR genes, and a very
close match to the Bat UAS (Figure 2). The additional
genes in this bicluster are consistent with the co-regula-
tion of bR with anaerobic respiration, including phytoene
synthases, members of a DMSO-related operon [64], alco-
hol dehydrogenases, and an iron transporter. While the
Bat UAS is not found upstream of many of these latter
genes, a second significant motif (which was found
upstream of the bR operon as well) was identified by
cMonkey upstream of these genes.

Table 1 shows correlations between and among genes
containing the putative Bat UAS (denoted "bR genes")
and between and among genes containing the 2nd
detected motif (denoted "DMSO genes"), over experi-
ments within and outside the bicluster. While the bR
genes are as tightly correlated with each other outside the
bicluster as they are with the DMSO genes inside the
bicluster, they are significantly less-correlated with the
DMSO genes outside the bicluster (p ¡ 0.026; paired t-
test), and vice versa (p ¡ 0.00095). This suggests that
cMonkey partitioned the experiments between those in
which the regulator which binds to the 2nd motif is con-
trolling most of the genes in the bicluster (thereby causing
them to appear tightly co-expressed) while over the condi-
tions outside the bicluster, Bat is active, binds to the UAS,
and bifurcates the regulation of the two sets of genes.
Thus, cMonkey identified a novel relationship between
phototrophy and DMSO (two of the four ATP-generating
pathways available to Halobacterium), implying that the
organism produces energy simultaneously via these two
pathways under some environmental conditions.

The bicluster also includes cdc48a, which encodes a cell-
division cycle – associated protein, with a strong match to
the Bat UAS. We note that initial studies of the Bat UAS
suggested that the regulatory sequences of as many as 108
genes contain instances of the motif [12]; clearly not all of
these instances are active over the experiments used here.
No similar bicluster, in terms of completeness of gene
membership or similarity of motifs detected (via MEME
[10]) to the Bat UAS, was found using other bi/clustering
methods (see below for a list of methods attempted).
When the cMonkey motif-detection component was
turned off (see below), the UAS was not detected.

SirR as a regulator of transport processes in 
Halobacterium
cMonkey detected a bicluster (#76, Figure 3) primarily
composed of transporter genes, including two phosphate
transport systems, Co(II) transporters, a Mn(II) uptake
system, glycerol phosphate transporters, and two peptide
transport systems. While the phosphate, peptide, and
Mn(II) transport systems might have been included in the
bicluster by virtue of their functional associations, the
glycerol phosphate and Co(II) transport system genes
appear to have been included due to a strong match in the
biclusters' putative motif #1. We can hypothesize that
motif #1, which is present upstream to 24 out of the
bicluster's 30 genes, is responsible for the high degree of
expression correlation over ~150 conditions in this biclus-
ter. None of the other bi/clustering methods tested identi-
fied a cluster containing the complete set of these
transporters that enabled the generation of this type of
model of the joint regulation of transporter activity in
Halobacterium.
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A potential advantage of the inclusion of de novo motif
detection as part of the cMonkey biclustering procedure is
that, for transcription factors that are not autoregulated,
motif detection can break the causal symmetry between
regulator targets and regulators controlling those targets.
For example, an activator and several of its targets might
seem co-expressed (and would therefore be placed in the
same bicluster) when considering expression data alone.
The absence of the regulator's binding site from its
upstream sequence could, however, cause cMonkey to

exclude the regulator from the bicluster, and thus assist
any subsequent regulatory network inference on that
bicluster. Although the above case is somewhat idealized,
we find specific examples where motif detection correctly
separates co-regulated groups from the co-expressed super
sets that merge regulators and their targets together. SirR
was predicted to regulate bicluster #76 [22] and this rela-
tionship was confirmed via a sirR knockout experiment
[49]. SirR is annotated as an iron-dependent regulator in
Staphylococcus epidermis and Staphylococcus aureus and is

Bacteriorhodopsin Halobacterium bicluster with known Bat-binding motif (UAS)Figure 1
Bacteriorhodopsin Halobacterium bicluster with known Bat-binding motif (UAS). A: expression ratios of the bicluster's genes, 
over all experimental conditions (conditions within the bicluster are to the left of the red dotted line). B: expression ratios 
over only the conditions within the bicluster. C: motif logos [74] and E-values [10] for motifs that were detected in the biclus-
ter. D: network of associations between the bicluster's genes in the various association networks used by CMONKEY, includ-
ing operons, KEGG [48] metabolic pathways ("met" – see Methods; only present in Figures 4 and 5), and Prolinks [23] 
associations. The nodes are color coded by COG [89] functional groupings. Genes labeled in red text encode known or puta-
tive transcriptional regulators. E: diagram of the upstream positions of the motifs, colored red, green and blue for motifs #1, 2 
and 3, respectively. The genes' names are color-coded by COG functional annotation as in the network subfigure. The colors 
of the lines for each gene's sequence correspond to those in the expression ratio plots.
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associated with Mn and Fe stress response in other micro-
bial systems [44]. While sirR is correlated with the biclus-
ter (Pearson correlation of 0.77, versus 0.69–0.92 for the
genes in the bicluster), it was omitted from the bicluster
by cMonkey, in part due to the poor match of sirR's
upstream sequence to the bicluster's significant motif #1.
While PhoU and Prpl (the transcriptional regulators that
were included in bicluster #76) are also putative regula-
tors of genes in bicluster 76, the inclusion of motif detec-
tion (along with the high stringency for co-expression
used by cMonkey) suggests that SirR may have a more
general role in the regulation of these transporter genes
than PhoU and Prpl.

Regulation of flagellar biosynthesis in E. coli and H. pylori
In E. coli, the repertoire of more than 50 genes that encode
proteins involved in motility (flagellar and chemotaxis
system) are regulated in a cascade that can be separated
into three classes. These regulatory classes correspond to
the ordering of the genes' temporal requirement during
flagellar assembly [7,26,47]. Class-2 genes are regulated
by an RpoD/σ70 and FlhDC activation complex, and
encode flagellar structural and assembly proteins and two
regulators (fliA and flgM). fliA and flgM subsequently acti-
vate the Class-3 operons (which include chemotaxis sign-
aling and flagellar activation/motion-associated genes)
[26]. cMonkey detected a bicluster in E. coli (Fig. 4) that is
enriched in flagellar biosynthesis genes (including the reg-
ulator flgM); most of these genes' upstream sequences
contain motifs (#1 and #2 in Fig. 4) that correspond to the

known promoter binding site for this activator complex
[26]. While several other bi/clustering methods (see
below for details), such as k-means and SAMBA, detected
clusters that were enriched in both flagellar- and chemo-
taxis-associated genes, we were unable to detect the σ70/
FlhDC binding motif in any of these clusters due to the
presence of many additional unrelated sequences that
added noise to the search. The cMonkey bicluster
included only two (of 11) annotated "chemotaxis"-
related genes (which are all in Class-3, and do not contain
the detected motif), whereas the larger SAMBA bicluster,
for example, did not discriminate between these two
related functions (containing 9 of the 11 genes). If MEME
[10] is run independently on upstream sequences of the
flagellar function-annotated genes (43 in all), it detects
the σ70/FlhDC binding motif in ~20 of them, while it does
not detect a motif for the 11 chemotaxis-annotated genes
(nor in the combined set of 54 sequences). This analysis
suggests that while many genes in both Class-2 and Class-
3 are co-expressed in the E. coli data, cMonkey can cor-
rectly separate the two classes on the basis of motif detec-
tion and association networks.

