
Sequence analysis

Data-dependent bucketing improves

reference-free compression of sequencing reads

Rob Patro1 and Carl Kingsford2,*

1Department of Computer Science, Stony Brook University, Stony Brook, NY 11794-4400, USA and 2Department

Computational Biology, School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh,

PA 15213, USA

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol

Received on November 16, 2014; revised on April 11, 2015; accepted on April 20, 2015

Abstract

Motivation: The storage and transmission of high-throughput sequencing data consumes signifi-

cant resources. As our capacity to produce such data continues to increase, this burden will only

grow. One approach to reduce storage and transmission requirements is to compress this

sequencing data.

Results: We present a novel technique to boost the compression of sequencing that is based on

the concept of bucketing similar reads so that they appear nearby in the file. We demonstrate that,

by adopting a data-dependent bucketing scheme and employing a number of encoding ideas, we

can achieve substantially better compression ratios than existing de novo sequence compression

tools, including other bucketing and reordering schemes. Our method, Mince, achieves up to a

45% reduction in file sizes (28% on average) compared with existing state-of-the-art de novo com-

pression schemes.

Availability and implementation: Mince is written in Cþþ11, is open source and has been made

available under the GPLv3 license. It is available at http://www.cs.cmu.edu/�ckingsf/software/mince.

Contact: carlk@cs.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The tremendous quantity of data generated by high-throughput

sequencing experiments poses many challenges to data storage and

transmission. The most common approach to reduce these space re-

quirements is to use an ‘off-the-shelf’ compression program such as

gzip (by Gailly and Adler, http://www.gnu.org/software/gzip/) or

bzip2 (by Seward, http://www.bzip.org) to compress the raw read

files. This approach can result in substantial savings during storage

and transmission. These programs are general purpose, well-tested,

and highly scalable. However, research over the past few years has

demonstrated that approaches specifically tailored to compressing

genomic data can achieve significantly better compression rates than

general-purpose tools.

We introduce Mince, a compression method specifically de-

signed for the compression of high-throughput sequencing reads,

that achieves state-of-the-art compression ratios by encoding the

read sequences in a manner that vastly increases the effectiveness of

‘off-the-shelf’ compressors. This approach, known as compression

boosting, has been effectively applied in other contexts, and is re-

sponsible for the widely observed phenomenon that BAM files be-

come smaller when alignments are ordered by genomic location.

This places more similar alignments nearby in the file and results in

more effective compression being possible. Mince is able to produce

files that are 28% smaller than those of existing compression meth-

ods in a comparable amount of time.

Existing work on compressing sequencing reads falls into two

main categories: reference-based and de novo compression.

Reference-based methods most often, but not always (Bonfield and

Mahoney, 2013; Kingsford and Patro, 2015; Rozov et al., 2014), at-

tempt to compress aligned reads (e.g. BAM format files) rather than

VC The Author 2015. Published by Oxford University Press. 2770
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 31(17), 2015, 2770–2777

doi: 10.1093/bioinformatics/btv248

Advance Access Publication Date: 24 April 2015

Original Paper

http://www.cs.cmu.edu/~ckingsf/software/mince
http://www.cs.cmu.edu/~ckingsf/software/mince
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv248/-/DC1
``
''
http://www.gnu.org/software/gzip/
http://www.bzip.org
-
``
''
-
Rozov etal.,2014;
http://www.oxfordjournals.org/

raw, unaligned sequences. They assume that the reference sequence

used for alignment is available at both the sender and receiver. Most

reference-based approaches attempt to take advantage of shared in-

formation between reads aligned to genomically close regions, and

to represent the aligned reads via relatively small ‘edits’ with respect

to the reference sequence (Bonfield and Mahoney, 2013; Campagne

et al., 2013; Fritz et al., 2011; Kozanitis et al., 2011; Li et al., 2013;

Popitsch and von Haeseler, 2013). These methods can, in general,

be very effective at compressing alignments, but this does not neces-

sarily imply effective compression of the original read sequences

(Kingsford and Patro, 2015). Thus, if one is interested in the most

efficient methods to compress the raw reads, reference-based meth-

ods can have drawbacks when compared with de novo approaches.

They are generally slower, since they require that reads be mapped

to a reference before being compressed. They assume that the sender

and receiver have a copy of the reference (which, itself, would have

to be transferred) and that the set of reads can be mapped with rela-

tively high quality to this reference (such methods may perform

poorly if there are many unmapped reads). Furthermore, since dif-

ferent types of analysis may require different types of alignments, re-

covering the original BAM file may not always be sufficient, in which

case further processing, such as extracting the original sequences

from the alignment file, may be required.

Conversely, de novo approaches compress the raw sequencing

reads directly, and because they do not require aligning the reads to

a reference, are often able to compress the reads much more quickly.

De novo compression methods often work by trying to exploit re-

dundancy within the set of reads themselves rather than between the

reads and a particular reference (Adjeroh et al., 2002; Bhola et al.,

2011; Bonfield and Mahoney, 2013; Brandon et al., 2009; Cox et

al., 2012; Deorowicz and Grabowski, 2013; Hach et al., 2012;

Jones et al., 2012; Tembe et al., 2010).

Although most approaches tend to fall into one or the other of

these categories, some tools expose both reference-based and

reference-free modes (Bonfield and Mahoney, 2013). Notably, Jones

et al. (2012) introduced a novel approach for obtaining some of the

benefits of reference-based compression, even when no reference is

available, by constructing one ‘on-the-fly’.

