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ABSTRACT
Due to their shared genetic history, antibodies from the same clonotype often bind to the same epitope. 
This knowledge is used in immune repertoire mining, where known binders are used to search bulk 
sequencing repertoires to identify new binders. However, current computational methods cannot identify 
epitope convergence between antibodies from different clonotypes, limiting the sequence diversity of 
antigen-specific antibodies that can be identified. We describe how the antibody binding site, the 
paratope, can be used to cluster antibodies with common antigen reactivity from different clonotypes. 
Our method, paratyping, uses the predicted paratope to identify these novel cross clonotype matches. We 
experimentally validated our predictions on a pertussis toxoid dataset. Our results show that even the 
simplest abstraction of the antibody binding site, using only the length of the loops involved and 
predicted binding residues, is sufficient to group antigen-specific antibodies and provide additional 
information to conventional clonotype analysis.

Abbreviations: BCR: B-cell receptor; CDR: complementarity-determining region; PTx: pertussis toxoid
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Introduction

Next-generation immune repertoire sequencing (BCR-seq or rep- 
seq1,2) can provide comprehensive information about adaptive 
immune repertoires across individuals3 and immune states.4 

Progress has been made in the task of interrogating the vast 
diversity of B-cell receptor (BCR) repertoires, primarily through 
the analysis of predicted clonal relationships inferred via 
clonotyping.5 BCR-seq and associated clonal analysis are finding 
increasing importance in antibody discovery both as a method of 
identification of putative antigen-specific antibodies6–8 and more 
recently as a method of lead antibody optimization through 
repertoire mining.9 The identification of antibodies that are pre-
dicted to bind to the same site (epitope) is now a key component 
of BCR repertoire analysis and antibody discovery.

The starting point for most BCR repertoire analysis is the 
reduction of thousands or millions of BCRs into orders of 
magnitude fewer clonotypes.5 Clonotype definitions vary, pri-
marily through treatment of the complementarity-determining 
region (CDR) H3, but are intended to capture groups of clon-
ally related antibody sequences derived from common pro-
genitor B cells.10 Published clonotyping methods use heavy 
chain information only, which is considered sufficient to cap-
ture most clonal relationships.11 During B cell development, 
the variable (V), diversity (D) and joining (J) gene segments 

encoding the variable domain of the antibody heavy chain 
undergo recombination.12 A requirement for two sequences 
to be predicted to share the same clonotype is therefore com-
mon V- and J-germline gene assignment.5 The D gene is not 
usually included in standard clonotype definitions because its 
assignment is both difficult and redundant in the clonotype 
definition, as it is wholly contained within the CDRH3.13,14 

The variable domain of the antibody heavy chain consists of 
the framework regions and hypervariable CDRs. CDRHs 1 and 
2 are encoded by the V gene while the region spanning the 
recombined V, D and J segments corresponds to the third and 
most diverse loop on the antibody heavy chain, the CDRH3. 
The processes of junctional diversification (the insertion of 
palindromic and random nucleotides at the junction between 
the V, D and J genes) during recombination act in tandem with 
somatic hypermutation15 during affinity maturation to further 
increase the diversity of the CDRH3. Sequence identity in the 
CDRH3 is therefore included as a marker of shared origin in 
most clonotyping tools.5 The nucleotide or amino acid 
sequence identity across the CDRH3 required for two 
sequences to be considered in the same clonotype varies across 
studies – in studies performing clonotyping with length- 
normalized amino acid sequence identity thresholds, sequence 
identity thresholds vary between 80% and 100%.5
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After recombination, the heavy chain is expressed as a pre- 
BCR with a surrogate light chain. The light chain is subse-
quently formed from the recombination of the V and J genes of 
either of the two light chain loci (lambda or kappa)15 and is 
expressed by the immature B cell. While the light chain pro-
vides clonal signal, clonotyping has no established precedent 
using both heavy and light chains. Clonal inference for paired 
VH/VL sequences from single-cell sequencing has largely used 
heavy chains only;16,17 clonal inference within the BraCeR tool 
defines heavy and light chain clones separately.18 We therefore 
refer to “clonotyping” as describing clonotyping using the 
heavy chain only.

A number of publicly available, well-supported pipelines have 
made clonotype analysis standard practice.5,10 This has per-
mitted large advances in the practical utility of BCR-seq 
data.19,20 Clinically, it has found use in tracking minimal residual 
disease in blood cancers,21 monitoring vaccination 
responses22–24 and providing mechanistic insights into immune- 
mediated diseases.4,25–27 Clonotyping has also proven useful in 
antibody discovery as a means of selecting candidate sequences 
for expression as monoclonal antibodies6–8 and recently as 
a method of lead antibody optimization via repertoire mining.9

Antibodies within the same clonotype are likely to target 
a common epitope.5,10 The majority of antibodies binding to 
the same epitope in antibody-antigen complex structures in the 
Structural Antibody Database (SAbDab, a database of experi-
mentally solved antibody and antibody-antigen complex struc-
tures) have highly similar CDRH3s.28 However, it has also been 
observed that multiple clonotypes may converge on the same 
epitope. For example, Scheid and colleagues identified clono-
types from distinct immunoglobulin heavy chain variable 
(IGHV) gene subgroups converging on the CD4 binding site 
in gp120.29 Separate clonotypes have also been observed to bind 
to overlapping epitopes on the hemagglutinin stem30 or globular 
head, and on multiple epitopes on the Ebola virus 
glycoprotein.31 Wong and colleagues identified 190 pairs of 
antibodies with sub-80% CDRH3 amino acid identity binding 
to the same epitope within SAbDab.28,32 This convergence 
between clonotypes offers the potential to improve our under-
standing of the functional landscape of BCR repertoires; large- 
scale functional convergence between lineages could, for exam-
ple, explain the apparent scarcity of public clonotypes.33 This 
hypothesis is supported by evidence that, while clonotypes are 
infrequently shared between individuals, the range of antibody 
structures that these clonotypes generate is more similar between 
individuals.34 In the context of antibody discovery, being able to 
identify binders to the same epitope from different clonotypes 
would aid in optimization of developability or binding affinity, 
by allowing hopping between germline scaffolds.