The H. pylori cluster in Fig. 5 is also highly enriched in
Class-2 flagellar-associated genes, many of which are asso-
ciated with the RpoN/σ54-regulated flagellar regulon [65].
The most significant motif detected in this cluster corre-
sponds to the RpoN binding site: 5'-GGaa-N5-tttGCtT-3'
[65] that is similar to the σ70 binding site in E. coli [26].
Other biclustering algorithms identified biclusters in the
H. pylori data containing some of the same genes as this
cMonkey bicluster, however most of those clusters con-
tain > 50 additional genes (several with > 200), and thus
the RpoN-binding motif was undetectable for clusters
generated by any of these methods. Individual clusters
found using hierarchical clustering (k = 300) and fc-
means (k = 50) on the H. pylori data had matches to this
motif, suggesting that because the data set is small (~60
experiments), biclustering is not always necessary here.
However, neither of these respective clusters were as com-
plete in their list of genes with the RpoN-binding motif as
was the cMonkey version (6 of 6 for the hierarchical clus-
tering cluster, and 12 of 19 for the k-means cluster, versus
14 of 15 for cMonkey). The similarity in function and

Motif logo for Bat-binding motif discovered in the bicluster of Figure 1 (top) compared to the saturation mutagenesis pat-tern observed for this regulator [12] (bottom)Figure 2
Motif logo for Bat-binding motif discovered in the bicluster of 
Figure 1 (top) compared to the saturation mutagenesis pat-
tern observed for this regulator [12] (bottom).

Table 1: Means of Pearson correlation coefficients of genes in bR 
or DMSO putative regulons (rows) with mean profile of genes in 
bR or DMSO operons (columns) over conditions within and 
outside the bicluster.

bR DMSO

bR in 0.951 0.866
DMSO in 0.833 0.967
bR out 0.838 0.475
DMSO out 0.442 0.837
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putative regulatory motifs for these two orthologous
biclusters points to the potential future use of algorithms
such as cMonkey for cross-species analyses of gene regula-
tion [46,85].

A novel putative ricin-like toxin in H. pylori
The integrated analysis of the full set of biclusters in the
context of additional biological knowledge (such as
detailed annotations for individual genes) can result in
biological insights into the combined roles of multiple
biological modules. Such an analysis requires the presen-
tation and integration of cMonkey biclusters with the vis-
ualization and exploration tools Cytoscape [78] and the
Gaggle [79] (see below for details). An illustrative example
in H. pylori involves a group of biclusters containing CAG
pathogenicity genes. It has been hypothesized that a drop

in pH may act as a signal to induce genes encoding several
virulence factors including CagA (Cag26), which upon
injection into target cells plays a role in the early events of
gastric colonization. A known promoter motif TTTTAA
[61,94] appears conserved upstream to several of these
pH-induced genes. Several biclusters were detected which
contain this motif and numerous pathogenicity island
genes, including cag8, cag12, and virB11, which encode
type IV secretion system proteins and flaA and flaB, which
encode key flagellin subunits [32]. Other processes repre-
sented in these biclusters include outer membrane bio-
genesis (omp5, omp9, omp29) and peptidoglycan
biosynthesis (murC, murF and murG)- which have all been
implicated as important for pathogenesis [81,95].
Through the analysis of these related biclusters and their
common motif, we identified a novel putative ricin-like

Halobacterium bicluster containing genes encoding the members of several transporter complexesFigure 3
Halobacterium bicluster containing genes encoding the members of several transporter complexes. While sirR was not included 
by CMONKEY in the bicluster, we have added it to the figure and highlighted its expression profile.
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toxin among the un-annotated H. pylori genes (HP1028)
[79].

Biclusters in S. cerevisiae
The algorithm detected many strongly significant biclus-
ters in S. cerevisiae, many of which with known or previ-
ously-observed cis-regulatory motifs, and combinations
thereof. Some examples of these are included in [Addi-
tional File 1]; all cMonkey-generated yeast biclusters may
be viewed and explored using Cytoscape and the Gaggle
[78,79] at our web site [4]. Histograms of the positions of
the detected motifs in the yeast upstream sequences show
a marked peak near -150 bp, which hints that many of the
motifs identified by cMonkey for S. cerevisiae are func-
tional, since the motifs are actually searched for in the first

500 bp upstream of each gene [see Additional File 1, Fig-
ure Twelve].

Validation and comparisons with available methods
Tracking the cMonkey optimization
By tracking the mean progression of all biclusters during
their optimization, we can quantify the degree to which
the biclusters improved with regard to each model com-
ponent (data type). Examples of such measures for Halo-
bacterium are shown in Fig. 6. The scores shown are mean
bicluster residual [98], the mean motif log-p-value [10],
and mean log p-values of mutual clustering coefficient in
certain association networks [37]. It is clear that most of
these measures greatly improve (i.e. decrease) throughout
the optimization, even though the procedure is not opti-

Flagellar biosynthesis bicluster from E. coliFigure 4
Flagellar biosynthesis bicluster from E. coli. Motifs #1 and 2 make up part of the σ70(RpoD)/FlhDC activator complex binding 
site for activation of Class-2 flagellar genes.
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mizing any of the "scores" that are plotted in Fig. 6; rather
it is optimizing a joint discriminative model that includes
terms which are related to these measures. We obtain sim-
ilar trends in cMonkey runs on all organisms [see Addi-
tional File 1, Figure Ten].

Testing the cMonkey model
Tests of data integration
We tested whether cMonkey is correctly optimizing the
joint model with respect to the different data types by var-
ying the weights which parameterize the influence of each
of those data types on the joint model (the default for
these mixing parameters is set such that the three major
data types have roughly equivalent influence). When we
down-weight the mixture parameter for a given data type
and thus eliminate its influence on the bicluster optimiza-
tion, as expected, we find that this down-weighted com-

ponent is poorly-optimized. At the same time, the
remaining components are almost always optimized bet-
ter. Thus each model component serves to regularize the
bicluster model, preventing the biclusters from being
over-fit to one or more individual subsets of the data. Not
surprisingly, we also find that when certain components
are up-weighted, they are better optimized, at the expense
of a somewhat diminished ability to optimize the remain-
ing components. [Additional File 1, Figure Fifteen] dis-
plays mean measures of bicluster quality (here, residual
against motif log-p-value) for these different cMonkey
runs with weights adjusted in this manner (here, on the S.
cerevisiae data). These tests show that our inclusion of the
three data types results in biclusters that simultaneously
satisfy our joint model better than biclusters supported by
subsets of the data types (model components). A similar
conclusion may be drawn from comparisons of these dif-

Flagellar-function H. pylori bicluster with known RpoN-binding motif (motif #1)Figure 5
Flagellar-function H. pylori bicluster with known RpoN-binding motif (motif #1).
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ferent cMonkey runs to "external" sources of evidence (see
below and [Additional File 1, Figures Sixteen and Eight-
een]).

Additional tests of the relationship between multiple data types and 
model components

By successively removing individual components of the
model, we can also characterize relationships that exist
between an individual data type and the others, that have
not been removed, by observing the degree to which the
optimization of the removed data type still improves. For
example, by turning off an individual network N (setting

 to zero), we can rank that network with respect to the

degree to which it improves (using the scores described
above) when the other components (co-expression,
motifs, and other networks) are optimized. For example,
we find that the operon associations and protein-DNA
interaction networks are well-optimized via the indirect
optimization of co-expression, while metabolic pathways
and phylogenetic profile associations show weaker, but
still significant, correlation to co-expression. Protein inter-
action networks and Rosetta Stone associations appear to
be the least-significantly correlated with co-expression,
possibly due to their higher false-positive rate. Carrying
out this type of analysis on-the-fly could allow us to itera-
tively update the weighting parameters as cMonkey opti-
mizes the biclusters (so-called "Pareto-front"
optimization [93]).