Another similar area of research is the compression of collections

of related genomes (Christley et al., 2009; Deorowicz and

Grabowski, 2011; Pavlichin et al., 2013; Pinho et al., 2012;

Rajarajeswari and Apparao, 2011; Wang and Zhang, 2011). These

approaches are able to achieve a very high degree of compression,

but generally rely on encoding a sparse and relatively small set of

differences between otherwise identical sequences. Unfortunately,

the reads of a sequencing experiment are much more numerous and

diverse than a collection of related genomes, and hence, these meth-

ods do not apply to the compression of raw or aligned sequencing

reads.

We focus on the problem of de novo compression of raw

sequencing reads, since it is the most generally applicable. Mince

was inspired by the approach of Hach et al. (2012) of compression

‘boosting’. Mince only compresses the actual sequences, because the

compression of quality scores and other metadata can be delegated

to other approaches (Cánovas et al., 2014; Ochoa et al., 2013; Yu et

al., 2015) that are specifically designed for compressing those types

of data.

At the core of Mince is the idea of bucketing, or grouping to-

gether, reads that share similar sub-sequences. After reads are as-

signed to buckets, they are reordered within each bucket to further

expose similarities between nearby reads and deterministically trans-

formed in a manner that explicitly removes a shared ‘core’ substring,

which is the label of the bucket to which they have been assigned.

The information encoding this reordered collection of reads is then

written to a number of different output streams, each of which is

compressed with a general-purpose compressor. Depending on the

type of read library being compressed, we also take advantage of the

ability to reverse complement reads to gain better compression.

In the presence of a reference, placing reads in the order in which

they appear when sorted by their position in the reference reveals

their overlapping and shared sequences. Without a reference, we

cannot directly know the reference order. The bucketing strategy

described here attempts to recover an ordering that works as well as

a reference-based order without the advantage of being able to

examine the reference.

We demonstrate that the bucketing scheme originally introduced

by Hach et al. (2012), though very effective, can be substantially im-

proved (on average>15%) by grouping reads in a data-dependent

manner and choosing a more effective encoding scheme. Choosing a

better downstream compressor, lzip (by Diaz, http://www.nongnu.

org/lzip/lzip.html) leads to a further reduction in size of 10%.

Overall, Mince is able to obtain significantly better compression

ratios than other de novo sequence compressors, yielding com-

pressed sequences that are, on average, 28% smaller than those of

SCALCE.

2 Algorithm

Mince’s general approach to compression is to group together simi-

lar sequences to make the underlying compression algorithm more

effective. Thus, we want to re-order the set of reads so that those

that share similar sub-sequences will appear close to each other in

the file.

To achieve this goal Mince encodes a set of reads in a few

phases, which are described later. The result of this processing is to

place a transformed set of the original reads into a collection of

buckets, each of which is designed to expose coherent sequence to

the downstream compressor. The contents of these buckets, along

with the information required to invert any transformations that

have been applied, are written to a set of different output streams

and compressed using a general-purpose compression tool.

Local bucketing. The first phase of Mince aggregates reads into

buckets. A bucket b consists of a label ‘ðbÞ and a collection of reads.

The goal is to place within each bucket a collection of reads that are

‘similar’ to each other. In addition to being a difficult problem the-

oretically—bucketing is essentially clustering—the method we

choose for bucket creation and assignment must be practically fast

to handle the large number of reads we observe in most datasets.

The approach we take to this problem is one of streaming bucket as-

signment based on a cost function that is designed to identify similar

reads while simultaneously being quick to compute.

When a read, r is processed, we look through all k-mers (15-

mers by default) in the read as well as its reverse complement rc(r)

and check which k-mers, if any, correspond to the labels of existing

buckets. Let buckets(r) be the set of existing buckets whose label

matches some k-mer of r or rc(r). The set buckets(r) is a set of candi-

date buckets against which we will score the newly processed read r.

We will then assign r to the bucket b� that satisfies

b� ¼ arg max
b2bucketsðrÞ

j‘�mersðrÞ \ ‘�mersðbÞj; (1)

where ‘�mersðrÞ denotes the set of all ‘-mers in the read r and, by

slight abuse of notation, we denote the set of all ‘-mers in a bucket b

by ‘-mersðbÞ ¼ [r02b ‘-mersðr0Þ. By default ‘ ¼ 8. In Equation (1),

Data-dependent bucketing improves compression 2771

``
''
al.,2011;Fritz et
to
(Bonfield and Mahoney,2013;
al.,2012;Hach et
While
``
''
(
2011;Pavlichin etal.,2013;Deorowicz and Grabowski,
;Pinho etal.,2012;Christley etal.,2009
``
''
(Ochoa etal.,2013;
``
''
 greater than
http://www.nongnu.org/lzip/lzip.html
http://www.nongnu.org/lzip/lzip.html
Mince 's
below.
``
''
 —
 —
data sets.
.
.
e
)

we are measuring the score of read r with respect to each bucket b in

which it can be placed. The score is simply the number of length-‘

substrings (‘-mers) that are shared between the read r and the set of

all reads currently in bucket b.

If b� is labeled by a k-mer of r, we place r in the bucket b�, while

if b� is labeled by a k-mer of rc(r), we instead place rc(r) in the

bucket b�. We also record whether r or its reverse complement is

being assigned to a bucket (see later). If no k-mer in this read is the

label for an existing bucket [bucketsðrÞ ¼ ;], a new bucket is cre-

ated. Initially, this new bucket will contain only this read, and its

label will be the minimizer (Roberts et al., 2004) of this read—the

lexicographically smallest k-mer among those in r and rc(r). We

begin with no buckets.

