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Ultra‑rare renal diseases diagnosed 
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Abstract 

Background:  This study aimed to use whole-exome sequencing (WES) to diagnose ultra-rare renal diseases and the 
clinical impact of such an approach on patient care.

Methods:  Clinical, radiological, pathological, and genetic findings were reviewed in the patients and their family 
members.

Results:  Nine patients from nine unrelated Korean families were included in the study and evaluated. WES identified 
eight different conditions in these patients, i.e., autosomal dominant tubulointerstitial kidney disease associated with 
UMOD mutation; recurrent urinary stones associated with APRT deficiency; Ayme-Gripp syndrome associated with 
MAF mutation; short rib-thoracic dysplasia associated with IFT140 mutation; renal coloboma syndrome associated 
with PAX2 mutations; idiopathic infantile hypercalcemia associated with CYP24A1 mutation; and hypomagnesemia 
associated with TRPM mutation. Eleven different mutations, including seven novel mutations, were identified, i.e., four 
truncating mutations, six missense mutations, and one splice-acceptor variant. After genetic confirmation, strategies 
for the management of the following: medications, donor selection for renal transplantation, and surveillance for 
extra-renal manifestations were altered. In addition, genetic counseling was provided for the patients and their family 
members with respect to family member screening for affected but yet unidentified patients and future reproductive 
planning.

Conclusion:  As WES can effectively identify ultra-rare genetic renal diseases, facilitate the diagnosis process, and 
improve patient care, it is a good approach to enable a better understanding of ultra-rare conditions and for the 
establishment of appropriate counseling, surveillance, and management strategies.
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Background
More rare diseases are being rapidly identified and are 
beginning to be considered as independent disease enti-
ties. The definition of “rare disease” may differ among 

nations or organizations, but generally, a disease is gen-
erally considered “rare” if it affects less than 1 person in 
1500–2000, and an ultra-rare disease has a prevalence of 
less than 1 person in 50,000 [1].

Accordingly, information regarding rare diseases 
with renal involvement is increasing. Although most 
of these diseases manifest during childhood, some 
patients may be left undiagnosed until adulthood 
because of the extreme rarity and late-onset of these 
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conditions, or physician unfamiliarity. Diagnosis of 
these conditions during the early clinical stage is 
important because proper surveillance and manage-
ment can halt disease progression and improve the 
quality of life in affected patients [2].

Traditional diagnostic strategies have some limita-
tions with respect to the early diagnosis of rare renal 
diseases with a genetic basis. Our strategy, described 
as the “phenotype to genotype” approach, requires 
extraction of the core renal phenotype (i.e., glomeru-
lar, tubular, tubulointerstitial, vascular, embryological, 
and cystic), family member evaluation, and identifica-
tion of extra-renal manifestations such as vision and 
hearing [3]. After histopathological evaluation of the 
involved tissues and relevant biochemical tests, candi-
date genes are selected for disease confirmation. This 
approach is time- and labor-intensive, and a success-
ful diagnosis is dependent on clinical suspicion by the 
physician.

Conversely, with the advent of massive parallel 
sequencing techniques, such as whole-exome sequenc-
ing (WES), which have reduced the time, cost, and 
efficiency of genetic diagnosis, an opposite diagnos-
tic strategy, or the “genotype to phenotype” paradigm, 
has emerged and facilitated the diagnostic process [3]. 
Clinical and genetic evaluations in parallel, can enable 
physicians to re-evaluate the clinical relevance of the 
genetic defect with respect to the patient’s phenotype 
and to confirm the diagnosis indicated by the genetic 
test.

In the current study, we used WES to diagnose 
patients with ultra-rare renal diseases, and then evalu-
ated the clinical utility of the genetic diagnosis and its 
impact on patient management and outcomes and to 
enhance our understanding of ultra-rare renal diseases 
with a genetic basis.

Methods
Patients
From April 2018 to January 2020, 46 patients were 
referred to the Medical Genetics Center, Asan Medi-
cal Center, Seoul, Korea, for the evaluation of possi-
ble underlying genetic renal diseases. Among these, 
9 patients diagnosed with an ultra-rare renal disease 
were included.