In antibody discovery, clonotyping is used to search for 
clonal relatives of lead antibodies in bulk BCR-seq data sets 
in order to identify antibodies that target the same epitope, but 
which have either an increased affinity or a superior develop-
ability profile. This process is referred to as “immune repertoire 
mining”. Hsiao and colleagues performed clonotyping on a set 
of bulk heavy-chain repertoires and used the resultant clono-
types for hit expansion against two targets.9 They achieved 
greater than an order of magnitude improvement in affinity 
for both targets and between 48% and 100% of tested heavy 

chain variants retained target-binding.9 This suggests that sam-
pling within a clonotype can be highly effective as a means of 
repertoire mining. However, the method does not allow the 
identification of binders to the same epitope that derive from 
different clonotypes, which currently limits the sequence dis-
tinctness of novel binders that can be recovered from immune 
repertoires.

Here, we describe a new method to identify functional 
convergence of antibody sequences that is germline- 
independent and that considers only the binding site of the 
antibody sequences, the paratope. We call this approach “para-
typing”. We show how paratyping allows grouping of antigen- 
specific sequences from different clonotypes, and is a rapid, 
structurally intuitive way of grouping functionally related anti-
bodies. Paratyping simplifies the complex phenomenon of 
antibody–antigen interaction into sets of shared residues. 
Learning the complexities of antibody–antigen interactions as 
part of a predictive model of antigen binding has been achieved 
in the case of the antigen interaction of one therapeutic mono-
clonal antibody.35 However, such approaches rely on a large 
(on the order of 104) library of experimentally validated bind-
ing and non-binding variants. Paratyping removes the need for 
large amounts of training data and is generalizable across 
protein antigens.

We first show the rationale for our paratyping method using 
the structures of a pair of antibodies from different clonotypes 
that bind to the same epitope. Paratyping is then applied to 
a single-cell data set of sequences raised against pertussis tox-
oid (PTx) in a transgenic mouse platform where it is as accu-
rate as clonotyping but identifies different binders. We then 
perform a prospective experimental test of the method by 
expressing as monoclonal antibodies and experimentally test-
ing predicted PTx-binding and non-binding antibodies mined 
from a set of non-enriched bulk heavy chain sequencing reper-
toires. Our experimental test demonstrates that paratyping 
identifies PTx-binding antibodies from different clonotypes 
to our original hits. This expands the sequence space available 
through repertoire mining and permits favorable shifts in in 
silico developability metrics. Of particular advantage is para-
typing’s ability to predict common antigen reactivity of anti-
bodies from different V and J gene backgrounds, which has 
implications for large-scale repertoire analysis.

Results

Epitope convergence can be identified at the level of 
paratope residues

Antibodies from different clonotypes have been observed to 
converge on the same binding site.28–31 We hypothesize 
that these functionally convergent antibodies may use the 
same paratope for interaction, and examined SAbDab32 for 
evidence that antibodies with similar paratopes bind to the 
same epitope. We defined the epitope and paratope as those 
residues with any atom within 4.5 Å of any residue in the 
cognate antibody or antigen, respectively, and consider only 
the heavy chains of the antibodies because in most BCR 
sequencing experiments only heavy chain sequences are 
available.36
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Figure 1 shows an example of a pair of antibody-antigen 
complex structures where antibodies binding to the same epi-
tope derive from different clonotypes based on their heavy 
chains, but have very similar heavy chain paratopes. The two 
monoclonal antibodies 4C2 (PDB ID: 5do2) and D12 (PDB ID: 
4zpv) bind to the receptor-binding domain of the MERS-CoV 
spike protein at the same epitope (94.7% of epitope residues are 
shared across the pair of structures). In the standard clonotyp-
ing definition, an exact VH and JH match is required for 
grouping of two sequences regardless of treatment of the 
CDRH3;5,10 in this instance, the antibodies differ in both 
IGHV (IGHV5-6-4 vs IGHV5-9-1) and IGHJ gene (IGHJ2/ 
IGHJ4) and have lower CDRH3 identity (66.7%) than common 
definitions. However, 4C2 and D12 use largely the same para-
tope residues to achieve this epitope convergence, with 81.3% 
of heavy chain paratope residues conserved across the struc-
tures. Another example of epitope convergence between anti-
bodies with differing IGHJ genes and sub-80% CDRH3 identity 
can be seen in the anti-lysozyme antibodies HyHel-10 and 
HyHel-63 (see Supplementary Figure 1; the heavy and light 
chain CDRs and V and J genes of both examples can be found 
in Supplementary Table 1).

In this study, our aim was to discover other antibodies from 
different clonotypes with common antigen reactivity using 
sequence data alone. In the case of sequence data without 
accompanying antibody-antigen complex structures, the para-
tope is not known but can be predicted with high accuracy.37 

We used the state-of-the-art in paratope prediction, Parapred, 
to annotate sequences with their likely paratope; this predicted 
paratope is the input to our novel method, “paratyping”, as 
validated in the “Results” section.

