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Vascular alterations emerge as a common denominator for several neurodegenerative
diseases. In Parkinson’s disease (PD), a number of observations have been made
suggesting that the occurrence of vascular pathology is an important pathophysiological
aspect of the disease. Specifically, pathological activation of pericytes, blood-brain
barrier (BBB) disruption, pathological angiogenesis and vascular regression have been
reported. This review summarizes the current evidence for the different vascular
alterations in patients with PD and in animal models of PD. We suggest a possible
sequence of vascular pathology in PD ranging from early pericyte activation and BBB
leakage to an attempt for compensatory angiogenesis and finally vascular rarefication.
We highlight different pathogenetic mechanisms that play a role in these vascular
alterations including perivascular inflammation and concomitant metabolic disease.
Awareness of the contribution of vascular events to the pathogenesis of PD may allow
the identification of targets to modulate those mechanisms. In particular the BBB has
for decades only been viewed as an obstacle for drug delivery, however, preservation of
its integrity and/or modulation of the signaling at this interface between the blood and
the brain may prove to be a new avenue to take in order to develop disease-modifying
strategies for neurodegenerative disorders.
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BRAIN VASCULATURE

The brain is a highly oxygen consuming organ and, as a result, has developed a dense network of
almost 650 km of microvessels (Pandey et al., 2016). The smallest entity is formed by capillaries
that are in close contact with the surrounding parenchyma and allow the gas exchange. This close
connection between blood and brain is termed the neurovascular unit (NVU). The NVU consists
of endothelial cells, pericytes and the basal lamina forming the microcapillary wall, and cells
in the immediate surrounding brain parenchyma including perivascular astrocytes, perivascular
microglia and neurons.

Blood Vessels as Adaptors of Blood Flow
Capillaries of the brain are non-fenestrated vessels regulating the influx of nutrients and oxygen
according to the changing demands of the brain (Iadecola, 2017).

The adaption to the brains requirements occurs by neurovascular coupling, matching the
local blood supply to the neuronal demand by adjustment of the vascular intraluminal diameter
(Carmignoto and Gomez-Gonzalo, 2010). Preservation of the highly balanced homeostasis of the
brain’s microenvironment, however, is guaranteed by the BBB.
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Blood Vessels as Gate Keepers at the
Blood-Brain Barrier
The BBB is formed by endothelial cells that require close contact
with pericytes in order to form tight junctions, by the basal
lamina and by astrocytic endfeet (Zhao et al., 2015). The integrity
of the BBB is absolutely vital for normal neuronal function.
A leaky BBB enables the uncontrolled entry of pathogens, toxins
and inflammatory cells into the brain and leads to inflammatory
and immune responses. BBB leakage, whether subtle or severe,
ultimately leads to neuronal injury, neurodegeneration and
accelerates disease progression (Bell et al., 2010; Sweeney et al.,
2018a).

Blood Vessels as Communicators of
Signals
As brain capillaries form the contact surface between the blood
and the brain, cells at this interface are also the first sensors
of systemic changes such as metabolic imbalances, systemic
inflammation, circulating pathogens, changes in oxygen tension
etc. In particular brain pericytes have been identified as first
responders to systemic inflammation mediating signals from
the blood onto the neighboring parenchyma cells (Duan et al.,
2018). Vascular pathology and changes in cell signaling at and
across the BBB may be the interface linking systemic risk factors
(e.g., diabetes or chronic inflammation) to neuroinflammation
and neurodegeneration (see section “Metabolic Disorders and
Vascular Changes in Parkinson’s Disease”).

VASCULAR CHANGES IN PARKINSON’S
DISEASE

Blood vessel alterations, BBB disruption and cerebral blood
flow abnormalities are a common denominator of several
neurodegenerative disorders and have been described in
Alzheimer’s disease (Sweeney et al., 2018b), amyotrophic lateral
sclerosis (Zhong et al., 2008; Garbuzova-Davis and Sanberg, 2014;
Winkler et al., 2014), Huntington’s disease (Padel et al., 2018) and
Parkinson’s disease (PD). There is a growing appreciation that
vascular alterations can contribute to disease onset and aggravate
the neurodegenerative process as some vascular changes already
occur before the onset of neuronal loss or behavioral deficits
in animal models of the respective disease (Sagare et al., 2013;
Winkler et al., 2014; Padel et al., 2016; Elabi O. et al., 2021).

Here we particularly outline the different histological vascular
changes reported in patients with PD and summarize the
evidence for vascular alterations from animal models of PD. This
minireview does not cover the role of hypoperfusion or white
matter lesions in the pathogenesis of PD.