Intuitively, we are trying to assign each read to the bucket whose

contents share the most substrings with the read, with the hope that

the compressor will be able to exploit the redundancy of these

shared substrings. The set of ‘-mers in a bucket acts as a lightweight

model of the bucket contents and allows us to quickly estimate the

relative benefit of each bucket assignment. Because we only consider

placing r in the buckets labeled with some k-mer of r, we will only

ever have to compute the score of assigning r to a relatively small

number of buckets [never more than 2ðjrj � kþ 1Þ—the factor of 2

comes from considering both r and rc(r)]. This ensures that each

read can be assigned to a bucket in time independent of the number

of buckets or reads. When read r is assigned to a bucket, the set of

‘-mers of this bucket is updated to include any new ‘-mers present

in r that did not previously exist in the bucket.

Reassigning singletons. The choice of the bucket into which a

read r is placed is greedy, as the bucket contents themselves depend

on the set of reads that have already been processed and the order in

which they were observed. Thus, it is quite possible that, at the point

r is observed, it will be bucketed using k-mer sr, but subsequently

some other string s0r contained within the read will actually corres-

pond to a better bucket as determined by Equation (1). In the most

extreme case, the bucket sr may contain only r. We call these reads

that are alone in a bucket singleton reads and their buckets singleton

buckets. These buckets are likely to be poorly compressed.

In an attempt to mitigate this effect, we perform a ‘rescue’ step

after the initial bucketing in which we attempt to re-assign singleton

reads to some other non-empty bucket. Specifically, let the set of

singleton reads be denoted S. We attempt to re-bucket each singleton

read in light of the buckets containing all other observed reads. We

remove all the singleton buckets and then re-process the reads in S,

assigning each to the remaining bucket that satisfies Equation (1).

Because we now have a larger set of buckets than we did when ini-

tially processing the singleton reads, a number of these singletons

can often be placed into non-empty buckets. This allows us to ex-

ploit shared sequence that occurs after the singleton read in the input

file. If, during this rescue step, we are unable to place a read into

any existing bucket, we place it into a special singleton bucket,

which is labeled by the empty string. These remaining singletons

will simply be 2-bit encoded and written at the beginning of the

compressed file.

Read transformation. When a read r is placed in a bucket, it is

encoded using a transformation encðrÞ, illustrated in Figure 1 that

was initially described in Hach (2013). This transformation parti-

tions the read r, conceptually, into three regions such that

r ¼ x � ‘ðrÞ � y, where � represents string concatenation and ‘ðrÞ is the

label of the bucket into which this read is being placed. Given this

partition, encðrÞ ¼ ðy � x;oÞ where o is the offset into the original

read where the first occurrence of ‘ðrÞ appears. We call this the split-

swap read transformation, since it splits the read at a particular

offset and swaps the second and first substrings produced by this

split. Given ‘ðrÞ and encðrÞ, it is possible to reconstruct r. The pur-

pose of this transformation is twofold. First, it removes explicit re-

dundancy [i.e. ‘ðrÞ] that exists among the reads that have been

bucketed together. Second, it moves to the front of each read in the

bucket the region of the read that directly follows the shared sub-

string. Prefixes of these regions are more likely to share similar se-

quence, and placing them at the front of every read may improve the

ability of the downstream compressor to discover and exploit these

shared substrings. Within each bucket, the reads are sorted by the

offset of the first occurrence of the label string within the read, with

ties being broken lexicographically.

Sub-bucketing and bucket ordering. Once each read has been as-

signed to a final bucket, the buckets are encoded and written to file.

Because most buckets are small, we avoid using a relatively large 4

or 8 byte integer to record the size of each bucket. Rather, large

buckets are broken up into sub-buckets, each with a maximum size

of 256 reads. The sub-buckets belonging to a single bucket are writ-

ten to file sequentially, and the order of the reads in the concaten-

ation of these sub-buckets is the same as the order of the reads

within the original bucket.

As it leads to improved compression, we choose to record the

transformed read sequences, concatenated together, using 2-bit

encoding. The raw bitstream contains sequences of bits encoding the

read sequences, separated by segments of control information

encoding the label string for a bucket, its length and the number of

elements in the sub-bucket to follow.

Because the reads in each bucket are sorted according to the off-

set of the bucket label, these offsets will then be a non-decreasing list

of positive integers. This allows us to encode them using delta

encoding, which we find leads to improved compression. The lexico-

graphic tie-breaking is performed with respect to the reads after they

have been encoded, as described earlier.

2.1 Mince file format
The bucket information output by Mince consists of two required

files and two optional files. The required files are fseq and foffset. fseq

consists of the read sequence and ‘control’ information. This stream

begins by recording the necessary meta-data about the entire set of

reads such as the read length and the read library type, which signi-

fies which types of read transformations may be performed lossily

(Section 2.2). This information is then followed by the count of

singletons (encoded as a 32-bit unsigned integer) and a bitstream

containing all singleton reads, sorted reverse lexicographically and

2-bit encoded. The singleton reads are then followed by a collection

of sub-buckets that constitute the remainder of the file.