Medical records were reviewed for family history, 
clinical, laboratory, laboratory, and genetic findings. 
The study was approved by the Institutional Review 
Board of the Asan Medical Center, Seoul, Korea with 
a waiver of informed consent for a retrospective, de-
identified data collection, and analysis (2018-0574, 
2018-0180 and 2020-0839).

Analysis of genetic alterations
Genomic DNA was isolated from peripheral blood or 
buccal swab samples. WES was performed using genomic 
DNA. All exons of all human genes (approximately 
22,000) were captured using a SureSelect kit (Version 
C2; Agilent Technologies, Inc., Santa Clara, CA, USA). 
The captured genomic regions were sequenced using 
a NovaSeq platform (Illumina, San Diego, CA, USA). 
Data analyses of raw genome sequences included align-
ment to the reference sequence (NCBI genome assembly 
GRCh37; accessed in February 2009). The mean depth of 
coverage was 100-fold, with 99.2% coverage higher than 
tenfold. Variant calling, annotation, and prioritization 
were performed as previously described, and a software 
program called EVIDENCE developed by 3 billion Inc., 
Seoul, Korea was used to prioritize variants based on 
ACMG guideline and the phenotype of each patient [4]. 
EVIDENCE, an automated computational framework 
provided variant filtration, classification, prioritization 
of variants based on multiple computational programs 
[5], and calculated similarity score independently devel-
oped to assess the similarity between the phenotype of 
each patient and the phenotype predicted by prioritized 
variants. Sanger sequencing was performed for variants 
identified by exome sequencing in patients, and a num-
ber of in silico analyses were used for the evaluation of 
functional effect of missense mutations. (Polyphen – 2; 
http://​genet​ics.​bwh.​harva​rd.​edu/​pph2/​index.​shtml, SIFT; 
Sorting Intolerant From Tolerant, https://​sift.​bii.a-​star.​
edu.​sg, PROVEAN; http://​prove​an.​jcvi.​org/​index.​php, 
and InterVar; http://​winte​rvar.​wglab.​org/).

Results
During the study period, 9 patients from 9 unrelated fam-
ilies were diagnosed with 7 unique genetic renal diseases 
associated with 11 gene mutations. The clinical features 
of the patients are summarized in Table 1.

Family 1: Patient 1, 59‑year‑old woman
At the age of 51, patient (Pt) 1 started experiencing 
recurrent hyperuricemic attacks. After 2  years, the 
patient was diagnosed with renal insufficiency with per-
sistent hyperuricemia, and febuxostat was prescribed for 
hyperuricemia. Eventually, renal insufficiency progressed 
to end-stage renal disease (ESRD) when the patient was 
54 years old. The patient’s mother, brother, and elder sis-
ter all had hyperuricemia and ESRD, and required renal 
replacement therapy in their adulthood for ESRD. All 
the family members had no other underlying comorbidi-
ties, or hearing- or vision-related abnormalities. WES 
revealed the presence of a novel UMOD missense vari-
ant (NM_001008389.3: c.626G > T; p.Gly209Val). Thus, a 
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diagnosis of autosomal dominant (AD) tubulointerstitial 
kidney disease-uromodulin-associated kidney disease 
(ADTKD-UMOD) (MIM 16,200; unknown prevalence) 
was made, and now, kidney transplantation from an unaf-
fected offspring is planned for managing the patient’s 
condition.

Family 2: Pt 2, 41‑year‑old man
Since the age of 29, Pt 2 suffered from recurrent flank 
pain. The patient was diagnosed with renal insufficiency 
associated with nephrolithiasis and left renal atrophy. 
The patient had undergone extracorporeal shock wave 
lithotripsy 13 times for the removal of a ureteral stone 
at the right ureteropelvic junction at the age of 30, and 
had undergone left nephrectomy at the age of 31. Impor-
tantly, the patient had no family history of renal insuf-
ficiency or nephrolithiasis. The pathology of the excised 
kidney was consistent with a diagnosis of xantho-granu-
lomatous pyelonephritis. At the age of 39, the condition 
progressed to ESRD and the patient was transplanted 
with a kidney from his wife. Two months after trans-
plantation, a biopsy of the allograft was performed as the 
serum creatinine level had not normalized (1.4–2.1 mg/
dl) after transplantation. Pathological tests revealed the 
presence of intratubular calcium oxalate crystals along 
with tubular degeneration and atrophy. Primary hyper-
oxaluria type 1 was ruled out as no alanine-glyoxylate 
aminotransferase (AGXT) mutations were identified and 
oxalate excretion in urine was within the normal range. 
WES revealed the presence of a homozygous adenine 
phosphoribosyltransferase (APRT) nonsense variant 
(NM_00485.2: c.294G > A; p.Trp98*) [6]. After the diag-
nosis of APRT deficiency (MIM 614723, unknown preva-
lence), we initiated treatment with a xanthine oxidase 
inhibitor to prevent new stone formation and 2,8-dihy-
droxyadenine crystalluria to slowdown progressive renal 
insufficiency in the allograft.