Parkinson’s Disease
Parkinson’s disease (PD) is the second most common
neurodegenerative disorder and one of the fastest growing
neurological diseases. In 2015, PD affected 6.9 Million people
worldwide, a number expected to double by 2040 due to the
aging population (Dorsey and Bloem, 2018).

The progressive degeneration of the nigrostriatal system gives
rise to the typical clinical symptoms rigidity, bradykinesia and
resting tremor (Fearnley and Lees, 1991). In PD, dopaminergic
neurons in the substantia nigra pars compacta (SNpc) are
degenerating and the histopathological hallmark is the formation
of Lewy bodies containing aggregated alpha-synuclein (α-syn)
(Spillantini et al., 1997). Although PD is associated with
these distinct histological changes, concomitant pathological
alterations might sustain or aggravate the neuronal degeneration.
This is particularly relevant as there is currently no therapy
available that intervenes with the ongoing disease process. In this
context, any contributor to the disease is important to elicit.

The Microvascular Environment in
Parkinson’s Disease
Almost 90 years ago, it was described that the capillary network
in the SNpc is considerably denser than in the adjacent
SN zona reticulata (Finley, 1936). Under normal conditions,
a distinct tight pattern of neuron-capillary associations is
observed in the SNpc. However, in PD, these close contacts
between dopaminergic neurons and microvessels are lost leaving
an “empty space” (Issidorides, 1971). Based on these early
observations it was postulated that modifications of the vascular
microenvironment of dopaminergic neurons may alter the
availability of nutrients or lead to accumulation of toxic
compounds in the immediate vicinity of these cells. Later,
vascular alterations in PD were described more in detail
ranging from signs of angiogenesis to BBB leakage and vascular
regression (Figure 1).

Evidence for Angiogenesis in
Parkinson’s Disease
Angiogenesis refers to the formation of new blood vessels in
adulthood. In the adult brain it usually occurs in response
to hypoxia or inflammation (Tahergorabi and Khazaei, 2012).
Angiogenesis can be recognized by an increase in vascular density
and branching points, proliferation of vascular cells, expression of
angiogenic markers or an increase in angiogenic molecules in the
brain or cerebrospinal fluid (CSF).

Angiogenic Microvessels in Parkinson’s Disease
First evidence for pathological angiogenesis in PD comes from
studies in the 90’s observing a 2.5-fold increase in the number
of endothelial cells in PD brains (Faucheux et al., 1999) and an
increased number of integrin αvβ3-positive vessels, an adhesion
molecule that is present on angiogenic vessels (Brooks, 1996) in
the SNpc, the locus coeruleus and the putamen, all regions which
are affected in PD (Desai Bradaric et al., 2012).

Similar findings reporting angiogenesis in several brain
regions were made in the 6-hydroxydopamine (6-OHDA) PD
model in rats (Carvey et al., 2005) and mice (Elabi O. F. et al.,
2021), in an experimental model of L-DOPA-induced dyskinesias
(Westin et al., 2006) and in the 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) monkey model (Barcia et al., 2005).

Even though toxin-induced models are useful to study several
aspects of PD, they do not reflect the slowly progressive nature
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FIGURE 1 | Illustration of vascular changes observed in post mortem tissue and preclinical models of PD. (A) Simplified diagram illustrating the main vascular
alterations in non-chronological order including (1) angiogenesis, (2) pericyte activation, (3) BBB leakage, and (4) vascular regression. (B) Cross-sectional diagram of
the NVU during the angiogenic response. (C) Cross-sectional diagram of string vessel showing the collapsed basement membrane labeled with collagen-IV and
absence of endothelial cells during vascular regression stage. The process of vascular regression includes loss of pericytes and signaling between pericytes and
endothelial cells, causing destabilization of endothelial cells and endothelial cell death. NG2, neuron-glial antigen 2.

of PD pathology. Using a human α-syn overexpression mouse
model that recapitulates the progressive aggregation of human
α-syn (Hansen et al., 2013), we confirmed an increase in
vessel density indicating angiogenesis at the moderate stage of
the animal model. In late-stage animals, however, the vessel
density was significantly reduced suggesting dynamic and stage-
dependent vascular changes in PD (Elabi O. et al., 2021).