Randomization and shuffling tests
As an alternative to the difficult task of generating biolog-
ically realistic "synthetic" data, we chose to randomize the
data instead, in order to further assess the significance of
patterns discovered by cMonkey. If we completely shuffle
an individual data type, then we effectively eliminate any
signal that exists in that component but preserve any

influence that the noise component of that data type adds
to the procedure (possibly interfering with optimization
of other model components). The resulting effect is very
similar to strongly down-weighting that component of the
model, as described above. A more stringent test can be
performed by randomizing only the associations between
each gene's expression data, its sequence, and its location
in the association networks. This preserves the higher-
order structure of each data type, but scrambles the
mutual support each data type might present to the over-
all model. On data randomized in this manner, cMonkey
is unable to find biclusters that, on average, are as well-
optimized (in terms of the "scores" described above) as in
the original data. The significance of this result varies
depending upon the organism and the quality and
amount of data available; on the Halobacterium data, this
type of data shuffling results in average bicluster residuals
~20% higher, and average motif p-values ~1 log10-unit
higher than in the un-shuffled data. The algorithm does
not find significant association subnetworks in any of the
shuffled trial runs.

Comparison of cMonkey with other methods
In our assessment of cMonkey's performance, we com-
pared cMonkey-generated biclusters against those gener-
ated using the following algorithms: Cheng-Church (CC
[25]), Order Preserving Sub-matrix (OPSM [18]), Iterative
Signature (ISA [19]), xMOTIF [55], BIMAX [6], and
SAMBA [86]. We also compared our method to hierarchi-
cal clustering and k-means clustering [30] with k varying
between 10 and 300 (see Methods for details). In addi-
tion, we performed these analyses on cMonkey runs with
various model parameters up- and down-weighted, as
described above, to demonstrate the effect of including
various subsets of the cMonkey model components in the
comparisons. Additional details on the analysis are pro-
vided in the Methods section; supporting figures are
shown in [Additional File 1]. All bi/clusters generated by
the various algorithms are available for interactive explo-

qN
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Mean external measures of Halobacterium bicluster "quality", as a function of iteration of bicluster optimizationFigure 6
Mean external measures of Halobacterium bicluster "quality", as a function of iteration of bicluster optimization. Left: co-expres-
sion ("residual," [98]). Center: motif co-occurrence ("Motif log(p-value)"). Right: mutual clustering coefficient (log-p-value [37]) 
in four different association networks: operons, KEGG [48] metabolic pathways ("met" – see Methods), and Prolinks [23] asso-
ciations.
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ration via Cytoscape and the Gaggle [78,79] at our web site
[4].

Comparison in the context of regulatory network inference
A major motivation of this work is to provide a method
for deriving co-regulated groups of genes for use in subse-
quent regulatory network inference procedures. To do
this, we wish to find coherent groups of genes over those
conditions with a large amount of variation. In other
words, we are hoping to detect submatrices in the expres-
sion data matrix which are coherent and simultaneously
have high information content or overall variance. In
addition, we need to find biclusters with many condi-
tions/observations included, as this increases the signifi-
cance of each bicluster and also of the subsequently
inferred regulatory influences for that bicluster. Some rel-
evant summary statistics of the runs of various algorithms
on all four organisms are listed in [Additional File 1, Table
Two]. In general we see that cMonkey generates biclusters
with a significantly greater number of experiments than
the other methods. Even with this additional constraint
(i.e. including a greater number of experiments in the clus-
ters) and further constraints that cMonkey imposes with
the association- and motif- priors, the algorithm in gen-
eral generates biclusters with a "tighter" profile, as meas-
ured by mean bicluster residual [25]. Thus, we find that
biclusters generated by cMonkey are generally better-
suited for inference algorithms such as the Inferelator
[22], and potentially other linear or continuous models as
well. We tested this by running the Inferelator on biclus-
ters generated by SAMBA [86] for Halobacterium and then
comparing the predictive performance of the resultant
regulatory network models on newly-collected data, rela-
tive to those generated for cMonkey-generated biclusters
[22]. We found that, largely due to the smaller number of
experiments included in SAMBA biclusters, the inferred
network was significantly less able to predict new experi-
ments (an increase in the predictive error from 0.368 to
0.470; p-value of difference by t-test = 1.0 × 10-22).

Comparison against external measures
Defining an unbiased external measure of "success" of a
bi/clustering algorithm is a very difficult problem [30]. In
fact, even if a good, unbiased measure were to be found, a
comparison of different bi/clustering results in the context
of that measure is also not straightforward. We have
attempted to estimate various measures of success of dif-
ferent algorithms in various contexts, with regard to sensi-
tivity, selectivity, and two measures of coverage, in order
to provide the reader with a fair comparison of cMonkey
with other previously published methods. We define the
sensitivity of a bi/cluster set as the commonly-used fraction
of bi/clusters that are significantly enriched with genes
that (a) have the same functional annotation in GO [40]
or KEGG [48], or (b) contain a known cis-regulatory motif

[60], or (c) mimic groups of co-regulated genes, from
experiments such as ChlP-chip assays [39]. These meas-
ures are shown for S. cerevisiae [Additional File 1, Figure
Sixteen (A-D)] and for Halobacterium [Additional File 1,
Figure Eighteen (A-D)] for the different algorithms. Bi/
cluster specificity measures how well the bi/clusters segre-
gate genes along the same lines as the different Classes;
here, we use a measure of the fraction of genes in each sig-
nificantly-annotated bi/cluster that have the same signifi-
cantly-enriched annotation(s) found for that bi/cluster.
We use coverage to describe two distinct measures: (a) the
fraction of all observed genes and experimental condi-
tions in the data which are included in at least one bi/clus-
ter [Additional File 1, Table Two], and (b) the fraction of
all groups in a given Class that are significantly enriched
in at least one bi/cluster for S. cerevisiae [Additional File 1,
Figure Sixteen E] and for Halobacterium [Additional File 1,
Figure Eighteen E]. We should note that it is debatable
which of these metrics of bicluster quality represent the
best measures of "correctness" for a bi/clustering method.
For example, genes that modulate the protein and tran-
script levels of other proteins might have similar GO func-
tional categories (protein degradation, transcription
factor, regulation, etc.) but may be correctly partitioned
separately with the processes they individually regulate. It
is also important to note that all of these statistical meas-
ures of bi/cluster validity contain inherent flaws or biases
that correlate strongly with bi/cluster size, overlap degree,
and gene coverage. For example, OPSM generated 8
biclusters which excluded less than ~1/2 of all measured
genes from its clusters, yet it outperforms all other meth-
ods in the sensitivity measure. We have used the false dis-
covery rate (which is larger for bigger clusters) to correct
these p-values for multiple testing (see Methods), how-
ever, we still find a size bias in the corrected scores (which
is also seen in previously-written comparisons of biclus-
tering methods, e.g. [6]). In addition to GO and KEGG, we
assess bi/clusters against known cis-regulatory motifs
[39,60], and high-throughput protein-DNA interaction
sets [39]. We included the runs from various test parame-
terizations of cMonkey in the analysis (see above), so the
effect of the different input data sets could be seen. We
also divided each tested bicluster set into "BIG" and
"SMALL" halves, so that the size-related biases in this
measurement may be seen and accounted for in the com-
parisons (for example, the BIG half of cMonkey's bicluster
set have about the same mean number of genes per biclus-
ter as the SMALL half of SAMBA's bicluster set, which
therefore makes them more readily comparable [see Addi-
tional File 1, Figures Seventeen and Nineteen]).