Paratyping and clonotyping successfully cluster PTx 
binders in a single-cell dataset

We defined clonotypes as antibodies with the same heavy chain 
V and J genes, CDRH3s (North definition38) of the same 
length, and above a threshold level of amino acid identity 
across the CDRH3.5 In our novel method, paratyping, 

antibodies with the same length CDRs (North definition) and 
above a threshold level of sequence identity across the pre-
dicted paratope residues are grouped into the same paratype. 
To define predicted paratope residues, we used the Parapred 
model, which is based on convolutional and recurrent neural 
networks trained on 277 antibody-antigen co-crystal struc-
tures, and used the probability threshold of 0.67 as deemed 
optimal in the original paper37 (see the “Materials and meth-
ods” section for more details).

To test the ability of paratyping and clonotyping to group 
antibodies that target the same epitope, we performed a test in 
a single-cell (paired VH/VL) data set of 1290 antibodies iso-
lated from genetically engineered mice that have a full set of 
human immunoglobulin variable region genes39 immunized 
with PTx. Although we had pairing information within the 
single-cell data set, given that the majority of repertoire 
sequencing data to date is heavy-chain only,36 we demon-
strated the method using only the heavy chain information. 
The sequences were annotated with a PTx-binding (364) or 
non-binding label (926) (using homogeneous time-resolved 
fluorescence (HTRF) and surface plasmon resonance (SPR) as 
per the “Single-cell data set” subsection under the “”Materials 
and methods” section), and we used paratyping (our new 
method) and clonotyping (the conventional approach) to iden-
tify PTx-binding sequences. VH and VK/VL gene frequencies 
of these antibodies as well as somatic hypermutation counts 
can be seen in Supplementary Figure 2.

For each of the 364 PTx-binders in turn, we mimicked 
a repertoire mining experiment by using paratyping or clono-
typing to identify binders amongst the remaining 1289 
sequences (one-vs-all cross-validation). Each of the PTx- 
binders is referred to as a “probe” antibody; sequences that 
are within the same paratype or clonotype as the probe are 
predicted to bind PTx. Our hypothesis is that antibodies with 
similar paratopes will bind to similar epitopes, but our method 
does not require that there are unique paratope/epitope pair-
ings; antibodies with different paratopes may bind to the same 
epitope, and this would contribute to the false-negative rate of 
the method. The precision and recall of the two methods 

Figure 1. An example of two antibodies that bind to the same epitope but derive from different clonotypes. The murine 4C2 (PDB ID: 5do2) and D12 (PDB ID: 4zpv) anti- 
MERS-CoV antibodies target the same residues on the receptor-binding domain of the spike protein, which can be seen from alignment of their antibody/antigen 
complex structures (a). 4C2 and D12 use over 80% of the same heavy chain paratope residues (b) and target 95% of the same epitope residues (c). The antibodies are 
derived from different IGHV and IGHJ genes and display CDRH3 amino acid identity (66.7%) below standard clonotyping definitions (80–100%)5 (d), so would not be 
considered within the same clonotype.
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(calculated over the aggregate of predictions) for repertoire 
mining are comparable (Figure 2, Table 1). The precision and 
recall using clonotyping and paratyping with varying CDRH3 
sequence identity or paratope sequence identity thresholds, 
respectively, are shown in Figure 2a and 2b. The methods 
require different sequence identity thresholds for optimum 
performance but have similar precision–recall profiles.

For clonotyping, the optimal heavy-chain only threshold is 
72% CDRH3 amino acid identity. For paratyping, the optimum 
occurs at 75% paratope identity. These thresholds are optimal 
as they maximize both precision and recall, corresponding to 
the “shoulder” of the precision–recall curve. At these optimal 
thresholds, clonotyping recovers binders with 83% precision 
and 79% recall (meaning that 21% of the binders in this data set 
are not related by clonotype to any other). Paratyping recovers 
binders with a precision of 84% and a recall of 76% (meaning 
that 24% of binders in this data set have distinct paratopes). We 
expect that this would be an overestimation of performance in 
the bulk data set due to the enrichment of PTx-binders created 
through antigen-specific sorting.

For each probe, a prediction can be made by both paratyping 
and clonotyping (hereafter labeled a “Both” prediction), para-
typing alone (labeled “Paratype-only”) or clonotyping alone 
(labeled “Clonotype-only”). Out of all of these predictions, 
76.6% are made by both methods with 89 “paratype-only” pre-
dictions (precision: 76%) and 345 “clonotype-only” predictions 
(precision: 84%). Paratyping and clonotyping make a number of 
method-exclusive predictions, as shown in Figure 3, where the 
probe antibodies with the largest number of “paratype-only” and 
“clonotype-only” predictions are shown in dendrograms with 
these predictions. Figure 3 also shows the variability of the 
method’s performance across probes, with the probe antibodies 
yielding the lowest and highest precision shown. One probe 
identified 20 other PTx-binding antibodies with 100% precision, 
while another had just 33% precision. The heterogeneity in 

predictions across probe emphasizes the utility of either method 
when only a small number of binders are known, despite the 
similar behavior of the methods over the aggregate of probe 
antibodies.

Paratyping-only predictions are PTx-binding heavy chain 
sequences from different clonotypes to the probe antibody. 
There are 89 predictions, which can be split into three 
groups: 1) those with different V genes (4); 2) those with the 
same V genes but different J genes (38); and 3) those with the 
same V and J genes but with CDRH3 identity below 72.0% 
(47). For example, a pair of binders with just 40% H3 sequence 
identity but 80% predicted paratope identity were clustered 
together. Homology modeling of the sequences using 
ABodyBuilder42 suggests that the pair of sequences would 
also be predicted to be highly structurally similar (see 
Supplementary Table 2 for model information). Antibodies 
within the same paratype are predicted to bind to the same 
epitope, as it is highly improbable that sequence and structu-
rally similar antibodies would bind to completely separate 
epitopes on the same antigen. This hypothesis could be experi-
mentally validated by solving structures of antibodies in com-
plex with antigen, or with epitope competition data.