Pathological Pericyte Activation
Interestingly, at the early stage of α-syn-aggregation, we
observed an activation of pericytes that was preceding changes
in vessel density and behavioral deficits (Elabi O. et al.,
2021). Pericytes line the entire microvasculature of the brain
and have an important function in angiogenesis (Stapor
et al., 2014). Activation of pericytes leads to changes in
morphology and marker expression. Capillary pericytes generally
have a flat cell soma with extensive longitudinal and thin
processes (Dore-Duffy and Cleary, 2011). However, under
pathological conditions, pericytes acquire a more bulging
cell soma with shorter processes, typical of activated and
migratory pericytes (Dore-Duffy and Cleary, 2011; Ozen et al.,
2014). This pattern is predominantly seen following injury and
during the early stages of angiogenesis and often associated
with expression of markers such as NG2 and/or RGS5
(Ozerdem and Stallcup, 2004; Berger et al., 2005). Angiogenesis
requires first pericyte detachment from the vessel wall, allowing
endothelial sprouting and then subsequent pericyte recruitment
for stabilization and maturation of the vasculature (Kamouchi

et al., 2012). We have previously shown that pericytes are
activated in the 6-OHDA PD model (Padel et al., 2016), and
that pathological pericyte activation is a feature of also other
neurodegenerative disorders (Padel et al., 2018).

Pericytes are one of the first responders to brain hypoxia
(Gonul et al., 2002; Duz et al., 2007) and to systemic
inflammation (Duan et al., 2018). Importantly, pericytes alter
their signaling toward a pro-inflammatory secretome when
activated (Rustenhoven et al., 2017; Gaceb and Paul, 2018; Gaceb
et al., 2018). Interestingly, a direct observation that α-syn can
activate pericytes comes from an in vitro study where exposure
to monomeric α-syn leads to secretion of high amounts of
pro-inflammatory molecules in pericytes that in turn mediated
hyperpermeability in endothelial cells resulting in BBB leakage
(Dohgu et al., 2019).

Thus, it is conceivable that pericyte activation may form the
starting point of vascular alterations and a cascade of pathological
signaling events in the NVU in PD.

Angiogenic Molecules
Findings indicating angiogenesis in PD are supported by
reports showing an upregulation of the pro-angiogenic molecule
Vascular Endothelial Growth Factor (VEGF) in the SNpc of PD
patients (Wada et al., 2006; Yasuda et al., 2007; Lan et al., 2021)
and non-human primates (Barcia et al., 2005). Increased levels
of soluble VEGF receptor-2 and placental growth factor, and
lower levels of angiopoietin 2 (an anti-angiogenic molecule) were
detected in the CSF of PD patients (Janelidze et al., 2015). In
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this study, angiogenesis markers in the CSF were associated with
microbleeds and white matter lesions on imaging, suggesting
abnormal angiogenesis in PD (Janelidze et al., 2015). Further
strengthening these findings, a recent study demonstrated CSF
changes in miRNAs regulating pathways of angiogenesis and
BBB components in PD patients with moderate disease, implying
impairment of these pathways as part of the progression of PD
(Fowler et al., 2021).

Blood-Brain Barrier Dysfunction in
Parkinson’s Disease
Blood-Brain Barrier Dysfunction in Parkinson’s
Disease Animal Models
Angiogenesis is a double-edged sword as newly formed vessels are
immature and can lead to BBB leakage, especially when pericyte
recruitment is impaired.

Indeed, a dysfunctional BBB has been demonstrated in a
number of different PD models showing leakage of albumin and
other tracers into the brain parenchyma (Carvey et al., 2005, 2009;
Westin et al., 2006; Zhao et al., 2007; Chen et al., 2008), increased
entry of drugs (Carta et al., 2006; Westin et al., 2006) and
infiltration of peripheral immune cells otherwise are prevented
from crossing the BBB (Benner et al., 2008; Brochard et al., 2009;
Reynolds et al., 2010). Few studies have not been able to confirm
BBB leakage, likely due to the methods used (Astradsson et al.,
2009; Elabi O. F. et al., 2021).

A study using the A53T PD mouse model showed that
the expression of tight junction-related proteins at the BBB
decreased leading to increased vascular permeability (Lan et al.,
2021). When we examined the temporal dynamics of BBB
leakage in another progressive α-syn-PD mouse model (Elabi
O. et al., 2021), we detected significant extravascular fibrinogen
accumulation already at the early stage preceding behavioral
deficits (Elabi O. et al., 2021).