In general, we find that cMonkey performs well in com-
parison to all other methods when the trade off between
sensitivity, specificity, and coverage is considered, particu-
larly in context of the other bulk characteristics (cluster
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size, residual, etc.). We find that SAMBA also performs
well when these measures are considered; however
because its biclusters contain on average 3 × more genes
than cMonkey's, and far fewer experiments (and therefore
SAMBA, like most other methods, cover less of the data
space), the direct comparison is difficult. cMonkey, as it
was designed to do, covers more of the data space (and
therefore more of the different Classes defined above) for
each organism, and it is therefore more suitable for our
regulatory network learning motivations. In particular,
while it includes far more experiments per cluster and
restricts its clusters to have significantly tighter co-expres-
sion, it still does comparably well when assessed against
the external measures due to its data integration. [Addi-
tional File 1, Figure Sixteen] shows, for example, that the
cMonkey runs carried out with the association networks
up-weighted, in particular, do partition the functional
classes better (and vice versa when they are turned down).
The final judgement is that because cMonkey biclusters do
a better job at regenerating the expression data than other
methods, and at least a comparable job at recapitulating
the external (as well as internal) measures of bicluster
quality, they are, overall, more parsimonious with, and
more generative of the patterns found in the available
data. Thus, cMonkey biclusters are arguably well-suited
for the inference of gene co-regulation and regulatory net-
works, in comparison to available bi/clustering methods.

Bicluster visualization
Because a population of biclusters will contain some over-
lapping elements which can confuse their interpretation,
it is important to present them to the biologist in a format
that promotes their interpretation and exploration in the
context of supporting information, cMonkey automati-
cally generates, for each bicluster, a "bicluster diagram"
(example in Figure 5), presents to the biologist the biclus-
ter's co-expression pattern, motif logos [74] and upstream
sequence locations (in this study, for as many as three
detected motifs), as well as the various functional associa-
tions among the bicluster's gene members. We have found
that a useful and intuitive visualization scheme for a pop-
ulation of overlapping and often redundant biclusters is
via an association network (Figure 7) of rectangular
bicluster nodes (whose sizes are proportional to their
gene/condition membership); analogous to "module net-
works" published in previous works. We visualize this
bicluster network using Cytoscape [78]. Each bicluster is
annotated with its gene and condition members, a meas-
ure of its co-expression, significant functional annotations
(GO [40], KEGG [48] and COG [89]), and significant
motifs. Edges are drawn between two biclusters if they
contain non-redundant genes which are connected indi-
vidually in any association networks. Connections are
also added between pairs of biclusters that have a large
amount of overlap in gene membership, motif similarity,

expression correlation, and/or functional annotation. A
spring-embedded layout algorithm [83] is used to spa-
tially organize the network, placing highly-connected
(and therefore related) biclusters spatially closer to each
other. As a result, groups of biclusters with common func-
tion(s), or which lie in adjacent biochemical pathways,
may be easily identified in the network, as shown in Fig-
ure 7. The integration of Cytoscape with the Gaggle [79]
automatically cross-references biclusters with their respec-
tive "bicluster diagrams", and enables searching and
browsing of additional biological information (such as
expression data submatrices, gene browsers, annotation
databases) or further analysis (e.g. via direct connection to
R) of a bicluster's gene members, greatly facilitating their
analysis.

Discussion and conclusion
The integration of clustering or biclustering of expression
data with additional information is a problem of growing
interest. The method presented here may be compared
favorably with several recently published clustering and
biclustering algorithms that have integrated different
types of data, including de novo detection of sequence
motifs [75], known sequence motifs [28,54], and various
types of association information [28,86,87]. We have (to
date) seen each of these other methods applied primarily
to yeast, which is unique in the quantity of data available
relative to the complexity of its genome. Many aspects of
our method are inspired by these works. cMonkey does
not require discretization of expression data, and is there-
fore capable of capturing patterns in low-level responses,
while still being robust to noise due to its integration of
different types of biological information. For example,
although the H. pylori and E. coli data was limited in size
and quality (with many expression experiments contain-
ing only one replicate, and many missing values), we were
able to detect several interesting biclusters with significant
putative (or known) motifs. In addition, cMonkey
includes a greater number of experiments in each bicluster
than other methods, while still obtaining a higher
amount of correlation among its gene members. Finally,
cMonkey is model-based and variables (such as the distri-
bution of bicluster sizes, and the distribution of overlap
between biclusters) are parameterized using simple statis-
tical distributions. Therefore, their adjustment is intuitive
and understandable, as well as robust to varying data size
and quality. In our experience, this is in contrast to other
biclustering algorithms, which often require tweaking of
p-value cutoffs, dimensionless variables, or thresholds,
which often result in unpredictable effects on the biclus-
ters' properties.

We believe that the ability for the cMonkey user to explic-
itly control the contribution of different data types
through their weights opens up many potential uses for
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Halobacterium bicluster network as visualized using Cytoscape [78]Figure 7
Halobacterium bicluster network as visualized using Cytoscape [78]. Biclusters are represented as rectangular nodes, colored 
based upon significant functional annotations [40]. Different colored edges represent different measures of cluster similarity or 
connectivity in various association networks (dark blue: KEGG [48] metabolic pathways; dark red: GO [40] functional similar-
ity; light blue: motif similarity; yellow: operon membership; light red: COG [89] functional similarity; green: gene membership). 
Highly-connected (and therefore functionally-related) biclusters are placed near each other in the layout. The selected (grey) 
bicluster group near the bottom contains bacteriorhodopsin-associated biclusters, including the one in Fig. 1. Note that these 
biclusters have not been filtered to remove redundancy.
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the algorithm beyond the basic identification of co-
expressed clusters of genes. This flexibility enables the
detection of biclusters which stress certain type(s) of bio-
logical information over others. Indeed, in many cases it
is still not known whether a certain type of pair-wise asso-
ciation between genes is actually correlated with co-
expression. Such "guilt-by-association" is often assumed,
e.g. between co-expression and functional categories [97],
but such conclusions can be controversial [11], as bioin-
formatics has "only codified a small proportion of the
biological knowledge required to understand microarray
data" [27] (obviously other types of associations, such as
operon [69] or cis-motif co-occurrence are more strongly
tied to co-expression). cMonkey users can easily choose to
generate tightly-co-expressed biclusters that are strongly
supported by evidence provided by one or more other
sources of information for their system of interest, and
they can do so by including them as highly-weighted com-
ponents of the bicluster model. For example, they could
(a) identify active or co-expressed signaling or regulatory
pathways or complexes, as in [45], by up-weighting pro-
tein interaction networks or metabolic networks; (b)
reconstruct metabolic pathways, by up-weighting the met-
abolic network and expression data, as in [50]; (c) attempt
putative de novo cis-regulatory motif detection in newly-
sequenced genomes (without expression data), by setting
the expression weight to zero; (d) assess the quality of
complete networks or individual edges in operon associa-
tions or protein-DNA interactions, as in [69], by up-
weighting these associations and the expression data.
Future improvements to the method could be made to
learn the appropriate weights for each data type, from the
data (rather than as input parameters), for example by
using an unconstrained multi-parametric logistic regres-
sion as briefly described in the Methods section, or by
adaptively constraining the weights such that no compo-
nent of the model over-regularizes with respect to the
other components (e.g. "Pareto-front" optimization [93]).