Paratyping enables the identification of novel anti-PTx 
antibodies from different clonotypes to known binders in 
prospective experiment

Paratyping and clonotyping identify different binders in 
a bulk repertoire experiment
In order to test how the methods would scale in a larger and 
non-enriched data set, we performed a prospective repertoire 
mining experiment in which the heavy chain sequences from 
PTx-binding antibodies were used to identify novel PTx- 
binding heavy chains from a set of bulk heavy chain 
repertoires.

We first looked at how the methods scale in terms of 
number of predictions, and then experimentally validated the 
PTx-reactivity of a number of the predictions made by both 
clonotyping and paratyping.

We used the thresholds determined in the single-cell sec-
tion. Sequences were considered to be in the same paratype if 
they have the same length CDRs (North definition) and above 
75% amino acid sequence identity in the predicted paratope. 
Sequences were considered to be in the same clonotype if they 

Figure 2. Precision–recall curves for clonotyping (a) and paratyping (b) in the task of predicting PTx binding. Precision and recall values are calculated over a range of 
CDRH3 sequence identity and predicted paratope identity thresholds respectively between 0.0% and 100.0% identity. The precision–recall profiles are similar.

Table 1. Precision–recall values for prediction of PTx-binding according to para-
typing and clonotyping at the optimal thresholds of 75% and 72%, respectively.

Method Sequence identity threshold Precision Recall

Paratyping 75% 84% 76%
Clonotyping 72% 83% 79%

Sequence identity is calculated across the predicted paratope for paratyping and 
across the CDRH3 for clonotyping. The methods behave comparably over the 
full precision–recall curve. These thresholds were then used for the prospective 
repertoire mining experiment.
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have the same V and J genes, the same length CDRH3 (North 
definition) and above 72% amino acid sequence identity across 
the CDRH3. The 72% value is below the most common thresh-
olds used for clonotyping (80–100%), but it was chosen for fair 
comparison with paratyping as the threshold providing the 
best performance in the single-cell section of “Results”.

Using the 364 known PTx binders as probes, 59,107 heavy 
chain sequences from bulk sequencing repertoires were 
searched for paratype- or clonotype-related sequences. A total 
of 4269 sequences were identified by both clonotyping and 
paratyping, 1113 by paratype-only and 1077 by clonotype-only.

The 1113 paratype-only predictions can be categorized as 
those with a different V gene with respect to the probe (179); of 

the 934 predictions with the same V gene, 396 have a different 
J gene; the remaining 538 predictions have sub-72% CDRH3 
identity to the probe.

Prospective experimental validation of novel PTx-binding 
sequences
For the experimental validation of predicted PTx binders and 
non-binders, we created a category of prediction more strin-
gent than the “paratype-only” or “clonotype-only” categories 
to show the utility of paratyping in a real antibody discovery 
experiment context where multiple probe sequences are avail-
able. As shown in Figure 3, a particular probe antibody may 
make predictions via clonotype or paratype alone. As reflected 

Figure 3. Representative dendrograms from the single-cell repertoire mining experiment. Probe sequences (yellow) are known PTx binding sequences. Other sequences 
which are in the same paratype or clonotype are predicted to also bind PTx. These predicted PTx binding sequences are colored according to whether they are identified 
by both paratyping and clonotyping (”Both”), paratyping but not clonotyping (”Paratype-only paratyping but not clonotyping”) or clonotyping but not paratyping 
(”Clonotype-only”). Circular leaves represent true PTx binding antibodies (i.e., true positives) while triangular leaves represent sequences that do not bind PTx (false 
positives). Dendrogram A shows the probe which had the most “clonotype-only” predictions, of which 70% are true positives; dendrogram B shows the probe with the 
most “paratype-only” predictions, of which 75% are true positives; dendrogram C is the probe antibody which is associated with the most false positives (33% true 
positives) while dendrogram D is the probe antibody associated with the most true positives (20 true positives). Performance is heterogeneous across probes ranging 
between 33% and 100% precision; precision and recall values reported elsewhere in this manuscript consider the performance in aggregate of all 364 probes. IGHV, IGHJ 
or IGK/LV genes are annotated where this changes within a dendrogram. It can be seen that PTx-binding is abrogated by all instances of a change in IGK/LV gene. 
Dendrograms are constructed using the full VH sequence with the neighbor-joining algorithm of the R package ape,40 plotted using the R package ggtree.41 The units of 
the scale bar are amino acid substitutions per residue.
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in the similarity in the precision–recall values calculated over 
the aggregate of probe antibodies in the single-cell one-versus- 
all cross-validation, these “method-unique” predictions 
become rarer when considering a larger number of probes. 
Such predictions, which could not be found by another method 
even when using the full complement of known binders, are 
referred to as “paratype-unique” or “clonotype-unique” 
predictions.

Using the 97 probes of highest SPR affinity from the single- 
cell data set, 2193 heavy chains were predicted to bind PTx. Of 
the potential 2193 predicted PTx binders, 139 were selected for 
expression (see the “Materials and methods” section) and PTx- 
binding assay. An additional 48 antibodies predicted to not 
bind PTx (due to paratope identity or shared clonotype with 
confirmed non-binders) were also tested. The predictions were 
split into thirds according to whether they were predicted by 
both methods (labeled “both”) or were unique across all bin-
ders for paratyping (“paratype-unique”) or clonotyping (“clo-
notype-unique”) (see the “Materials and methods” section).