Family 3: Pt 3, 20‑year‑old woman
Pt 3 was the first child in the family. The patient had sub-
mucosal cleft palate with bifid uvula, low set ears, and 
long philtrum. Further, the patient suffered from recur-
rent otitis media with effusion, and speech delay with 
sensorineural hearing loss of both ears. The patient’s 
height remained within the 10th–25th percentile. At 
the age of 5, mild renal insufficiency (blood urea nitro-
gen, 11 mg/dl; creatinine, 0.6 mg/dl) was detected along 
with microscopic hematuria and proteinuria. Renal 
biopsy revealed diffuse global and segmental mesan-
giolysis. When the patient was 18-years old, bilateral 
small-sized kidney with nephrolithiasis had been diag-
nosed using renal ultrasonography (USG). Further, a 
diagnosis of chronic kidney disease (CKD) stage 2 was 

made based on an eGFR (estimated glomerular filtration 
rate) of 70.4  ml/min/1.73 m2 using the CKD EPI cys-
tatin C calculation [7]. WES revealed the presence of a 
heterozygous MAF missense variant (NM_001031804.2: 
c.185C > T; pThr62Met), and a diagnosis of Ayme-Gripp 
syndrome (MIM 6010880, up to 21 patients reported 
worldwide) was made based on WES results and clinical 
signs, such as sensorineural hearing loss, distinctive flat 
facial appearance, skeletal anomalies, reduced growth, 
and renal involvement. The patient’s parents and healthy 
brother did not carry the variant. Evaluation for other 
systemic involvements is scheduled, and genetic coun-
seling was provided for reproductive planning in the 
future.

Family 4: Pt 4, 18‑year‑old boy
Pt 4 was the third child of nonconsanguineous Korean 
parents. The patient had had two elder sisters. At the 
age of 4, ESRD was identified when investigating the 
reason underlying poor oral intake and malaise. The 
patient underwent renal replacement therapy until 
undergoing cadaveric donor transplantation at the age 
of 18. In addition, skeletal dysplastic features includ-
ing severe short stature and narrow thoracic cage were 
observed, as well as dense calvarium and tracheal and 
lower rib cartilage calcification. Cholestatic liver dys-
function— without evident etiology—with mild portal 
inflammation and bile ductular progression was diag-
nosed using liver biopsy at the age of 16. Ophthalmo-
logical examination revealed no abnormalities. WES 
revealed the presence of compound heterozygous IFT140 
variants NM_014714.3 (c.2650C > T; p.Arg884Trp) and 
NM_014714.3 (c.4309G > A; p.Glu1437Lys), resulting in a 
diagnosis of short-rib thoracic dysplasia 9 (SRTD 9) with 
or without polydactyly (MIM 266920, up to 20 patients 
reported worldwide). The patient’s eldest sister had been 
diagnosed with glomerulonephritis of unknown etiology 
at the age of 3, and had undergone cadaveric donor renal 
transplantation at the age of 7; she also exhibited similar 
skeletal features as the patient, carried identical variants, 
and had recurrent episodes of retinal detachment. Pt 5 is 
on regular follow up for ophthalmologic evaluation and 
monitoring for allograft and liver function. Notably, no 
variant was identified the patient’s mother, but his father 
and another unaffected sister were not tested.