For sake of simplicity, flexibility and statistical transpar-
ency, we have used simple models for each of the individ-
ual data types and logistic regression to integrate them
into a joint model. However, this simplicity comes at the
expense of several trade-offs, which could be improved
upon. Whereas it may be more appropriate to treat some
associations as a property of sets rather than networks, we
have treated all the same. Certain types of associations
(such as protein-DNA networks and functional annota-
tion classes) could be treated differently. In addition, any
confidence values associated with individual edges in
some of the networks are currently ignored. While edge
weights could currently be included, for example, by
dividing the high and low confidence edges into separate
networks with different weights, it would be preferable to
more cleanly model such association evidence. Third, we

have reason to believe that our use of MEME for motif
detection may be increasing our sensitivity to noise. The
method could benefit from an assessment of different
algorithms for detecting motifs in conjunction with
biclustering, or the consensus of more than one method
can be integrated, as in [39]. Also, as we move to more
complex organisms, we find that multiple motifs cooper-
ate in their regulation function, with conserved patterns,
orientations, and upstream locations, such additional
motif correlation and positional information may be
exploited, with little modification to the current frame-
work, to increase the sensitivity and specificity of identi-
fied motif patterns, such as via meta-MEME, [38] or others
[20,68]. Also possible is the move toward the integrated
multi-species biclustering of expression data, merging the
multi-species clustering motivations of [83] with addi-
tional phylogenetic associations and motif detection (as
in [96]).

Because the goals of the development of cMonkey are
unique relative to previous biclustering methods (i.e. cou-
pled to a continuous regulatory network inference proce-
dure, such as the Inferelator [22]), the resulting biclusters
have unique characteristics when compared to many pre-
viously-published methods. We have shown that the pro-
cedure "works harder" to insure that a greater percentage
of genes that are observed in the data set are included in
at least one cluster, while reducing redundancy between
overlapping biclusters and maximizing the number of
experiments that are included in each bicluster. Because of
these characteristics, standard methods of assessment of
biological relevance of cMonkey-generated clusters (e.g.
by functional annotation over-representation) are far
from ideal, as they do not account for varying bicluster
sizes, redundancy, and coverage of the data. Choosing the
appropriate biclustering procedure for one's needs there-
fore involves finding a balance of these different bicluster-
set properties that returns the desired outcome. As was
written by Patrick D'haeseleer, [30] "There is no one-size-
fits-all solution to clustering, or even a consensus of what
a 'good' clustering should look like."

Methods
Materials and data
Expression data
Expression data for Halobacterium were collected by mem-
bers of the Baliga lab, containing genome-wide measure-
ments of mRNA expression in 292 conditions, as
described in full in [22] and references therein. Expression
data for H. pylori and S. cerevisiae were collected from the
Stanford Microarray Database [3]. Certain experiments
such as strain comparisons, genomic DNA, and RNA
decay experiments which are unlikely to relate to gene reg-
ulation were removed from the sets prior to analysis. This
filtering resulted in 58 of an original 250 conditions for H.
Page 13 of 22
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:280 http://www.biomedcentral.com/1471-2105/7/280
pylori and 667 of 1051 conditions for S. cerevisiae. Data for
E. coli was compiled from publicly-available data pro-
vided to us by E. A1m, including 86 conditions. As a pre-
processing step, genes were removed from the expression
data for which there was not significant (1.5-fold) expres-
sion in any of the experiments. The data were then row-
normalized (each gene's expression levels normalized to
mean = 0, SD = 1). No further pre-processing or filtering
of the microarray data was performed.

Association and metabolic networks
Genetic associations derived from comparative genomics,
such as phylogenetic profile, Rosetta Stone, gene neighbor
and gene cluster, were compiled from Prolinks [23] and
Predictome [62] for all organisms. These networks include
predicted operon "associations," which were also used to
identify "unique" regulatory sequences that are to be used
in the motif detection. Metabolic network reconstructions
from the Kyoto Encyclopedia of Genes and Genomes [48]
were represented as associations between two genes if they
participate in a reaction sharing one or more ligands, after
removing the most highly-connected ligands, such as
water and ATP [16].

Interaction networks
H. pylori protein-protein interactions were collected from
the global experiments of [70]. S. Cerevisiae protein-pro-
tein, protein-DNA, and genetic interactions were collected
from DIP [73] and BIND [9]. The protein-DNA interac-
tions were converted into a network of associations
between all pairs of genes whose upstream sequences
were found to bind to the same regulator(s).

Upstream sequences
Upstream sequences for all organisms were obtained from
GenBank using the Regulatory Sequence Analysis Tools
(RSAT [92]). Using these tools, we extracted 1000-bp cis-
regulatory sequences. For bacteria and archaea, these
sequences were shortened to 500 bp, and then "operon-
shifted" using the gene cluster (operon association) net-
works from Prolinks [23] and Predictome [62]. Upstream
sequences for genes in the same operon were converted to
"operon-shifted" sequences by using the (same) upstream
sequence of the first gene in the operon Similar "operon-
shifted" upstream sequences were identified using
BLASTN [8] using a 50 bp non-gapped alignment win-
dow, to avoid using multiple copies of the same sequence
in the motif detection.

Functional annotations for comparison tests
Gene ontology (GO) [40] annotations for each organism
were obtained from the European Bioinformatics Institute
[1] and matched to annotation names obtained from the
GO web site. KEGG annotations were downloaded from
their web site [2]. Predicted and experimentally-derived

DNA binding motifs were obtained for S. cerevisiae from
[39,60], and for E. coli from [71,72]. When these binding
motifs were provided as position weight matrices
(PWMs), they were converted into regular expressions, in
order to enable rapid scanning of upstream sequences.

The bicluster model
Model overview
Each bicluster is modeled via a Markov chain process, in
which the bicluster is iteratively optimized, and its state is
updated based upon conditional probability distributions
computed using the cluster's previous state. This enables
us to define probabilities that each gene or condition
belongs in the bicluster, conditioned upon the current state
of the bicluster, as opposed to requiring us to build a com-
plete (joint) model for the bicluster, a priori. The compo-
nents of this conditional probability are modeled
independently (one for each of the different types of
information which we are integrating) as p-values based
upon individual data likelihoods, which are then com-
bined into a regression model to derive the full condi-
tional probability. In this work, three major distinct data
types are used (gene expression, upstream sequences, and
association networks), and accordingly p-values for three
such model components are computed: the expression
component, the sequence component, and the network
component.

Each bicluster begins as a seed, or starting cluster, that is
iteratively optimized by adding/removing genes and con-
ditions to/from the cluster by sampling from the condi-
tional probability distribution using a Monte Carlo
procedure, to prevent premature convergence. Such an
iterative machine learning technique is akin to a Markov
chain Monte Carlo (MCMC) process. Additional clusters
are seeded and optimized until a given number (kmax) of
clusters have been generated, or significant optimization
is no longer possible. The complete process is shown sche-
matically in Fig. 8, and described in detail below.

In the following discussion, let i be an arbitrary gene and
j an arbitrary experimental condition. A bicluster k ∈ K is
fully defined by its set of genes Ik and experimental condi-
tions Jk. The membership ylk ∈ {0, 1} of an arbitrary gene
or condition l in bicluster k is an independent Bernoulli
indicator variable with conditional probability p(ylk = 1).