Of the 43 novel heavy chains predicted to bind PTx by both 
paratyping and clonotyping, 39 (90%) were experimentally 
confirmed PTx binders. Paratope identity between known 
and predicted binders ranged between 83% and 100%, with 
CDRH3 identity ranging between 77% and 100%. Thirty-one 
of the 48 (65%) of the clonotype-unique predictions were true 
PTx binders, with minimally 57% predicted paratope identity 
to a known binder, 72% CDRH3 identity and 74% CDRH 
identity (amino acid identity calculated over the heavy chain 
CDRs). Fourteen of the 48 (30%) of the paratype-unique PTx 
binders bound PTx. The minimal CDRH3 identity of a PTx 
binder to any known binder was 56% with 76% paratope 
identity. The distribution of CDRH3, total CDR and total VH 
amino acid identity of novel PTx-binding heavy chains to 
known PTx-binding antibodies is shown in Figure 4 (see 
Supplementary Table 3 for a comparison of VH/JH/CDRH3 
combinations in probe antibodies and the novel PTx-binding 
antibodies discovered via paratyping, clonotyping or both 
methods). None of the 48 predicted PTx non-binders 
bound PTx.

As in the single-cell data set, the success rate in the predic-
tions that were made by both clonotyping and paratyping is 
higher than either method alone. The success rate of paratype- 
unique predictions is significantly lower than that of clono-
type-unique predictions. However, it may not be appropriate 
to compare performance across different probe antibodies, 
some of which may be liable to activity cliffs (a concept from 
small-molecule chemistry where a compound exhibits a large 
change in activity given only a small change in structure43). 
A direct comparison can be made where both clonotype- 
unique and paratype-unique predictions were made using the 
same known PTx binder. This occurred for six PTx probes, and 
across these, an average precision of 75% for paratype-unique 
and 92% for clonotype-unique was observed.

Discovery of novel anti-PTx antibodies from different 
clonotypes
Paratyping identified PTx-binding antibodies that could not be 
found using clonotyping (“paratype-unique”), for example, those 
using a different V gene to any of the known PTx binders. An 

example is shown in Figure 5), where the original antibody used 
the inherently autoreactive V gene V4-34,44 which may be pro-
blematic in development. However, paratyping recovers seven 
PTx-reactive antibodies that use the V4-59 gene segment instead.

Paratyping also recovered novel PTx-binding heavy chains 
that derive from different J genes and examples with CDRH3 
identities well below most clonotyping thresholds (com-
monly 80–100%). The minimal CDRH3 identity of 
a validated PTx-binding antibody to any known binder was 
56%, suggesting that paratyping can identify antibodies that 
bind to the same epitope that could not be found by any 
clonotyping method.

Repertoire mining can improve in silico developability 
metrics

One of the limitations of clonotyping as a method for 
immune repertoire mining is the relatively narrow sequence 
space within which it is capable of making predictions, 
meaning that the discovered antibodies may have conserved 
developability problems. We have already seen one example 
where paratyping’s ability to jump between germlines 
allows us to avoid an autoreactive V gene-derived antibody; 
other developability problems such as aggregation propen-
sity may also be improved by using paratyping.

Of the original 97 antibodies used for repertoire mining, 
38 antibodies were flagged by the Therapeutic Antibody 
Profiler (TAP) tool as having possible developability issues 
due to CDR length, high density of charge or hydrophobi-
city, or charge asymmetry between the heavy and light 
chains. As paratyping only groups of antibodies with the 
same length CDRs, we considered only the latter four 
developability metrics. Twenty-six of the original probe 
antibodies were flagged with extreme (2) or unobserved 
(24) values. Values are considered extreme (flagged as 
amber by TAP) if they fall within either the top or bottom 
5% of the distribution of values observed in a set of 377 
clinical-stage therapeutics (CSTs).45 Values are unobserved 
(flagged as red by TAP) if they are outside of the range of 
values observed in existing CSTs. Seventeen of these probes 
were used in the identification of novel antibodies assayed 
for PTx binding, of which 13 successfully identified new 
PTx binders. For four of these probes, one of the new PTx- 
binding antibodies identified showed a sufficiently large 
change in the flagged developability metric that the flag 
was removed. There were a further five new PTx-binding 
antibodies showing a shift in the flagged developability 
metric toward the mean value among CSTs.

Figure 6 shows the improvement in patch surface hydro-
phobicity achieved by immune repertoire mining using CL- 
95375 as a probe antibody. CL-95375 had an amber flag for this 
metric. Repertoire mining was used to identify a number of 
predicted PTx-binding antibodies. It can be seen that the more 
sequence-distinct paratype-only predictions are able to achieve 
greater changes in patch surface hydrophobicity (PSH). These 
predictions were not assayed as they were within the clonotype 
of another known binder, and therefore not “paratype- 
unique”.
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Discussion

Characterizing the functional relationship between sequence- 
distinct antibodies is an important step in our understanding 
of the adaptive immune landscape. Mapping antigen 

preference to antibody repertoires will allow us to identify 
epitope convergence of antibodies at a large scale. In a test 
system of transgenic mice immunized with PTx, we show for 
the first time that prediction and comparison of paratopes can 
be used to group antigen-specific antibodies in both an 
enriched, single-cell data set and non-enriched bulk heavy 
chain repertoires. We demonstrate the utility of the method 
in the context of an antibody discovery experiment alongside 
the conventional approach of clonotyping and discover new 
anti-PTx antibodies from different clonotypes to any known 
binders.

We first developed the method in a single-cell data set, 
where paratyping and clonotyping were able to group PTx- 
specific antibody heavy chains with high precision (84% and 
82%, respectively). These results may not map to the bulk 
sequencing data set given that the sequences derived from 
both plasma-, memory- and antigen-sorted cells (leading to 
ca. 30% of sequences being PTx-reactive). To validate the 
method in a less enriched data set, we performed 
a prospective experimental test of paratyping in a non- 
antigen sorted set of bulk heavy chain sequencing repertoires.