Blood-Brain Barrier Dysfunction in Parkinson’s
Disease Post Mortem Tissue
The evidence of an impaired BBB in PD from animal models
is validated by compelling post mortem studies in PD using
a variety of different methods. Gray and Woulfe (2015) found
a sevenfold increase in extravasated erythrocytes, a threefold
increase in hemosiderin depositions (often grouped around
capillaries), a significant perivascular deposition of hemoglobin
(8.6-fold increase) and a 9.4-fold increase in extrasudated
fibrinogen in the striatum of PD patients compared to controls.
Greater fibrinogen accumulation (Yang et al., 2015), higher IgG
leakage and loss of tight junction proteins (Pienaar et al., 2015)
were also reported in other autopsy studies.

Similarly, a 10-fold increase of extravascular CD4+ and CD8+
lymphocytes has been shown particularly in the SNpc in post
mortem PD brain tissue (Brochard et al., 2009) demonstrating
pathological immune cell infiltration across the BBB.

Blood-Brain Barrier Dysfunction Examined in the
Cerebrospinal Fluid
In line with post mortem findings, CSF studies have shown
BBB leakage as indicated by increased levels of CSF albumin

in PD correlating with the severity of the disease (Pisani et al.,
2012), or with the level of angiogenic factors in the CSF
(Janelidze et al., 2015).

Blood-Brain Barrier Dysfunction Using
in vivo-Imaging
Blood-brain barrier dysfunction in PD patients in vivo is more
difficult to study. Using positron-emission tomography (PET),
progressive BBB impairment has been shown in the midbrain
of PD patients as seen by an increased uptake of the tracer
11C-verapamil indicating impairment of the BBB efflux pump
P-glycoprotein (Kortekaas et al., 2005; Bartels et al., 2008)
and analysis of dynamic contrast-enhanced magnetic resonance
images revealed higher BBB leakage in PD patients (Al-Bachari
et al., 2020), whereas a study using rubidium-82-PET could not
detect BBB leakage in PD patients (Fujita et al., 2021).

Vascular Regression
Angiogenesis and BBB leakage are not the only vascular
pathology that has been observed in PD. Signs indicating vascular
regression come from reports showing endothelial degeneration,
decrease in vessel length and number of branching points and
increase in vessel diameter in the SN of PD patients compared
to age-matched controls (Guan et al., 2013; Yang et al., 2015).
In addition, PD patients had higher numbers, density and
total length of “string vessels” when compared to controls
(Yang et al., 2015). String vessels are linked to endothelial cell
degeneration leaving empty collapsed basal membrane tubes
that do not take part in perfusion (Brown, 2010). Using
electron microscopy, Farkas et al. (2000) also demonstrated basal
membrane thickening in cerebral capillaries in PD.

Vascular regression likely indicates a later stage of vascular
pathology in PD. When studying the temporal dynamics of
vascular changes, we noted that early pericyte activation and
BBB leakage were followed by angiogenesis, whereas vascular
rarefication did not occur until the late stage of the PD
model (Elabi O. et al., 2021). Thus, the microvasculature in
PD might undergo both, an angiogenic and pruning vascular
response, whereby occurrence of BBB leakage could be an early
event, followed by the attempt for neovascularization at the
moderate stage of the disease and vascular degeneration as a
sign of late-stage disease. In the α-syn-PD mouse model we
observed colocalization of α-syn and phosphorylated α-syn with
endothelial cells at all stages, which suggests a direct involvement
of α-syn in the vascular pathological mechanism in addition to a
pathological stimulation of pericytes (Elabi O. et al., 2021).

Inflammation and Vascular Pathology
Microglia
In PD, neuroinflammation is a well-known pathology as
documented by increased numbers of activated microglia in
PD brains (Mcgeer et al., 1988; Croisier et al., 2005; Zhang
et al., 2005; Whitton, 2007; McGeer and McGeer, 2008) and
increased levels of pro-inflammatory molecules in the CSF of PD
(Blum-Degen et al., 1995).

Several studies demonstrating an increased activation of
microglia also reported BBB disruption in these PD models
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(Carvey et al., 2005; Zhao et al., 2007; Elabi O. et al., 2021). The
interactions between microglia and blood vessels are complex:
Microglia are likely activated by the parenchymal leakage of
plasma proteins (Merlini et al., 2019), on the other hand,
activated microglia may also induce angiogenesis and vascular
leakage via the release of inflammatory and pro-angiogenic
molecules (Naldini and Carraro, 2005; Ritzel et al., 2015; Haddick
et al., 2017; Salter and Stevens, 2017; Chen et al., 2019). The
proinflammatory cytokines cause a reduction in the expression
of tight junction proteins and increase matrix metalloproteinase-
3 and −9, which affect the BBB integrity (Raymond et al., 2016;
Bonetti et al., 2019; Edwards et al., 2020).