Family 5: Pt 5, 11‑year‑old boy
Pt 5 had renal insufficiency (serum creatinine 1.2–
1.4 mg/dl) with proteinuria and hypertension at the age 
of 5. The growth profiles of the patient were normal, 
and he did not manifest any hearing or visual problems. 
When the patient was 11-years old, renal USG revealed 
that both kidneys were small sized (right kidney 7.6 cm, 
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left kidney 6.9  cm) with poor cortico-medullary dif-
ferentiation, increased echogenicity, and multiple 
renal cysts (< 8 mm in diameter). WES revealed a novel 
PAX2 frameshift variant (NM_003990.5: c.124_139del; 
p.Val42Argfs*36), confirming the diagnosis of papillor-
enal syndrome (MIM 120,330, up to 60 patients reported 
worldwide). The patient’s parents and healthy sister did 
not carry the variant. Pt 6 is on a regular follow-up with 
visual and hearing checkups and supportive care for renal 
insufficiency. Genetic counseling was provided to the 
patient’s parents for reproduction planning in the future.

Family 6: Pt 6, 10‑year‑old boy
At the age of 9, Pt 6 was diagnosed with asymptomatic 
proteinuria with renal insufficiency (CKD stage 2). 
Renal USG revealed small-sized kidneys (right kidney 
8.0 cm, left kidney 6.4 cm) with increased echogenicity. 
The patient’s mother also had proteinuria with normal 
renal function and defective vision with uncertain etiol-
ogy, but her hearing was normal. The patient’s maternal 
grandfather was on hemodialysis, and suffered from a 
hearing defect of unknown origin. Single gene testing for 
CLCN5 and OCRL revealed no pathogenic variants. WES 
revealed the presence of a novel PAX2 splice-site variant 
(NM_003990.5: c.617-1G > T). The patient’s mother also 
carried the variant, but his father and healthy brother did 
not carry the variant. Based on these results, a diagnosis 
of papillorenal syndrome (MIM 120330, up to 60 patients 
reported worldwide) with AD inheritance was made, and 
visual and hearing evaluation has been performed regu-
larly with supportive care for renal insufficiency. Genetic 
counseling was provided for the family for future repro-
ductive planning.

Family 7: Pt 7, 9‑year‑old girl
Pt 7 had a urinary tract infection when she was 3-months 
old, and renal USG incidentally revealed medullary 
nephrocalcinosis of both kidneys. Hypercalciuria (urine 
calcium/creatinine ratio 0.57–0.72  mg/mg) with normal 
serum calcium level was detected, and renal function 
was normal. The patient’s growth profiles and devel-
opment were normal. Panel gene tests for mutations 
associated with genetic kidney diseases (GXT, CLCN5, 
CLDN16, CLDN19, CNNM2, CTNS, EGF, FXYD2, 
GRHPR, HNF1b, HOGA1, KCNA1, OCRL, SLC22A12, 
SLC2A9, SLC3A1, SLC5A2, SCL7A9, TRPM6, and VDR) 
revealed no pathogenic variants. At age of 9, patient 
height and weight were in the 10th–25th percentile. Per-
sistent nephrocalcinosis with hypercalciuria was investi-
gated. WES revealed a homozygous CYP24A1 missense 
variant (NM_000782.4: c.376C > T; p.Pro126Ser). Both 
parents were heterozygous carriers. After the diagnosis 
of hypercalcemia, infantile 1 (MIM 143,880, unknown 

prevalence), diet-related education was provided to avoid 
hypercalcemia.

Family 8: Pt 8, 7‑year‑old girl
Pt 8 is the first child of Korean nonconsanguineous par-
ents. The patient had two healthy younger twin brothers. 
At the age of 1  month, the patient developed transient 
cyanosis with seizure-like motion caused by hypoc-
alcemia and hypomagnesemia. The patient had been 
prescribed a calcium and magnesium supplement with-
out genetic assessment. She was referred to our medi-
cal genetic center at the age of 7 for further evaluation. 
The patient exhibited normal serum calcium levels with 
mild hypercalciuria (urine calcium/creatinine ratio 0.22–
0.35 mg/mg), hypomagnesemia (1.3–1.6 mg/dl) with low 
urinary loss (urine magnesium/creatinine < 0.029  mg/
mg), and normal renal function. Kidney USG showed no 
abnormal findings. The patient showed normal growth 
and developmental milestones. WES revealed compound 
heterozygous mutations in TRPM6 [(NM_001177311.1: 
c.1421A > G; p. Tyr474Cys in exon 12 inherited from 
the mother and c.4917_4918delAA; p.Lys1639Asnfs*4 
in exon 29 inherited from the father]. The patient’s two 
twin brothers are asymptomatic carriers of the missense 
variant c.1421A > G (p. Tyr474Cys). After the diagnosis 
of hypomagnesemia 1 intestinal (MIM 607009, unknown 
prevalence), magnesium replacement was increased 
with reduced calcium supplement based on the patho-
physiology of secondary hypocalcemia due to primary 
hypomagnesemia.