Fig. 1. When a read r is placed into a bucket, it is encoded by splitting it at the

first occurrence of the bucket label in r, removing this substring and placing

the proceeding substring at the front of the encoded read

2772 R.Patro and C.Kingsford

,
.
below
(),
r
 —
(
 —
)).
e
``
''
e
,
3
,
,
(
)
Since
,
Since
above.
2
2
``
''
see

Each sub-bucket contains the following control information: the

size of the bucket label, the sequence of the bucket label (2-bit

encoded), the number of elements, m, in the sub-bucket minus one

(this is encoded with an 8-bit unsigned integer and thus has a max-

imum value of 255), and a sequence of m encoded reads. Each read

is written as the 2-bit encoding of split-swap(r,o). If a sub-bucket

has the same core string as the preceding sub-bucket, we record a

length of 0 for the bucket label, and we do not re-record this string

for the current sub-bucket.

The file foffset simply consists of a list of positions of the bucket

labels within each read, where the read order is the same as in fseq.

These offsets are delta-encoded within each sub-bucket. Because the

reads within each sub-bucket are sorted by the bucket label offset,

this often exposes long runs of 0s in the offset stream that are

encoded particularly well.

The two optional files are the reverse complement file frc and the

file fN containing the location of Ns in the original reads. frc consists

of a simple binary stream of 0s and 1s that encode, for each read in

fseq whether we encoded the original read (in which case we record

a 0) or the reverse-complement of the read (in which case we re-

cord a 1). Because it may not be necessary to recover the original

strand of the raw reads, which is often arbitrary, this stream can

sometimes be discarded, though it is often of a negligible size. For

example, when dealing with single-end reads that do not originate

from a known strand of DNA or RNA, a given read r and its reverse

complement rcðrÞ are often equivalent for the purpose of most ana-

lyses—the same is also true of non-strand-specific paired-end reads,

though the relative orientation of these reads should be preserved

(Section 2.2).

Finally, fN consists of the positions of all of the nucleotides that

were recorded as N in the original sequencing reads. This file is ne-

cessary because we rely, in fseq, on a 2-bit encoding of the sequences.

To allow this, we transform all Ns into a 2-bit representable charac-

ter (we chose As) when encoding the reads. fN is written in a binary

format where each entry consists of the index of the next read con-

taining encoded Ns, the number of Ns in this read and then the pos-

itions, within this read, where the Ns occur. The fN file is often

optional because, if we are encoding a FASTQ file and maintain the

quality values, they can be used to recover the positions in each read

where Ns have been called (Hach et al., 2012).

All of these output files—fseq, foffset and optionally frc and fN —

are subsequently compressed independently using the lzip compres-

sor as part of the Mince program.

2.2 Handling paired-end reads
There is significant diversity in the type of information that may be

represented by a set of read sequences. For example, reads can be

paired-end or single-ended; they can have a prescribed strandedness,

or originate from either strand. Paired-end read libraries, addition-

ally, are prepared in a way that results in the mate pairs having a

prescribed relative orientation—that is, they may face in the same

direction, away from each other or toward each other.

Mince handles paired-end reads by first concatenating the left

and right ends of the pair together in accordance with a user-pro-

vided library type. The library type specifies the relative orientation

of the two reads as well as whether or not one of the reads is pre-

scribed to originate from a particular strand (e.g. as in a stranded

library preparation protocol). Specifically, Mince reverse comple-

ments one of the ends of the paired-end read, if necessary, to ensure

that both pairs are oriented with respect to the same strand. For

example, if the reads are sequenced according to the standard

paired-end Illumina protocol, they will face toward each other and

come from complementary strands of the molecule being sequenced.

In this case, reverse complementing the second read of the pair will

reverse its orientation and strand to be consistent with that of the

first read in the pair. The library type is encoded as a 1-byte number

and placed at the beginning of the fseq file. This allows the relative

orientation of paired-end reads to be properly recovered during

decoding. After this transformation, the resulting sequences are then

encoded simply as if they were single-end reads. By encoding the

lengths of the left and right mates, the reads can then be separated

into two streams during or after decoding to recover the original

mated reads. Because Mince, like SCALCE (Hach et al., 2012), re-

orders the reads, if the mates were encoded separately, it would

have to either re-order one end according to the order induced by

the other, or record, explicitly, the permutation between the two

encoded files. The first of these strategies usually results in a larger

encoded size, while the latter limits the ability to perform streaming

decompression, since the positions of the mates of a pair may be ar-

bitrarily different in their respective encoded files. These consider-

ations led us to choose the strategy of concatenating the mate pairs

to handle paired-end reads.

3 Results

3.1 Mince produces smaller files than other de novo

compressors
We compared Mince against fastqz (in reference-free mode) and

SCALCE, both of which were among the top de novo compression

tools in a recent survey (Bonfield and Mahoney, 2013). We also ex-

perimented with the fqzcomp (Bonfield and Mahoney, 2013) pro-

gram, but it performed worse than fastqz in all of our tests, and so

the results are not reported here. We used SCALCE version 2.7, and

encoded the read sets with the default options. Paired-end reads

were encoded by SCALCE using the -r option. We used fastqz

version 1.5, and compressed reads using the c command. Fastqz

does not handle paired-end reads in a special way, so we provided

fastqz with a single file of the concatenated paired reads, prepared

as described in Section 2.2. Finally, we used Mince version 0.6 and

encoded reads with the default options (except for the ‘no rc’ sizes

which were generated using the -n flag) and the default k-mer size

of k¼15.

For a fair comparison, we extracted the sizes of the various encod-

ings that represent the sequence only, ignoring sections of encoded

files corresponding to quality values and names. This is straightfor-

ward since the top de novo compressors against which we compared

write different parts of the encoded data (i.e. sequences, qualities and

names) to different files, because data of a similar type tend to share

more patterns and be more easily compressed than more heteroge-

neous data. For SCALCE, we report the size of the.scalcer file for

single-end reads or the sum of the two appropriate.scalcer files for

paired-end reads. For fastqz, we report the size of the.fxb.zpaq

files and for Mince we report the sum of the.seqs, .offs and .nlocs

files, which correspond to fseq, foffset and fN.