In the prospective experimental test, paratyping allowed us 
to discover new PTx-binding antibodies that we could not have 
found using clonotyping. These include antibodies that use 
different germline genes as well as antibodies with lower 
CDRH3 identity than in common definitions (80–100%). In 
terms of antibody discovery, paratyping allows us to identify 
sequence-distinct antibodies that bind to the same epitope and 
that can differ significantly in developability or affinity. In the 
terms of repertoire analysis, paratyping expands our ability to 
functionally group antibodies beyond clonotypes, and there-
fore allows us to detect specific cases of epitope convergence 
between clonotypes. For example, we found epitope conver-
gence between IGHV4-34/IGHJ6 and IGHV4-59/IGHJ6 clo-
notypes, IGHV4-39/IGHJ6 and IGHV4-39/IGHJ4 clonotypes, 
IGHV4-34/IGHJ5 and IGHV4-34/IGHJ4 clonotypes and 
IGHV5-51/IGHJ4 and IGHV5-51/IGHJ6 clonotypes in PTx 
binders. We did not observe pairs of antibodies in the same 
paratype using different V gene subgroups, but antigen- 
reactive antibodies with identical CDRH3s deriving from dif-
ferent V gene subgroups have been observed, suggesting that 
this convergence does occur.46 Paratope identity across the 
germline-encoded CDRHs 1 and 2 is equal to or in excess of 
75% across members of IGHV1 and IGHV7, and IGHV3 and 
IGHV4 (see Supplementary Figure 4), so we predict that it 
should be possible to use paratyping to find binders from 
different V gene subgroups, should a large enough sequencing 
data set be mined. The implications of this for immune reper-
toire clustering are as yet unexplored. If such convergence is 
widespread, it is possible that clonotyping overestimates func-
tional diversity, and this may account for low proportions of 
clonotypes shared across individuals.3,47

Success rates in the prospective experimental validation 
were variable across the categories of prediction. We found 
that 90% of sequences predicted by both clonotyping and 
paratyping to be binders bound PTx. The success rate was 
considerably lower in clonotype-unique predictions (65%) 
and even lower in paratype-unique predictions (30%). It 
should be noted that these method-unique predictions 

Figure 4. CDRH3, total CDR and total VH amino acid identity of novel PTx-binding 
antibodies to the known PTx-binding antibody by which they were identified, 
according to method by which they were identified. Paratyping enables the 
discovery of PTx-binding sequences with lower sequence identity across each of 
these regions with minimally 56% CDRH3 identity, 70% CDRH identity and 80% 
total VH identity.
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form the minority of predictions for either method (15–22% 
of predictions). The lower success rate of paratyping versus 
clonotyping may be attributable to the particularly low 
CDRH3 identity of these predictions to known binders – 
paratyping does not give special weight to the CDRH3 in 
the paratope identity calculation despite the particular role 
it plays in antigen complementarity. Predictions with as 
little as 33% CDRH3 identity to a known binder were 
assayed, but no antibody with a CDRH3 amino acid identity 
below 56% bound to PTx, suggesting that paratyping could 
be further improved by the use of CDRH3 weighting.

The method relies upon the accuracy of the paratope pre-
diction step. We have used a previously published sequence- 
based paratope prediction model, Parapred,37 which achieved 
the highest F-score in our benchmark (see Supplementary 
Table 4) and is fully open-source. We tested other paratope 
prediction methods as inputs to paratyping using the data from 
the single-cell experiment, and found that the results were 
comparable to those with Parapred (see Supplementary 
Table 5). Parapred’s convolutional and recurrent neural net-
works were trained and validated on 277 antibody-antigen 
complexes with protein antigens. While it is reasonable to 
expect paratyping to generalize across protein antigens, it 
may not be reasonable to expect paratyping to generalize across 
classes of antigens that did not feature in Parapred’s training 

set. Among a number of metrics shown to discern carbohy-
drate- and protein-binding antibodies, paratope size is a key 
discriminant.48–52 The application of paratope prediction 
models trained on protein antigens to carbohydrate or peptide 
antigens could lead to lower success rates in paratyping’s 
predictions.

Paratope prediction only takes around 0.1 s per sequence (of 
which 0.02 s correspond to CDR extraction) as opposed to 
0.05 s per sequence for VDJ annotation using IgBlast53), 
which means it is tractable for large datasets unlike homology 
modeling (on average 30 seconds per sequence, 600 times 
slower than germline gene annotation34). It has the advantage 
that it does not rely on the upkeep of consistent and complete 
germline databases (a leading cause of disagreement between 
germline annotation tools13), but rather on the distribution of 
a pretrained paratope prediction model.37 The paratope pre-
diction step is purely sequence-based and structural modeling 
is not required, meaning that immune repertoires can be 
annotated without accurate germline alignment and without 
access to large computing power.

Paratyping was shown to identify functional relationships 
between PTx-binding antibodies that are not related by clono-
type, as per the hypothesis that antibodies with similar para-
topes will bind to the same epitope; we would expect this to 
generalize across protein antigens. As an example, we looked at 

Figure 5. Dendrograms showing two examples of immune repertoire mining, using known PTx binders CL-95906 and CL-95940 (leaves colored yellow). Heavy chains 
predicted to bind PTx are colored as green, blue or purple depending on whether they are predicted to bind via both methods or were clonotype- or paratype-unique. 
Asterisks indicate heavy chains selected for testing, all of which were validated as PTx binding. A shows sequences predicted to bind PTx that use a different V gene 
(V459) than the known PTx binder used for prediction (V4-34). Sequences using a different J gene to the known PTx binder are shown in B.
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Cov-AbDab,54 a database of antibodies and nanobodies known 
to bind to betacoronavirus proteins. Paratyping identified 
a number of pairs of antibodies from different clonotypes 
binding to the same epitope, for example, MERS-4 and 
MERS-4-V2, D12 and MERS-27, and 27D and 6A. We further 
analyzed five separate antigen examples (hemagglutinin, 
gp120, SARS CoV-2 spike protein, gp160 and lysozyme) to 
evaluate the hypothesis that antibodies within the same para-
type bind to the same epitope. All pairs of antibodies within the 
same paratype shared some epitope residues, and would there-
fore be likely to complete for the same epitope (see 
Supplementary Table 6).