The expression component

The expression data is a set of measurements of genes i ∈
I over experiments j ∈ J, comprising a |I| × |J| matrix xij ∈

X. Each bicluster k defines a |Ik| × |Jk| submatrix xi'j' ∈ Xk:

i' ∈ Ik ⊂ I; j' ∈ Jk ⊂ J. The variance in the measured levels

of condition j is , whereσ j ij ji
x x2 1 2= −−

∈∑| | ( )I
I
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. We compute the mean expression level

of condition j over the cluster's genes Ik,

. Then, the likelihood of an arbitrary

measurement xij relative to this mean expression level is

which includes the term ε for an unknown systematic
error in condition j, here assumed to be the same for all j.
Note that the use of σj over all genes I rather than a σjk
computed over Ik results in a lower likelihood p(xij) for
those conditions j that have a small overall variance, and
are therefore more likely to be correlated by random
chance. Also, such low-variance conditions could be the
result of poor labeling, or other systematic problems.

The likelihood of the measurements of an arbitrary gene i
among the conditions in bicluster k are

, and similarly the likelihood of a

condition j's measurements are . We

integrate the two tails of the Normal distribution in Eq. 1
to derive co-expression p-values for each gene i, rik, and for

each condition j, rjk, relative to bicluster k.

Sequence component (motif co-occurrence)
Each gene i has an upstream cis-regulatory sequence Si (a
string of DNA nucleotides of length lS), and bicluster k
defines a set of sequences Sk for all Si'; i' ∈ Ik. The decision
whether an arbitrary gene's upstream sequence, Si, shares
common motif(s) with sequences Sk, is determined via a
two-step process: (1) identify one or more motif(s) Mk
that is (are) significantly overrepresented in many (if not
all) bicluster sequences Sk, and then (2) scan Si to see if it
also contains Mk.

In this work, we are not advancing the basic methodology
for motif detection (step 1), as relatively mature methods
exist for finding motifs given a fixed set of sequences [91].
Instead, we are describing an overall strategy that incorpo-
rates previously existing motif finding algorithm(s) into a
clustering procedure. As such, the procedure is motif-
detection-algorithm agnostic, and the search may be per-
formed using one of many existing methods [91]. Our
only requirements are that (a) significantly overrepre-
sented motifs do not have to exist in all sequences Sk, and
(b) it can produce a score (preferentially a p-value) that an
arbitrary sequence contains the detected motif(s). The
MEME algorithm [10], which identifies significant
sequence motifs using expectation maximization of one
or more probabilistic motif models given a fixed set of
sequences and a background residue model, is used to
perform step (1), as it meets the first criterion (a). MEME's
companion algorithm MAST [10], which computes the p-
value that an arbitrary sequence matches the set of motifs
detected with MEME, is used to perform step (2), as it
meets the second criterion (b). During the motif detection
step, for any genes in bicluster k which are in an operon,
we make sure to use only one copy of the upstream
sequence for that operon (i.e. upstream of the first gene in
that operon), as described above ("Upstream sequences").
Additional details on the specific parameters passed to
these procedures are provided in [Additional File 1, Table
Three].

Thus, using these two algorithms, we can detect a set of
motifs Mk in sequences Sk, and compute a p-value that a
sequence Si contains those motifs. Note that this p-value is
computed for each upstream sequence in the genome,
including those for the genes within cluster k, to derive the
motif p-values, sik, for each gene i relative to bicluster k, at
each iteration of the MCMC procedure.

x xj iji
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A schematic diagram of the CMONKEY biclustering proce-dureFigure 8
A schematic diagram of the CMONKEY biclustering proce-
dure. The inner (red) loop depicts the optimization for each 
newly-seeded bicluster.
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Association network component

To build up a highly-connected subnetwork among genes
that are in a bicluster (given a full set of associations), we
aim to add genes preferentially that have a greater number
of connections to those currently in the bicluster than one
would expect (at random) based upon the overall connec-
tivity in the network. Thus, we compute p-values for
observing the associations between a gene or experimen-
tal condition and the genes or conditions currently in

bicluster k, given an association network N ∈ N. In the fol-
lowing discussion, genes are the primary consideration,
but networks of associations between experimental condi-
tions are conceivable (e.g., we might wish to preferentially
group conditions that are part of the same time series).

The network association p-value, , is computed based

upon the number of edges in network N connecting gene
i to genes Ik in bicluster k, relative to the total number of

edges connected between i and the genes  (that are not

in cluster k), as well as the connections within and

between the gene sets Ik and . The hypergeometric dis-

tribution is used to compute the probability of observing
such an arrangement of connections by chance:

where A → B represents the set of associations between
the elements in gene set A with those in set B, and nA→B is

the number of these associations. Expression (2) is analo-
gous to the hypergeometric measure of mutual clustering
coefficient described by [37]. However, it does not
account for the global structure of the network; it is only
concerned with the local associations, i.e. those directly
connected to gene i and the bicluster's genes, Ik. This

choice of connectivity measure allows a single value to be
directly computed for each gene, relative to each cluster,
and gives greater preference to an individual gene i being
added to cluster k if a large fraction of i's associations are
with the other genes in the cluster (and vice versa), inde-
pendent of the global distribution of associations in the

network. Individual p-values, , for each gene i and

each network N are computed for bicluster k by integrat-
ing the lower tail of the distribution in Eq. 2.

The joint cluster membership probability
The ultimate goal is to decide gene or condition bicluster
membership jointly on the basis of the three individual
sets of p-values rik, sik, and qik computed above (for the
remainder of this discussion, we now use i to denote a
gene or experimental condition). A common procedure
for combining "scores" such as these into a single joint
likelihood is to perform a multi-parametric logistic regres-
sion [41] that treats each p-value measure as a random var-
iable and estimates the joint membership likelihood p(yik
= 1) using the logistic function,

This model approximates a (probabilistic) discriminating
hyperplane in the space defined by rik, sik, and qik, param-

eterized by the four independent variables β0 (the inter-

cept), and r0, s0, and q0 (the slope) that maximally

discriminates the genes or conditions within the bicluster

(Ik) from those outside ( ). Conceptually, the model

implies that a gene or condition that poorly matches the
bicluster based on one data type can still be added to the
bicluster if it matches well to the other data types, analo-
gous to, for example, the explicit "softening" of cluster
boundaries performed by [15]. Note that when element i
is an experimental condition, s0 (the motif parameter) is

zero.

In practice, during early iterations when the bicluster is
not well-discriminated from the background, such an
unconstrained regression leads to unstable situations such
as unwarranted over-weighting or inversion of one or
more variables (r0, s0, or q0). Additionally, depending
upon the quality of the data set(s) being used and the pre-
disposition (or prior knowledge) of the researcher, differ-
ent runs of the algorithm stressing different data types
may be desired. Finally, there is good reason to expect that
certain data types (e.g. sequence motifs) will be less
informative early in the procedure when the biclusters are
poorly-defined, and only later will it make sense to incor-
porate them into the bicluster model.