We measured compression performance on the diverse array of

sequence files listed in Table 1. This collection of data represents se-

quences from a mix of different organisms and types of experiments.

Further, there is substantial technical diversity among this set of

files; the sequences vary significantly in read length and paired-

endedness. We selected this set of data to explore the relative per-

formance of these different de novo compression techniques on data

of varying type, quality and redundancy.

Data-dependent bucketing improves compression 2773

Since
Since
 —
see
As
 —
 —
 —
Since
``
''
).
 =
,

The resulting compressed file sizes are recorded in Table 2. Over

the nine different test files, Mince always produces the smallest

encoding. This result holds regardless of the read-length, single/

paired-endedness of the file or the organism from which the reads

were sequenced. In most cases, the Mince-encoded files are substan-

tially smaller than those produced by competing methods, in some

cases achieving up to a 66% reduction in file size of fastqz and a

45% reduction in file size over SCALCE, which is generally the next

best method.

3.2 Exploiting reverse complementation leads to

improved compression
If the reverse complement of reads is not considered during bucket-

ing, Mince produces larger files (Fig. 2) than when reverse comple-

ment sequences are considered. In fact, for each read set we use

here, the sum of the sizes of the Mince encoded file and frc, the file

which encodes whether or not each read was reverse complemented,

is smaller—usually by a substantial amount—than the encoding size

that we would be able to achieve if we did not allow reverse comple-

menting of the reads in the first place. This is due to the fact that the

frc file is very small—typically only a few megabytes (Table 2, frc col-

umns). Further, if we do not need to recover the original orientation

of the reads, the frc file can be discarded completely. These results

suggest that, even if a transformation cannot be performed lossily,

such as reordering the reads, it may still prove beneficial to perform

the lossy transformation and additionally encode the sideband infor-

mation necessary to recover the original data completely.

3.3 Mince is better able to exploit k-mer redundancy
The number of duplicated k-mers (identical k-mers that appear mul-

tiple times) in a file is a strong indicator of the benefit of Mince over

other methods. This indicates that Mince is better able to identify

and exploit sequence similarity between the reads than other

approaches. The lower the number of distinct k-mers per byte, the

greater was Mince’s compression ratio relative to SCALCE (Fig. 3).

Files with highly diverse sequences contain little redundancy and are

thus more difficult to compress in a de novo setting (although Mince

is still able to compress them more effectively than other methods).

Table 1. Different read sets used in the experiments. ‘PE’ indicates paired-end reads while ‘SE’ indicates single-end reads

Dataset Read length (bp) Read type Description No. reads

SRR034940 100� 2 PE Whole genome (H. sapiens) 18 037 535

ERR233214 92� 2 PE Whole genome P. falciparum 7 578 837

SRR037452 35 SE RNA-seq H. sapiens brain tissue 11 712 885

SRR445718 100 SE RNA-seq H. sapiens oocyte 32 943 665

SRR490961 100 SE RNA-seq H. sapiens ES cell 49 127 668

SRR635193 108 PE RNA-seq H. sapiens pooled placental amnion 27 265 881

SRR1294122 101 SE RNA-seq H. sapiens ES cell line UCLA6 39 666 314

SRR689233 90� 2 PE RNA-seq M. muculus 16 407 945

SRR519063 51� 2 PE RNA-seq P. aeruginosa 26 905 342

Table 2. Sizes (in bytes) of the compressed sequences from a number of different sequencing experiments, using both lzip and gzip com-

pression as the downstream compressor

Using gzip Using lzip

Read set fastqz SCALCE Mince frc Mince no RC Mince frc

SRR034940 761 004 012 773 713 270 742 714 887 2 206 070 763 594 066 714 253 615 2 224 625

ERR233214 110 774 782 108 400 240 96 358 342 934 495 114 197 621 85 981 514 946 677

SRR037452 85 510 908 66 629 150 58 819 463 1 323 208 62 823 740 53 087 524 1 304 612

SRR445718 325 231 326 252 989 630 191 556 289 3 665 690 213 776 989 159 655 281 3 659 251

SRR490961 444 636 843 300 176 804 211 414 052 5 536 382 241 571 742 169 544 398 5 531 911

SRR635193 355 334 940 294 524 184 261 228 305 3 137 672 297 856 270 237 200 862 3 162 639

SRR1294122 441 798 609 299 329 596 230 388 405 4 284 749 260 421 919 201 020 800 4 208 551

SRR689233 247 811 387 233 812 318 199 160 825 1 945 419 225 423 423 175 824 235 1 944 118

SRR519063 162 308 902 100 399 410 66 749 829 3 347 952 78 356 214 55 514 875 3 386 879

The numbers that appear in the frc columns are the sizes of the file that encodes which reads were reverse-complemented during encoding, which is required if

the original strand of the read needs to be preserved

Fig. 2. Even when the record of which reads were reverse-complemented

needs to be maintained, Mince produces smaller files when it is allowed to

consider both a read and its reverse complement

2774 R.Patro and C.Kingsford

9
,
Figure
 —
 —
 —
Mince 's
Figure
,

3.4 Effect of bucket label size
The single user-tunable parameter to Mince is the size of the k-mer

used to label the buckets into which reads are placed. Reads are only

considered for placement in a bucket if they contain the k-mer that

labels that bucket. Thus, using shorter bucket labels will, in general,

increase the number of buckets we examine when trying to assign a

read, potentially leading to a better match between the read and

bucket. Conversely, because all of the reads belonging to a bucket

have the bucket label explicitly removed when they are encoded and

written to file, using longer labels may result in better compression

because more redundancy is explicitly removed from the reads.