Deciphering the functional landscape of immune repertoires 
will greatly improve our understanding of the adaptive immune 
system. Improving our ability to group antibodies binding to the 
same epitope is a step toward this. Our results show here that the 
simple and computationally rapid abstraction of the antibody 
binding site used by paratyping is sufficient to group antigen- 
specific antibodies in a way that provides us with additional 
information beyond clonotyping. This additional information 
is particularly significant in the context of antibody discovery, 
where it allows us to recover different novel antigen-specific 
antibodies from immune repertoires.

Materials and methods

Data sets

Single-cell data set
Five genetically engineered mice that have a full set of human 
immunoglobulin variable region genes (Intelliselect transgenic 
mice)39 were immunized with PTx. This study was carried out 
under the Project Licenses 70/8718 issued by the UK 
Government Home Office under Animal (Scientific 
Procedures) Act (A(SP)A), 1986, incorporating Directive 
2010/63/EU of the European Parliament, and with the approval 
of the Sanger Institute Animal Welfare and Ethical Review 
Body. The institute complied with the Code of Practice issued 
by the UK Government which aids compliance with the A(SP) 
A. The institute has a PHS assurance F16-00128 (WTSI).

A total of 1290 paired (VH/VL) sequences were recovered 
from antigen-sorted, plasma and memory cells via a previously 

published method.55 These 1290 sequences were expressed in 
HEK293 cells. Antibody supernatant was collected on d 8 after 
transfection and screened for binding to wildtype PTx by 
HTRF. Positive control anti-PTx antibody (ab37574, abcam) 
was diluted in Expi293TM Expression Medium (Gibco) over an 
11-point titration using one in three dilutions to generate 
a standard curve. Titrations of 5 μl of antibody ab37574 were 
added to a 384-well white-walled assay plate (Greiner Bio-One) 
. Negative control wells received 5 μl of Expi293TM Expression 
Medium only. Five icroliters of HEK293 antibody supernatants 
(undetermined concentration) were added to one well of the 
384-well plate. Five microliters of PTx conjugated to Alexa 647 
(Lightning-Link, Innova Bioscience) (3.75 nM final concentra-
tion) was added to all wells of the assay plate except negative 
control wells, which instead received 5 μl Expi293TM 

Expression Medium. Finally, 10 μl of anti-mouse IgG donor 
antibody (Southern Biotech; to bind to murine constant region 
in control and chimeric Intelliselect transgenic mouse antibo-
dies) labeled with europium cryptate (Cis Bio), (1:4000 final 
concentration) was added to each well and the assay was left in 
the dark at room temperature to incubate for 2 h. After incu-
bation, the assay was read on an Envision plate reader (Perkin 
Elmer) using a standard HTRF protocol. Then, 620 and 665 nm 
channel values were exported to Microsoft Excel (Microsoft) 
and F calculations performed ((665/620 nm ratio – signal 
negative control)/signal negative control) × 100). Percent effect 
values were calculated for each antibody by comparing its 
F value against a positive control antibody (ab37574) at 
6.66 nM. The number of PTx-positive antibodies as a function 
of percentage effect values are shown in Figure 7a.

Antibody sequences with greater than 10% effect value 
relative to the positive control were labeled as binders. This 
resulted in 364 PTx-binders and 926 non-binders. SPR was 
performed on each of the 364 binders (Figure 7b).

Bulk data set
Heavy chains from sorted splenic B cells from the same indi-
vidual five mice as the single-cell data set were sequenced using 
standard protocols25 and processed using the pRESTO/ 
Change-O pipeline.56,57 This resulted in 259,151 heavy chain 
sequences. For quality control, only sequences with read count 

Figure 7. (a) Number of binders among the 1290 antibodies from the single-cell experiment as a function of percentage effect value relative to the positive control 
antibody, ab37574. At the chosen percentage effect of 10%, 364 of the 1290 binders are deemed PTx reactive. (b) Affinity measurements across the 364 PTx-reactive 
antibodies; antibodies in purple were used as probe antibodies for repertoire mining as per the “Repertoire mining experiment” subsection under the “Materials and 
methods” section.
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(reads with a particular unique molecular identifier (UMI)) 
above or equal to two or a consensus count (reads with differ-
ent UMIs but the same nucleotide sequence) above or equal to 
10 were considered, reducing the size of the data set to 59,107 
sequences.

Clonotyping

Clonotypes were defined as groups of heavy chain sequences 
sharing the same V and J genes, with identical CDRH3 lengths 
and a number of amino acid mismatches equal to or below 
a threshold sequence identity. VJ annotation was performed 
with IgBLAST53 within Change-O.57 CDRH3s were extracted 
according to the North definition38 with IMGT numbering58 

performed with ANARCI.59

Paratyping

Paratypes were defined as heavy chain sequences sharing the 
same CDR lengths and greater than a threshold sequence 
identity across the predicted paratope regions. CDRs were 
extracted according to North definitions38 with IMGT 
numbering58 performed via ANARCI.59

Parapred37 was used for paratope prediction using the 
model as distributed by E. Liberis at https://github.com/eli 
beris/parapred. To convert the output of Parapred, binding 
probabilities, into a binary label, we selected a threshold of 
0.67 as deemed optimal by the authors of the original paper,37 

i.e., residues with a predicted probability of being in the para-
tope of above 0.67 were annotated as paratope residues. 
Paratope identity was defined as the number of identical para-
tope residues (residues that are predicted to be in the paratope 
in both cases) divided by the smallest number of paratope 
residues of either sequence being compared (Figure 8). The 
performance of Parapred on a set of 552 antibody-antigen 
structures (SAbDab October 2020) is evaluated in 
Supplementary Table 4.