Therefore, we perform a constrained logistic regression by
transforming the regression space defined by rik, sik, and qik
into one dimension, projecting the log-p-values onto a
single vector, gik,

where r0, s0, and q0 are specified for each iteration accord-

ing to an "annealing schedule," described below. Here,
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each of the dimensions have been standardized to place
the log-p-values for each data set on the same scale, with

log( ik) = [log(χik ) - µk]/σk, where µk and σk are the mean

and standard deviation of the log-p-values log(χik) (χik

denotes either rik, sik, or qik), only over the genes or condi-

tions in the bicluster (i ∈ Ik). This is necessary because the

p-values for each component of our model were derived
for different types of data, each with widely differing sizes.
For example, the p-values are likely to be smaller (on aver-
age) for the component with the most data (here, the
expression data), or for motifs with larger lengths. The
projection described in Eq. 4 constrains the regression by
fixing the slope of the discriminating hyperplane (via

parameters r0, s0, and q0), with only the intercept β0 per-

mitted to vary from cluster to cluster. These parameters
may also be interpreted as mixing parameters that control
the fractional contribution of each model component to
the cluster likelihood, gik. They may be defined by the

user, and/or may be modified throughout the course of
cluster optimization. For example, early in the procedure
when the bicluster is a poorly-defined seed, co-expression
and certain association networks (e.g. operon associa-
tions, for bacteria and archaea) are extremely informative,
whereas a common cis-regulatory motif is less likely exist
among the genes in the bicluster. Only later (when the
bicluster has been optimized on the basis of expression
data and operon associations) does it make sense to incor-
porate sequence motifs into the bicluster model. There-
fore we employ a strategy for slowly varying the relative
contribution of each of the regression parameters, as the
cluster is optimized, as part of an annealing schedule
(described further, below). The constrained binomial
regression is now given by

πik ≡ p(yik = 1|Xk, Si, Mk, N) ∝ exp(β0 + β1gik),  (5)

where parameters β = [β0, β1] fully determine the condi-
tional probability of membership p(yik = 1) of a gene or
condition i in bicluster k.

One additional complication arises near the end of a
bicluster optimization, that a bicluster may be perfectly
discriminated from the background (resulting in an infi-
nite negative log-likelihood and undefined regression).
This may be addressed in two ways: the first is to constrain
or fix the slope β1 of the regression, allowing only the
intercept β0 to vary. We chose a second option, to perform
a penalized maximum likelihood estimation described by
[42] and originally proposed by [35]. This penalized esti-
mate of β provides bias reduction in the case of small sam-

ple sizes (small biclusters), and solves the separation
problem in the context of perfect discrimination and infi-
nite likelihood. β can be determined with this penalized
likelihood measure using an efficient iterative process
[35].

We now have a set of probabilities, πik, that each gene or
condition i is associated with bicluster k given the biclus-
ter's current state. We would now like to perform moves
(i.e. add or remove genes and conditions) that are most
likely to improve the likelihood of the bicluster based
upon the model. We do this by sampling moves from πik.
These probabilities may be further adjusted via additional
(prior) constraints on the model, as described below.

The cMonkey iterative procedure
Seeding the clusters
The Markov chain process by which a bicluster is opti-
mized requires "seeding" of the bicluster to start the pro-
cedure. We experimented with many data-driven methods
for generating seed biclusters, including (a) single-gene
seeds, (b) random or semi-correlated seeds using a pre-
specified distribution of cluster sizes, and (c) seeding on
the basis of co-expressed edges in association networks
(for example, operon associations). In principle, any seed-
ing method may be used, including the clusters produced
by other clustering or biclustering methods. Many different
seeding methods are used in order to broaden the param-
eter space which is searched, and depending upon the
annealing schedule used, the algorithm can be made
more- or less-sensitive to the selected starting points. As
biclusters are optimized sequentially, in order to maxi-
mize our coverage of the overall (gene) search space, they
are seeded only with genes that have not previously been
placed into any other biclusters. It should be noted, how-
ever, that during subsequent iterations, genes that are
already in other biclusters can still be added to new biclus-
ters, with additional constraints that are described later.

Each bicluster is seeded using a random choice from one
of a variety of methods, each of which utilizes one or more
different types of input data. For each newly-seeded
bicluster, I' be the set of genes that are currently not in any
other biclusters, i is a randomly-chosen gene from I' and
Ji is the set of conditions in which i has the highest
amount of variance. The seeding methods available are:

1. A single random gene: The cluster is seeded with i and Ji.
For the first few iterations of this bicluster's optimization,
only gene additions are allowed (forcing the bicluster to
grow in size, early on).

3. n co-expressed genes from another clustering method: Clus-
ters are generated using an other clustering or biclustering

χ
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method, and these are used as seeds for further optimiza-
tion.

2. n semi-co-expressed genes: Up to n - 1 additional genes
from I' are randomly chosen from those with a high Pear-
son correlation (Pc > 0.8) with i in conditions Ji. n is cho-
sen randomly from a set of pre-defined cluster seeding
sizes, currently 2, 5, 10, 20, µ, where µ, is described Meth-
ods.

4. n highly-connected genes: Up to n - 1 random genes from
I' are added from those with Pc > 0 with i, and are first
neighbors with i in a given association network, n is cho-
sen as in (2); the association network is chosen randomly
from the following (if available for that organism): oper-
ons, metabolic assoc., protein-DNA interactions, protein-
protein interactions.

5. n genes with a common motif: Up to n - 1 genes from I' are
randomly chosen from those with Pc > 0 with i, and also
have a common d-mer with i in their upstream sequences,
allowing for up to l residue differences, n is chosen as in
(2); defaults of d = 9 and l = 1 were used.

Annealing the clusters
A newly-seeded bicluster k is iteratively improved with
respect to the joint likelihood derived above. At each iter-
ation, significant motifs are detected (using MEME), and
the joint membership probabilities πik for each gene or
condition i are computed. We then perform moves using
Simulated Annealing (SA) [51], to preferentially add
genes or conditions i to bicluster k if they have a high
probability of membership (yik = 0 and πik ≈ 1), and to
drop genes or conditions from that bicluster if they have a
low probability of membership (yik = 1 and πik ≈ 0). Moves
which may decrease the likelihood of the cluster model
are permitted, with a frequency that decreases during the
course of the procedure, as parameterized by an annealing
temperature T:

All moves are performed by sampling them from the
probability in Eq. 6. This Simulated Annealing procedure
is dampened by restricting the total number of gene/con-
dition moves at each iteration to nmax = 5, in order to
reduce the chance that a bicluster will change drastically
before its model is reevaluated. We find that Simulated
Annealing, while not the most efficient search strategy
available, improves upon greedy search strategies such as
Expectation Maximization, by being able to escape local
minima and therefore being able to more completely
assign genes and conditions to clusters as appropriate
[24]. Other stochastic or greedy search strategies may be
applicable to solving this model, for example if speed is

deemed to be a more important consideration than com-
pleteness of the solution.

Additional model constraints: bicluster size and overlap
The search space for this problem is often dominated by
very strong attractors and if we do not restrict the gene/
condition move set, biclusters are likely to repeatedly
descend into the same set of deep local minima (thereby
increasing the bicluster overlap, or redundancy). This is an
issue seen in many biclustering algorithms, and a com-
monly-practiced ad hoc remedy is to post-filter the biclus-
ter set to remove redundant ones. We choose a more
straightforward, easily-parameterized solution: to con-
strain the total number of biclusters zi into which each
gene i may fall (and in effect to reduce the amount of
"gene overlap" of the final bicluster set), zi is modeled as
a Poisson process with cumulative distribution Fv(zi)
(where v is the expected number of biclusters per gene).
Then the probability of adding or dropping i to/from
bicluster k, p(add|πik) and p(drop|πik) (Eq. 6), is multi-
plied with this prior probability of observing the gene in
that many biclusters (relative to the expected number):

Thus the solution is constrained to what seems to be a
more biologically intuitive model: include each gene in an
average of v = 2 (the default) clusters. This constraint
results in an increased tendency to drop a gene from a
bicluster if it is already in more than two biclusters, and a
decreased tendency to drop the gene if it is in less than two
biclusters.