We use a default bucket label size of 15 in Mince and find that it

works well over a wide range of different files. We investigated the

effect of this parameter to ensure that the results we observe are ro-

bust to its setting. We encoded the same set of files from Table 2

using a smaller bucket label size of 12. This size was chosen to

match the length of the ‘core’ strings used to label buckets in

SCALCE. We find that, though length 15 bucket labels generally re-

sult in better compression than length 12 labels, the difference is

fairly minor. In fact, files encoded using length 12 bucket labels are,

on average, only 1.5% larger than those encoded using length 15

bucket labels. The single largest relative difference occurred with the

read set SRR490961, where the Mince encoding using length 15

bucket labels was 5.8% smaller than the encoding using length 12

bucket labels. We also observed that the file SRR037452 actually

compressed better using length 12 bucket labels and was 2.6%

smaller than its counterpart encoded with the default bucket label

size. This indicates Mince’s advantage over SCALCE is not due to

simply choosing larger ‘core’ strings. It is likely that small changes in

the size of the label string will have only a small effect on the set of

reads which appear close together in the final ordering, and despite,

the fact that a small change in the label length will change the num-

ber of buckets, we expect that it will have a substantially smaller

change on the distance in the final order among sets of similar reads.

3.5 Effect of read order on compression size
Because the bucketing schemes used by Mince and SCALCE are both

heuristic in nature, they are, in theory, affected by the order in which

the reads are observed. We expect that in most files, the order of the

reads will be random. However, a particularly beneficial or adver-

sarial read order might result in significantly different compression

ratios.

To explore the effect of read order on the ability of Mince and

SCALCE to compress reads, we performed two different tests. First,

we tested the ability of Mince and SCALCE to compress a given file

(SRR1294122) under 10 random permutations of the read order

within the file. We find that, across 10 trials, neither Mince nor

SCALCE appears sensitive to the order of reads in the file. For

Mince, the maximum difference in the compressed file size between

the largest and smallest files over the 10 trials was 43, 410 bytes or

0.02% of the average compressed file size. For SCALCE, the max-

imum difference was 30 379 bytes, or 0.01% of the average com-

pressed file size.

To demonstrate that Mince and SCALCE both have relatively ef-

fective bucketing heuristics that result in compression rates which

are robust to the order in which reads are observed in the input, we

attempted to create a particularly beneficial read order. Using the

same file, SRR1294122, we aligned the reads against the Ensembl

human transcriptome (Flicek et al., 2013) using the STAR aligner

(Dobin et al., 2013). The resulting BAM file was then sorted by align-

ment location and converted back into a FASTQ file, which was then

encoded with Mince, SCALCE and lzip.

Similar to the randomization tests described earlier, presenting

the reads to Mince and SCALCE in this favorable order has little

effect on the size of the resulting compressed files. Specifically,

compared with the size of the file compressed in the given order

(Table 2), the size of the compressed file produced by Mince when

the reads were given in alignment-sorted order was only 0.2%

smaller, while the SCALCE file was only 3.2% smaller.

However, if we simply extract the sequences from the original

FASTQ and compress them using lzip, the size difference between

the random and alignment-ordered files is very large. Specifically,

the size of the randomly ordered sequences when compressed by lzip

is 826 708 745 bytes while the size of the alignment-ordered raw se-

quences when compressed by lzip is only 309 463 739. Thus, re-

ordering the reads before compressing them with lzip reduced the

size of the file by 63% percent. In this case, the re-ordered reads,

simply compressed with lzip approaches the size of the original file

as compressed with SCALCE; it is only �9.6 Mb or 3.4% larger.

However, this file is still �106.3 Mb or 56.3% larger than the

Mince compressed file. This indicates that Mince is better able to re-

cover an ordering as good as the ‘reference-based’ ordering.

These experiments suggest that the order in which reads are

observed by Mince and SCALCE has little effect on their ability to

successfully compress a file. Overall, the difference in resulting file

sizes when the underlying read order is permuted is very small.

3.6 The choice of downstream compressor can have a

significant effect
Mince uses plzip, a parallel implementation of lzip, as its down-

stream compressor. This is different from SCALCE, which by default

boosts gzip compression. Our choice was motivated by the fact that

lzip generally produces smaller files than either gzip or bzip2.

Though lzip tends to be somewhat slower than gzip in terms of com-

pression speed, it is still reasonably fast and has comparable speed

during decompression, which is the more important factor in our

case, as reads will generally only be compressed once, but may be

decompressed many times. The choice of lzip as the downstream

compressor leads to an improvement in the compression ratio of

Fig. 3. The more redundant the k-mer (15-mer) content of the file (as meas-

ured in distinct k-mers -per-byte along the x-axis), the better able Mince is to

exploit this redundancy and produce smaller files. Even in read sets with high

k-mer diversity, Mince produces smaller files than SCALCE. However, as the

level of redundancy increases, the data-driven bucketing scheme employed

by Mince is better able to take advantage of sequence similar reads, resulting

in better overall compression ratios and a larger marginal gain over the sim-

pler bucketing approach of SCALCE

Data-dependent bucketing improves compression 2775

``
''
,
Mince 's
``
''
,
,
,
above
to
-
,
,
,
,
about
6Mb
about
3Mb
``
''

Mince over what might be obtained if we relied on the same down-

stream compressor, gzip, as SCALCE.