Repertoire mining experiment

In the repertoire mining experiment, we selected a number of 
hit antibodies from the single-cell data set to use as probes. SPR 
was carried out on the HTRF-positive antibodies and the high-
est affinity representatives were selected from each clonotype 
containing only sequences labeled as binders equating to 97 
antibodies, in order to align with previous repertoire mining 
experiments.9 We also selected a number of non-PTx binding 
antibodies to be used as a negative control. The non-PTx 
binding antibodies were selected as representatives of clono-
types containing only non-PTx binding sequences (551 
antibodies).

The heavy chains from these probe antibodies were used 
as probes to mine the bulk repertoires via both paratyping 
and clonotyping, using the optimal sequence identity 
thresholds from the single-cell data set (75% predicted 
paratope identity for paratyping and 72% CDRH3 sequence 
identity for clonotyping). The paratyping process is illu-
strated in Figure 9.

Predictions were labeled as “paratype-only”, “clonotype- 
only” or “both” as detailed in the “Results” section. If an anti-
body is within the same paratype as a particular probe but not 
within its clonotype, it is a “paratype-only” prediction and vice- 
versa. A prediction is labeled as “both” if it is within both the 
paratype and clonotype of the same probe. In the following 
subsection, the more stringent “paratype-unique” and “clono-
type-unique” definitions were used.

Figure 8. Method of calculating predicted paratope identity. X indicates CDR 
residues not predicted to constitute the paratope. In the example shown, the 
paratope identity is 87.5%.

Figure 9. Graphical illustration of the process of repertoire mining via paratyping. A probe antibody is selected. Paratope prediction is performed both on the probe 
antibody and the bulk data set. Heavy chain predicted paratope identity is used to mine the bulk repertoire for new predicted binders.
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Experimental validation of predicted binders
We selected 192 heavy chain sequences from the bulk data set 
for expression. A total of 144 of the sequences were predicted 
to be PTx binders using the 97 PTx-binding probe sequences. 
We created a new way of categorizing predictions in order to 
fully test the method in the context of an antibody discovery 
experiment. We define “paratype-unique” predictions as pre-
dictions which are not within the paratype of not only the 
probe in question (paratype-only) but of any of the full com-
plement of 97 probes, and similarly for “clonotype-unique” 
predictions. Paratype-unique predictions are a more stringent 
subset of paratype-only predictions and present a greater chal-
lenge of the method (as such predictions tend to be corrobo-
rated by fewer probes). Forty-eight predicted PTx-binding 
heavy chain sequences were selected from each of the three 
categories of prediction (“paratype-unique”, “clonotype- 
unique” and “both”). Five of the “both” predictions were iden-
tical to their probes. The remaining 48 sequences assayed were 
predicted non-PTx binding heavy chain sequences with 16 
sequences selected from “clonotype-unique”, “paratype- 
unique” and “both” categories of prediction.

The heavy chain sequences selected for expression from the 
bulk repertoire were paired with the cognate light chain of the 
probe sequence by which they were identified. Within- 
clonotype VH/VL pairing has been validated9,60 as a method 
of reconstituting binding where the cognate light chain is not 
sequenced. Pairings were only made where there was greater 
than 82% sequence identity across the residues considered to 
constitute the VH/VL interface, based on solvent 
accessibility,45 in order to maximize the probability of expres-
sion. These positions lie outside of the CDRs and therefore do 
not enforce any constraint on binding site sequence identity.

The predicted binding and non-binding antibodies were 
expressed in HEK293 cells. The assay is as described in the 
“Single-cell data set” “subsection under the “Materials and 
methods” section with the exception that the anti-PTx anti-
body 1B7 was used as positive control. Antibody sequences 
with an F value exceeding 100 were labeled as PTx-reactive 
antibodies.

Performance evaluation

To evaluate the performance of either method in grouping 
PTx-binding sequences, we calculated precision and recall of 
the method in the single-cell data set according to the following 
definitions of true positives, false positives and false negatives.

The task is to group antibodies that bind PTx. However, the 
method is hypothesized to work by grouping by epitope. There 
will be multiple epitopes on PTx so not all PTx-binding anti-
bodies will be grouped into a single paratype or clonotype. As 
a result, we do not expect perfect recall. Further, we do not 
classify antibodies as non-binders if they do not group with 
a particular binder – we only predict that they do not bind at 
the same epitope as the binder in question. As a result, we do 
not calculate a “true negative” rate. Precision and recall are 
calculated as per standard definitions (TP/FP+TP, TP/TP+FN, 
respectively).

True positive (TP): A PTx-binding sequence that was iden-
tified by another PTx-binding sequence.

False positive (FP): A non-PTx-binding sequence that was 
identified by a PTx-binding sequence.

False negative (FN): A PTx-binding sequence that was not 
identified by any PTx-binding sequence.

In silico developability assessment

We calculated the in-silico developability metrics of total CDR 
length, PSH, patches of positive charge, patches of negative 
charge and structural Fv charge symmetry parameter using the 
Therapeutic Antibody Profiler tool (TAP).45 The tool calculates 
these metrics from homology models built using 
ABodyBuilder42 and compares them to a database of 277 
CSTs.61 According to the metric in question, values are flagged 
as “amber” (extreme) if they lie outside the upper or lower, or 
upper and lower, 5% of observed values among CSTs. An 
antibody is flagged as “red” if the value of a particular metric 
is outside of the observed range in CSTs.45
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