Bicluster sizes can also vary widely between biclustering
methods; some generate biclusters with only three genes
on average [6], to single biclusters with nearly 3/4 of all
genes in the data [18]. We constrain bicluster k's final size
(number of genes, |Ik|), using a cumulative Normal distri-
bution N(|Ik|, µ, σ) as a prior constraint on |Ik|. This con-
ditional distribution is applied by further adjusting the
relative ratios of the distributions (Eq. 6) from which the
gene moves are sampled:

The result is that if |Ik| <µ, the number of genes sampled
to add to the bicluster will tend to be greater than the
number sampled to drop, and vice versa if |Ik| > µ. We
parameterize our prior expectation of bicluster sizes using
µ = σ = 30, to match previous estimates of regulon sizes
for well-studied organisms (e.g. Alkema, Lenhard, and
Wasserman, 2004). This amounts to a soft constraint,

p e p eik
T

ik
Tik ik( | ) ; ( | ) ./ ( )/add dropπ ππ π= = ( )− − −1 6

′ =

′ = −

−p F z F v e

p F z

ik v i v
T

ik v i

ik( | ) ( )/ ( ) ;

( | ) [ ( )]/[

/add

drop

π

π

π

1 1−−
( )

− −F v ev
Tik( )] .( )/1

7
π

′

′
≡

−
∈

∈

∑
∑

p

p

N

N

iki

iki

k

k

k

k

( | )

( | )

(| |, , )

[ (| |, ,

’ drop

add
I

π

π
µ σ

µ
I I

I1 σσ)]
. 8( )
Page 18 of 22
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:280 http://www.biomedcentral.com/1471-2105/7/280
which still allows for considerable variation in final
bicluster sizes. A similar constraint may be applied to the
biclusters' experiment sizes, which enables the generation
of biclusters with a larger number of experiments (on
average) than are typically included in biclusters derived
by other methods (e.g. [19,86]).

The annealing schedule
To enforce convergence we schedule the annealing tem-
perature T to slowly decrease during the procedure, as in
standard simulated annealing procedures. We find that
varying T linearly from 0.15 to 0.05 over 100–150 optimi-
zation steps is generally effective for all organisms for
which biclustering was performed. As was described pre-
viously, there are reasons to vary (in addition to T) the
three model mixture constraint parameters, r0, s0, and q0
with each iteration. We have found that the most effective
schedule up-weights the expression (r0) and certain asso-
ciation networks (q0; e.g. operons and metabolic net-
works) early in a run to build up co-expressed biclusters,
and then slowly increases the influence of the sequence
motifs (s0) as the biclusters become better-defined (Fig.
9). For similar reasons, additional parameters, such as the
number of motifs searched for, can also vary (i.e. increase
or decrease monotonically) with iteration. Details on the
default cMonkey parameters used for this work are listed
in [Additional File 1, Table Three].

Implementation
cMonkey is implemented in the R statistical programming
language [5], a highly-flexible cross-platform language
widely used in the statistical community. It has been par-
allelized, using PVM [84] as implemented in the Simpli-
fied Network Of Workstations (snow) R library, and runs
efficiently on a multi-node Linux cluster; it can be run on
a single-processor desktop computer as well. On a typical
single-2 GHz processor, the algorithm can generate ~100
biclusters in between 12 and 48 hours, depending on the
organism, data size, and motif detection parameters cho-
sen. All parameters relevant to the biclustering procedure
that have not been described in the main text are listed in
[Additional File 1, Table Three].

Comparison with other biclustering and clustering 
methods
The different bi/clustering algorithms used for the com-
parative analysis included: Cheng-Church [25], Order
Preserving Submatrix (OPSM [18]), Iterative Signature
(ISA [19]), xMOTIF [55], and BIMAX [6] (all of these algo-
rithms were run using the BICAT implementation [17]),
SAMBA [86] (as implemented by the authors as part of
EXPANDER [77]), and both hierarchical clustering and k-
means clustering [30] with cluster number (k) ranging
from 10 to 300 (implemented in R). None of these meth-
ods utilize data integration, and all were run on the same

data sets as cMonkey. All biclustering procedures were run
using their default parameters and data normalization/
discretization schemes (while the effects of varying the
parameters for each of these methods would be a worth-
while study, it is beyond the scope of this work). The anal-
ysis was performed on the Gasch [36] subset of the S.
cerevisiae data containing measurements of 2993 genes
over 173 stress-related conditions. S. cerevisiae was chosen
for these comparisons because of the high-quality data
and varied external "references" available for this organ-
ism, against which clusters could be compared. In all cases
where p-values for judging annotation over-representa-
tion are listed, they were computed following a procedure
similar to [21]; namely, cumulative hypergeometric p-val-
ues were corrected for multiple hypothesis testing in an
experiment-wise manner for each cluster, by computing the
fraction of uncorrected p-values derived for 1000 rand-
omized instances of the cluster (the null model) that were
less than or equal to the best p-value obtained for that
cluster. To assess the effect of various biases caused by
inclusion of different parts of the cMonkey model, we per-
formed these same analyses on cMonkey runs with vari-
ous model parameters up- and down-weighted, as
described in the Results section. In all cases where we
compared the motif-detection results of specific biclusters
(in the Results section), we used MEME and MAST [10]
(with the same parameters as for cMonkey) to search for
motifs de novo in the upstream sequences of the clusters'
genes.

Each different biclustering algorithm returned bicluster
sets with wide differences in cluster count, cluster size
(genes and experiments), amount of overlap/redundancy,
expression coherence, and other general characteristics

Example annealing schedule applied to the three CMONKEY model component weights (r0, p0, and q0) and annealing tem-perature T, during a bicluster optimization, as a function of iterationFigure 9
Example annealing schedule applied to the three CMONKEY 
model component weights (r0, p0, and q0) and annealing tem-
perature T, during a bicluster optimization, as a function of 
iteration.
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only related to their treatment of the expression data. We
therefore computed "bulk" measurements for each biclus-
ter set, such as those listed in [Additional File 1, Table
Two]. One of these, f, is defined as the total fraction of ele-
ments in the expression data matrix X which fall in at least
one bicluster. A measurement that quantifies the degree to
which each complete bicluster set recapitulates the vari-
ance in X is defined as follows:

where, as above,  is the mean expres-

sion profile of bicluster k, and nij = ∑ki ∈ Ik ∧ j ∈ Jk is the

number of biclusters containing element xij. This measure

is dependent upon the fractional coverage f of the expres-
sion data matrix by the bicluster set (better coverage will
generally lead to better RMSD) as well as the average
bicluster residual (better residual leads to better RMSD),
but is nearly independent of bicluster redundancy. It
therefore is a good measure of the tradeoff that each bi/
clustering method chooses between data coverage and
bicluster co-expression. Because the expression data set
has been variance-normalized (see Methods), RMSD
ranges between 0–1, where a smaller RMSD implies that
the mean expression profiles of the biclusters more accu-
rately "generate" the original data matrix X.

In an attempt to remove some overlap and size bias related
to these quality measurements (see Discussion), we also
performed tests on a "filtered" set of biclusters, in which
we greedily identified the largest 100 clusters with a vol-
ume-overlap (genes × conditions) of < 0.5 [6], excluding
any with > 200 genes. For methods such as cMonkey, this
filtering step removes a large number of non-redundant
(but smaller) clusters, while for other methods (e.g.
OPSM), it removes a large fraction of derived clusters and
for others (such as SAMBA) it has little effect. Finally, in a
further attempt to disentangle the cluster size bias inher-
ent in these comparisons, we performed the same analy-
ses on a set of evenly divided cluster sets ("big" and
"small" halves; results shown in [Additional File 1]).
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