Family 9: Pt 9, 1‑month‑old girl
Right renal agenesis with left renal hypoplasia with 
ectopy was suspected in prenatal USG at a gestational 
age (GA) of 20 weeks. Due to the premature rupture of 
the membrane, an emergent caesarian section was per-
formed for birth at GA 36 weeks. The delivery was une-
ventful. Postnatal renal USG on day 3 revealed small 
echogenic kidneys with multiple cysts, and azotemia 
progressed (maximal serum BUN 83.2 mg/dl, and creati-
nine 2.59 mg/dl), and peritoneal dialysis was started since 
day 17 after birth. WES revealed a frameshift PAX2 vari-
ant (NM_003988.4: c.[69delinCG]; p.[Val26Glyfs*28]). 
The patient’s parents did not carry the variants. Regular 
surveillance has been done for possible ophthalmologic 
involvement.

Pathogenicity of identified variants
Identified variants were analyzed and classified accord-
ing to the American College of Medical Genetics and 
Genomics (ACMG) classification [8] and presented 
in Table  1. The pedigree of each patient is presented in 
Fig. 1 with the identified variants.
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A total of 7 variants were previously unreported. 
Sanger sequencing was done for the identified variant in 
the patients and their family members. The APRT muta-
tion in Pt 2, TRPM6 mutation in Pt 8, and the PAX2 
mutation in Pt 5, 6 and 9 were classified as “pathogenic” 
before and after the family tests. The MAF mutation in 
Pt 3 was initially assessed as “likely pathogenic (LP),” but 
reassessed as “pathogenic (P)” after the family test. The 
UMOD mutation in Pt 1 was assessed as “LP,” before and 
after testing of her son. The IFT140 mutations in Pt 4, 
and CYP24A1 mutation in Pt 7 were classified as “vari-
ant of unknown significance (VUS).” Pt 2 had an addi-
tional missense variant of the MYL3 gene, as a secondary 
incidental finding reported based on the ACMG guide-
line [8], NM_000258: c. 170C > G (p.Arg57Gly), with no 
clinical significance at the time of evaluation. There was 
no incidental finding, unrelated to patient’s main pheno-
types, in the other 8 families.

Discussion
The current report described the detailed clinical and 
genetic features of 7 ultra-rare diseases from 9 unrelated 
Korean families. These ultra-rare diseases are described 
in Table  1. Among these, 3 diseases have AD inherit-
ance: ADTKD-UMOD, Ayme-Gripp syndrome due to 
MAF mutation, and papillorenal syndrome due to PAX2 
mutation. The other 4 diseases have autosomal reces-
sive inheritance: APRT deficiency, SRTD 9 with or with-
out polydactyly due to IFT140 mutations, hypercalcemia 
infantile type1 with altered calcium metabolism due to 
CYP24A1 mutations, and hypomagnesemia 1 intestinal 
or hypomagnesemia with secondary hypocalcemia due to 
TRPM6 mutations.

WES was requested in each patient because of a posi-
tive family history (Pt 1, 4, and 6), the involvement of 
extra-renal organs (Pt 3 and 4), early-onset renal insuf-
ficiency (Pt 5, 6, and 9), persistent electrolyte imbalance 
(Pt 7 and 8), or the recurrence of original renal disease 
after transplantation (Pt 2). In particular, Pt 1 had a posi-
tive family history of renal insufficiency with suspicion of 
ADTKD spectrum disease [9]. Pt 5, 6, and 9 had devel-
opmental dysplasia of the kidney with renal insufficiency 
and or proteinuria. Pt 3 and 4 showed extra-renal mani-
festations such as skeletal dysplasia or facial dysmor-
phism with glomerulopathy.