To test the overall effect of boosting lzip rather than gzip com-

pression, we ran Mince on all of the files from Table 2, but com-

pressed the resulting files with gzip instead. This resulted in the file

sizes reported in Table 2 in the middle columns. On average, the

lzip-compressed files are 13% smaller than their gzip-compressed

counterparts. We note that the gzip-compressed Mince files are still

much smaller than their SCALCE counterparts, providing evidence

that Mince is generally a more effective compression booster regard-

less of downstream compressor.

In addition, Mince can be used to boost the compression of other

read compression techniques. Supplementary Table S1 shows the

improved compression achieved by fastqz when it is provided

read files that have first been reordered using Mince. Although

Mince combined with lzip provides the best compression, Mince

combined with fastqz improves the fastqz compression by a sig-

nificant amount. This further indicates the usefulness of the Mince

reordering strategy and is evidence that the Mince reordering may

be useful to boost the compression of other tools.

3.7 Computational resources required
Supplementary Tables S2 and S3 provide detailed timing and mem-

ory usage for both SCALCE and Mince for the compression and de-

compression phases. When encoding, Mince is slower than SCALCE

when using four threads. It also uses more memory than SCALCE, al-

though its memory usage is still within practical limits (3–16 Gb).

This is the tradeoff needed to achieve the significantly better com-

pression of Mince. (When run with 20 threads, Mince runs on the

order of a few minutes (3–15 min/file), making multi-core compres-

sion significantly more practical; see Supplementary Table S4).

When decompressing, however, Mince is often faster and uses less

memory than SCALCE. This is a reasonable tradeoff (slower, better

compression but faster decompression) since decompression is the

more common task.

4 Discussion

We introduced Mince, a de novo approach to sequence read com-

pression that outperforms existing de novo compression techniques

and works by boosting the already impressive lzip general purpose

compressor. Rather than rely on a set of pre-specified ‘core sub-

strings’ like SCALCE (Hach et al., 2012), Mince takes a data-driven

approach, by considering all k-mers of a read before deciding the

bucket into which it should be placed. Further, Mince improves on

the ‘heaviest bucket’ heuristic used by SCALCE, and instead defines

a more representative model for the marginal benefit of particular

bucket assignment. This model takes into account the ‘-mer

composition of the read and how similar it is to the set of ‘-mers of

reads that have already been placed in this bucket. Early on in

the processing of a file, when little information exists about the

relative abundance of different k-mers, ties between buckets are

broken consistently by preferring to bucket a read based on its

minimizer.

This approach allows the selection of core substrings that are

among the most frequent k-mers in the provided set of reads, and

the improved model for bucket assignment leads to more coherent

buckets and better downstream compression. In the rare situations

where a specific order is required for the reads, Mince is not the

most appropriate compression approach. Further, in addition to re-

ordering, Mince exploits other transformations of a read, such as re-

verse complementing, that may or may not be performed in a lossy

fashion. Regardless of whether or not these transformations need to

be reversed during decoding, they lead to improvements in compres-

sion that overcome the cost of storing the ‘sideband’ information ne-

cessary to reverse them.

Mince only compresses the sequence portion of FASTQ files, re-

quires all reads to have the same length, and ignores the quality val-

ues. The challenges associated with compression of quality values

are quite different than those associated with compressing sequence

data, and other approaches (e.g. Yu et al., 2015) have been de-

veloped that can be used to compress quality values well.

Furthermore, quality values are often not needed for many ana-

lyses—tools such as BWA (Li, 2013), STAR (Dobin et al., 2013) and

Sailfish (Patro et al., 2014) routinely ignore them during all or some

phases of their operation—while sequence data are, of course, the

primary and central reason for the FASTQ file to exist to begin with.

For these reasons, we have focused on developing better methods

for sequence compression, leaving the problem of improving quality

value compression to future work.

Additional future work includes speeding up the compression

and decompression approaches presented here. Although the cur-

rent speed of Mince (particularly when decoding) is practical for

many applications, it is always desirable to minimize the time

spent on data manipulation tasks such as compression and

decompression. This is the reason, for example, that we have used

a near-greedy heuristic for selecting buckets and assigning reads

to them—this is fast and produces reasonable results (differing by

< 0:02% over various random read orderings). However,

interesting directions for future work include both speeding up the

implementation of this near-greedy approach and designing faster,

equally performant approaches for read bucketing. This will be

especially important for larger files, such as produced by high-

coverage whole-genome human sequencing, where the 2x–11x

difference in Mince and SCALCE runtimes will become more

significant.

By capitalizing on an efficient, novel encoding of reads that leads

to improved compression boosting, Mince is able to compress sets

of read sequences more effectively than exiting de novo approaches.

The compressed read sequences can be decompressed efficiently and

in a streaming fashion. As the size and number of datasets that we

analyze continues to grow, Mince will prove an effective tool for

mitigating the ever-increasing cost of storage and transmission.

Mince is written in Cþþ11, it is open source and has been made

available under the GPLv3 license at http://www.cs.cmu.edu/

�ckingsf/software/mince.

Acknowledgements

We would like to thank Geet Duggal, Darya Filippova, Emre Sefer, Brad

Solomon and Hao Wang for useful discussions relating to this work and for

comments on the initial manuscript. We would also like to thank the anonym-

ous reviewers for their helpful feedback on the manuscript and testing of the

software.