Recently, we have observed that activated microglia are highly
localized particularly in the perivascular space in PD (Elabi O. F.
et al., 2021). It has been suggested that perivascular microglia
have a dual effect on vessels, maintaining vascular integrity under
normal conditions, but phagocytosing the vessel and impairing
BBB integrity under prolonged inflammation (Haruwaka et al.,
2019). The reason for this increase in activated perivascular
microglia in PD is not known, however, we noted the level of
perivascular microglia to be strongly associated with the number
of pericytes (Elabi O. F. et al., 2021), suggesting a possible
interaction of these two cell types at the vascular border.

Other Inflammatory Cell Types
Within the NVU, also astrocytes can release pro-inflammatory
cytokines and angiogenic molecules that can affect vascular
function (Lee et al., 2010; Barcia et al., 2011; Kam et al., 2020).
Several studies have highlighted the role of astrocytes in the
control of vascular function, via e.g., cross-talk with microglia
(Wang et al., 2014; Ni et al., 2018).

Similarly, pericytes can produce a variety of inflammatory and
angiogenic molecules (Gaceb and Paul, 2018; Gaceb et al., 2018).
Activation of pericytes specifically via α-syn stimulates release
of cytokines and increases expression MMP9 that lead to an
increased EC permeability (Dohgu et al., 2019), placing pericytes
as mediators between α-syn and BBB disruption.

Metabolic Disorders and Vascular
Changes in Parkinson’s Disease
An increasing number of studies suggest an association between
neurodegeneration and metabolic diseases. Epidemiological
evidence indicates that diabetes is also a risk factor and a negative
prognostic factor for PD (Cereda et al., 2011; Pagano et al., 2018;
Heinzel et al., 2019; Sergi et al., 2019; Chohan et al., 2021). The
link between metabolic dysfunction and neurodegeneration in
PD is further strengthened by studies demonstrating a beneficial
effect of anti-diabetic medication in PD and PD models (Foltynie
and Athauda, 2020). In particular, Exenatide, a glucagon-like
peptide-1 (GLP-1) receptor agonist, has shown neuroprotective
effects in preclinical models of PD and entered clinical trials
(Athauda et al., 2017).

Even though a number of hypotheses has been put forward
to what is leading to this aggravation of PD in the presence
of diabetes (Sergi et al., 2019), not much attention has been
paid to the fact that diabetes and PD both share pathological
microvascular alterations in the brain. Similar to the retinal
and renal complications, diabetes is associated with signs of

cerebral vascular proliferation and progressive BBB disruption
(Starr et al., 2003; Huber et al., 2006; Salameh et al., 2016;
Machida et al., 2017; Takechi et al., 2017; Rom et al., 2019;
Yamamoto et al., 2019). We have examined the interactions of
type 2 diabetes (DMT2) and PD at the microvascular interface
and shown that DMT2 in combination with a PD lesion resulted
in a significant depletion of pericytes, and reduced interactions
between microvessels and perivascular microglia which was
associated with a lack of the angiogenic response seen in toxin-
induced models (Elabi O. F. et al., 2021). It is conceivable that the
diabetic state inhibits the attempt of compensatory angiogenesis
seen in PD and accelerates the vessel changes toward a later stage
of vascular regression.

DISCUSSION AND OUTLOOK

Current evidence points to a dynamic evolution of multiple
vascular changes in PD (Figure 1). These changes might
start with pathological pericyte activation and subtle BBB
leakage, continue with compensatory angiogenesis that then
fails and cumulates in vascular regression. What constitutes
the initiator of these events still remains unknown, but their
occurrence is certainly contributing to a disturbed neuronal
microenvironment. Interventions stabilizing the vasculature and
preventing the progression of BBB dysfunction are clearly
indicated. Treatment with platelet-derived growth factor (PDGF-
BB), a growth factor required for pericyte recruitment and
vessel maturation (Jain and Booth, 2003), not only induced
neurorestoration and behavioral recovery in PD animal models
(Zachrisson et al., 2011; Padel et al., 2016), but also normalized
the number of activated pericytes (Padel et al., 2016) and changed
the inflammatory secretome of pericytes toward a trophic factor
pattern in vitro (Gaceb et al., 2018). PDGF-BB has shown safety
and tolerability in a phase I/IIa clinical trial in PD patients (Paul
et al., 2015; Paul and Sullivan, 2019). It now remains to be
seen whether approaches targeting vascular pathology, pericyte
activation and vascular signaling at the BBB can modify the
progression of the disease.
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