Currently, targeted gene panel tests are widely used 
in clinics that are designed to screen the known 20–100 
genes responsible for genetic renal diseases. The read 
depth of the target regions is higher in the panel gene 
test than in WES. However, ultra-rare diseases may not 
be included in the panel gene list, as in Pt 5–7, and 9; 
therefore, the time and expense for the genetic diagnosis 
might have been extended without WES.

Importantly, the diseases diagnosed by WES were 
sometimes unexpected. However, according to the “geno-
type to phenotype paradigm,” based on clinical informa-
tion and the results from genome sequencing in parallel, 
each disease was validated as responsible for respective 
patient’s phenotypes. For example, Pt 3’s dysmorphic 
face, organ anomalies, and short stature led the physi-
cian to suspect RASopathy [10], and glomerulopathy 
was suspected as a separate disease. However, as MAF, 
a leucine zipper-containing transcription factor of the 
AP1 superfamily, is involved in the embryonic develop-
ment of human lens, cochlear cells, dorsal spinal cord, 
dorsal root ganglia, skin, kidney, and hypertrophic chon-
drocytes of vertebrae, rib, and limb cartilages [11], its 
mutation is responsible for the full spectrum of the Pt 3’s 
phenotypes including skeletal, facial deformities, hear-
ing defects, and renal involvement. A mutation from 
the same residue (c.185C > G; p.Thr62Met) has also been 
reported in the patient with similar phenotypes includ-
ing cataract, deafness, intellectual disability, seizures, and 
Down syndrome-like faces, further supporting our find-
ing [12]. SRTD 9 in Family 4 was another unexpected 
diagnosis; familial early-onset ESRD first raised the pos-
sibility of hereditary renal disease, but the short stature 
was attributed to the ESRD, and their inappropriate small 
thoracic cage was not clinically investigated. However, as 
Schmidts et  al. suggested the expression of IFT140 not 
only in renal and retinal tissues but also in the skeleton. 
IFT140 deficiency is a rare cause of severe types of skel-
etal dysplasia from Jeune asphyxiating thoracic dystrophy 
with renal involvement with or without retinal involve-
ment to nonlethal thorax-related clinical course with no 
polydactyly as in Pt 4 [13].

WES is most beneficial with respect to helping physi-
cians in the following aspects: deciphering the patho-
physiology of each disease; predicting the prognosis of 
the affected patient; providing an appropriate alternative 
intervention; delaying disease progression; and, if pos-
sible, treatment (Table  2.). Notably, in Pt 2 with APRT 
deficiency, excessive production and renal excretion of 
2,8-dihydroxyadenine was the key pathophysiology lead-
ing to the recurrent formation of renal stones and even-
tual renal insufficiency with tubular degeneration. Only 
early recognition, use of xanthine oxidase inhibitors, 
and dietary purine restriction can help preserve renal 
function, even if renal insufficiency has progressed [14]. 
Moreover, recurrent 2,8- dihydroxyadenine-induced 
nephropathy can develop in the engrafted kidney in 
affected patients, sometimes progressing to recurrent 
renal insufficiency. Therefore, the use of xanthine oxidase 
inhibitors should be maintained throughout the patient’s 
life even after kidney transplantation [14–16]. Accord-
ingly, Pt 2 was initiated on allopurinol at the age of 41, 
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Case 9.

Reverse 
sequence

Pathogenic

PAX2, c.76dupG
(p.Val26Glyfs*28)

Case 3.

Pathogenic

MAF, c.185C>T
(p.Thr62Met)

Case 2.

Reverse 
sequence

Pathogenic

APRT, c.294G>A
(p.Trp98*)

Case 1.

Likely Pathogenic

UMOD, c.626G>T
(p.Gly209Val)

Case 4.

Uncertain Significance

IFT140, c.2650C>T
(p.Arg884Trp)

Uncertain Significance

IFT140, c.4309G>A
(p.Glu1437Lys)

Pathogenic

PAX2, c.686-1G>T
(Splice acceptor variant)

Case 6.Case 5.

Likely Pathogenic

PAX2, c.124_139del
(p.Val42Argfs*36)

Case 7.

Uncertain Significance

CYP24A1, c.376C>T 
(p.Pro126Ser)

Case 8.