Funding

This work has been partially funded by the US National Science Foundation

(CCF-1256087, CCF-1319998) and US National Institutes of Health

(R21HG006913 and R01HG007104). C.K. received support as an Alfred P.

Sloan Research Fellow. This work is also funded in part by the Gordon and

Betty Moore Foundation’s Data-Driven Discovery Initiative through Grant

GBMF4554 to Carl Kingsford.

Conflict of Interest: none declared.

2776 R.Patro and C.Kingsford

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv248/-/DC1
While
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv248/-/DC1
3
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv248/-/DC1
4
-16Gb
-
 minutes /
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv248/-/DC1
DISCUSSION
``
''
``
''
``
''
 —
 —
While
 —
http://www.cs.cmu.edu/∼ckingsf/software/mince
http://www.cs.cmu.edu/∼ckingsf/software/mince

References

Adjeroh,D. et al. (2002) DNA sequence compression using the Burrows-

Wheeler Transform. In: Proceedings of the IEEE Computer Society on

Bioinformatics Conference, 2002. IEEE Computer Society, Washington,

DC, USA, pp. 303–313.

Bhola,V. et al. (2011) No-reference compression of genomic data stored in

fastq format. In: Bioinformatics and Biomedicine (BIBM), 2011. IEEE, pp.

147–150.

Bonfield,J.K. and Mahoney,M.V. (2013) Compression of FASTQ and SAM

format sequencing data. PLoS One, 8, e59190.

Brandon,M.C. et al. (2009) Data structures and compression algorithms for

genomic sequence data. Bioinformatics, 25, 1731–1738.

Campagne,F. et al. (2013) Compression of structured high-throughput

sequencing data. PLoS One, 8, e79871.

Cánovas,R. et al. (2014) Lossy compression of quality scores in genomic data.

Bioinformatics, 30, 2130–2136.

Christley,S. et al. (2009) Human genomes as email attachments.

Bioinformatics, 25, 274–275.

Cox,A.J. et al. (2012) Large-scale compression of genomic sequence databases

with the Burrows-Wheeler transform. Bioinformatics, 28, 1415–1419.

Deorowicz,S. and Grabowski,S. (2011) Robust relative compression of gen-

omes with random access. Bioinformatics, 27, 2979–2986.

Deorowicz,S. and Grabowski,S. (2013) Data compression for sequencing

data. Algorithms Mol. Biol., 8, 25.

Dobin,A. et al. (2013) STAR: ultrafast universal RNA-seq aligner.

Bioinformatics, 29, 15–21.

Flicek,P. et al. (2013) Ensembl 2014. Nucleic Acids Res., 42(Database issue),

D749–D755.

Fritz,M.H.-Y. et al. (2011) Efficient storage of high throughput DNA sequenc-

ing data using reference-based compression. Genome Res., 21, 734–740.

Hach,F. (2013) Scalable mapping and compression of high throughput gen-

ome sequencing data. Ph.D. Thesis, Simon Fraser University.

Hach,F. et al. (2012) SCALCE: boosting sequence compression algorithms

using locally consistent encoding. Bioinformatics, 28, 3051–3057.

Jones,D.C. et al. (2012) Compression of next-generation sequencing reads

aided by highly efficient de novo assembly. Nucleic Acids Res., 40, e171.

Kingsford,C. and Patro,R. (2015) Reference-based compression of short-read

sequences using path encoding. Bioinformatics, 31, 1920–1928.

Kozanitis,C. et al. (2011) Compressing genomic sequence fragments using

SlimGene. J. Comput. Biol., 18, 401–413.

Li,H. (2013) Aligning sequence reads, clone sequences and assembly contigs

with BWA-MEM. arXiv:1303.3997v1 [q-bio.GN].

Li,P. et al. (2013) HUGO: Hierarchical mUlti-reference Genome cOmpression

for aligned reads. J. Am. Med. Inform. Assoc., 21, 363–373.

Ochoa,I. et al. (2013) Qualcomp: a new lossy compressor for quality scores

based on rate distortion theory. BMC Bioinformatics, 14, 187.

Patro,R. et al. (2014) Sailfish enables alignment-free isoform quantification

from RNA-seq reads using lightweight algorithms. Nat. Biotechnol., 32,

462–464.

Pavlichin,D.S. et al. (2013) The human genome contracts again.

Bioinformatics, 29, 2199–2202.

Pinho,A.J. et al. (2012) Green: a tool for efficient compression of genome rese-

quencing data. Nucleic Acids Res., 40, e27.

Popitsch,N. and von Haeseler,A. (2013) NGC: lossless and lossy compression of

aligned high-throughput sequencing data. Nucleic Acids Res., 41, e27.

Rajarajeswari,P. and Apparao,A. (2011) DNABIT compress–genome com-

pression algorithm. Bioinformation, 5, 350.

Roberts,M. et al. (2004) Reducing storage requirements for biological

sequence comparison. Bioinformatics, 20, 3363–3369.

Rozov,R. et al. (2014) Fast lossless compression via cascading bloom filters.

BMC Bioinformatics, 15 (Suppl. 9), S7.

Tembe,W. et al. (2010) G-SQZ: compact encoding of genomic sequence and

quality data. Bioinformatics, 26, 2192–2194.

Wang,C. and Zhang,D. (2011) A novel compression tool for efficient storage

of genome resequencing data. Nucleic Acids Res., 39, e45.

Yu,Y.W. et al. (2015) Quality score compression improves genotyping accur-

acy. Nat. Biotechnol., 33, 240–243.

Data-dependent bucketing improves compression 2777

	btv248-M1
	btv248-TF1