Likely Pathogenic

TRPM6, c.1421A>G
(p.Tyr474Cys)

Pathogenic

TRPM6, c.4917_4918delAA
(p.Lys1639Asnfs*4)

Fig. 1  Pedigree of each patient and family with identified variants including family testing. Pedigree of 9 families are presented with each genetic 
alteration found from whole-exome sequencing and pathogenecity evaluated by American College of Medical Genetics and Genomics (ACMG) 
classification
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immediately after definitive diagnosis and 18  months 
after kidney transplantation, to preserve renal allograft 
function (hopefully). For Pt 8, pharmacological treatment 
was changed after the detection of TRPM6 variants—i.e., 
calcium replacement was discontinued and magnesium 
supplement was increased—because the severe magne-
sium deficiency caused hypocalcemia secondary to the 
impaired synthesis and secretion of the parathyroid hor-
mone [17]. Treatment options for renal transplantation 
were also affected based on the results of genetic diagno-
sis and family testing, as in case of Pt 1; the donor for kid-
ney transplantation was selected after the affected renal 
disease was ruled out in the potential donor for Pt 1.

Genetic diagnosis helped us understand the systemic 
constellation of symptoms and mutations associated with 
each disease and to lookout for extra-renal organ pheno-
types in the affected patients including opthalmological 
evaluations for Pt 5 and Pt 6 harboring a PAX2 mutation 
[18–20]; neurological evaluations including brain imag-
ing, ophthalmic evaluation including cataract, endocri-
nal assessment and skeletal survey for Pt 3 with a MAF 
mutation [10]; and examination for hepatic dysfunction, 
intraocular abnormality, and progression of skeletal dys-
plasia for Pt 4 and his affected sister harboring IFT140 
mutations [21].

It is accepted that a large portion of ultra-rare diseases 
may be caused by de novo mutations. They are generally 
more deleterious than inherited variation because they 
have been subjected to less stringent evolutionary selec-
tion [22]. On average, as 74 germline single-nucleotide 
variants (SNVs), 3 indels, and 0.02 de novo copy number 
variants (CNVs) occur in one person’s genome, one de 
novo mutation can develop per exome [23]. For disorders 
caused by particular variants in a single gene or mono-
genic disorders, as in our study, the low probability of 
mutational event renders these disorders extremely rare 
in the population. However, as there are factors which 
do increase the intrinsic propensity for de novo muta-
tions, such as high CpG density leading to increased rates 
of de novo SNVs, and segmental duplications leading to 
increased rates of de novo CNVs [24, 25], these ultra-
rare diseases would be observed more frequently than 
expected.

Family member screening is important to verify de 
novo mutations in diseases with AD inheritance or com-
pound heterozygosity in diseases with autosomal reces-
sive inheritance. In addition, as in Pt 3, family testing 
assesses the pathogenicity of a variant. Identification 
of unrevealed but affected family members is another 
aspect that would enable the use of appropriate man-
agement strategies to improve the clinical outcomes of 
unrecognized renal diseases, as in family 6. The diagnosis 
of Pt 4 is controversial; identical variants were identified 

in the elder sister, who also manifested a similar pheno-
type, but no variant was identified in the patient’s mother. 
Although family testing was incomplete, we assumed that 
the patient’s father could be the carrier of one mutated 
allele, and the mother might have passed the other 
mutated allele through germline mosaicism.

As patients or other family members enter the repro-
ductive age, counseling should be provided regarding the 
inheritance of the disease, and the need for prenatal or 
preimplantation genetic diagnosis during future repro-
ductive planning, a strategy that was employed in case of 
most of the families in this study (Table 2). Perceiving the 
need for sibling testing and providing appropriate coun-
seling regarding the possibility of any offspring inheriting 
the condition should also be highlighted.

Conclusion
WES is an effective tool to identify ultra-rare genetic 
renal diseases. By facilitating diagnosis, WES helps us 
better understand ultra-rare diseases and provides a 
roadmap to establishing appropriate counseling, surveil-
lance, and management strategies. Increasing informa-
tion regarding ultra-rare genetic diseases—with more 
cases being reported across the globe—would result in 
the development of more disease-specific management 
strategies aimed at ensuring optimal patient care.
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