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A B S T R A C T   

Erzhi Wan (EZW), a classic Traditional Chinese Medicine formula, has shown promise as a po-
tential therapeutic option for Alzheimer’s disease (AD), yet its mechanism remains elusive. 
Herein, we employed an integrative in-silico approach to investigate the active components and 
their mechanisms against AD. We screened four active components with blood-brain barrier 
permeabilities from TCMSP, along with 307 corresponding targets predicted by Swis-
sTargetPrediction, PharmMapper, and TCMbank websites. Then, we retrieved 2260 AD-related 
targets from Genecards, OMIM, and NCBI databases. Furthermore, we constructed the protein- 
protein interaction (PPI) network of the intersected targets via the STRING database and per-
formed the GO and KEGG enrichment analyses using the “clusterProfiler” R package. The results 
showed that the intersected targets were intimately related to the p53/PI3K/Akt signaling 
pathway, serotonergic synapse, and response to oxygen level. Subsequently, 25 core targets were 
found differentially expressed in brain regions by bioinformatics analyses of GEO datasets of 
clinical samples from the Alzdata database. The binding sites and stabilities between the active 
components and the core targets were investigated by the molecular docking approach using 
Autodock 4.2.6 software, followed by pocket detection and druggability assessment via the 
DoGSiteScorer server. The results showed that acacetin, β-sitosterol, and 3-O-acetyldammar-
enediol-II strongly interacted with the druggable pockets of AR, CASP8, POLB, and PREP. 
Eventually, the docking results were further cross-referenced with the literature research and 
validated by 100 ns of molecular dynamics simulations using GROMACS software. Binding free 
energies were calculated via MM/PBSA strategy combined with interaction entropy. The simu-
lation results indicated stable bindings between four docking pairs including acacetin-AR, aca-
cetin-CASP8, β-sitosterol-POLB, and 3-O-acetyldammarenediol–II–PREP. Overall, our study 
demonstrated a theoretical basis for how three active components of EZW confer efficacy against 
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AD. It provides a promising reference for subsequent research regarding drug discoveries and 
clinical applications.   

1. Introduction 

Alzheimer’s disease (AD), the leading cause of dementia in the elderly population, is an irreversible neurodegenerative brain 

Fig. 1. The workflow of the integrated computational approach to study the mechanism of Erzhi Wan (EZW) against Alzheimer’s disease (AD). The 
workflow contains four sections including target screening from database retrieval, network construction and analysis, bioinformatics analysis upon 
Gene Expression Omnibus (GEO) datasets, and molecular docking and molecular dynamics simulation verifications. 

M. Yu et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e33761

3

disorder affecting more than 50 million people worldwide [1]. Individuals with the disease usually experience a relentless decline in 
memory and cognition to an extent that sufficiently interferes with daily life [2]. Despite its immense societal and economic impact, 
current Food and Drug Administration (FDA) approved medications can only alleviate symptoms rather than modify the disease [3]. 
AD is pathologically characterized by the neurofibrillary tangles assembled from hyper-phosphorylated tau protein and the accu-
mulation of amyloid-β peptides (Aβ) that form plagues in the extracellular region [4]. Apart from these two most recognized pa-
thologies, there exist other characteristics including neuronal synaptic dysfunction, oxidative stress, and vascular issues that 
contribute to AD [5–7]. 

Current anti-AD drug developments mainly focus on strategies against Aβ or tau, often through their relevant intermedia mech-
anisms as listed above [8–10]. The promising “disease-modifying” drugs poised at Phase 3 trials (21 agents) in 2022 were reviewed in a 
special report, in which the most represented mechanism was Aβ (6), followed by synaptic plasticity (4), oxidative stress (3), meta-
bolism (3), tau (1), etc. [10]. Despite the substantial ongoing clinical and experimental studies, researchers tend to acknowledge a 
single cure for AD would unlikely be found [11–13]. In such cases of complex diseases, signal networks could be the cause, and the 
anterior ‘one disease-one target-one drug’ dogma needs to be reconsidered [14]. 

Traditional Chinese Medicine (TCM) prescription is a time-proven medical discipline emphasizing the synergic effects of herbal 
combinations with empirical evidence [15,16]. In China, TCM prescriptions have been extensively implemented into the medical 
management for AD due to their nature of multi-targeting and low side effects [17,18]. Erzhi Wan (EZW), a classic TCM formula, is 
reputed for its efficacy on “liver and kidney yin deficiency” syndrome, while such syndrome underlies aging-related cognition 
impairment and memory loss in TCM theory [19,20]. The formula is composed of two herbs, namely Nvzhenzi (NZZ, Ligustrum lucidum 
Ait.) and Mohanlian (MHL, Eclipta prostrata L.). Previous in-vivo and in-vitro studies have demonstrated that NZZ and MHL function in 
neuroprotective activities potentially via anti-oxidative stress effects [21,22]. Moreover, pharmacological studies have shown that 
EZW (0.75 and 1.5 g/kg/day for 14 days) can improve the cognitive ability of AD model rats [23]. Additionally, EZW (0.7 and 1.4 
g/kg/day for 12 weeks) ameliorated lipid metabolism and oxidative stress in ovariectomized ApoE-deficient mice [24]. Given that 
EZW could be a novel complementary medication against AD, the underlying mechanisms need to be systematically investigated. 

Network pharmacology offers a system biology-based strategy aiming to target causal mechanisms through biological network 
modulation [14]. The indigenous advantage of network pharmacology in addressing complex diseases resides in its multi-target 
signaling attribute aligning well with the synergic principles of TCM prescription [25]. The human microarray platform is a prom-
ising tool for the detection of genetic alterations along with their distributions in organs and tissue for many diseases [26]. In our case, 
we examined the correlation between the putative targets of EZW and AD pathology by analyzing GEO datasets derived from clinical 
practice, enhancing the reliability of our findings. Furthermore, computational methods such as omics analysis, molecular docking, 
and molecular dynamics (MD) simulation, have been proposed for high-throughput drug discovery with efficacy and thus could 
accelerate the translation of research findings to clinical applications [27–29]. Therefore, our study explored the potential and the 
underlying mechanisms of EZW as an anti-AD medication through a combination of network pharmacology, bioinformatics analysis of 
GEO datasets, and in silico study of molecular docking and MD simulation. 

In our study, we utilized network pharmacology to predict the active components, potential targets, and enrichment pathways of 
EZW against AD. Bioinformatics analysis can derive the core targets related to Aβ and tau pathology, followed by the validation of 
binding affinity with molecular docking and MD simulation approaches. Through a comprehensive literature research, we elucidated 
the effects of EZW on AD, particularly in Aβ and tau pathology, oxidative stress, synaptic plasticity, and neuronal death, mediated by 
the p53/PI3K/Akt signaling pathway. Eventually, we identified acacetin, β-sitosterol, and 3-O-acetyldammarenediol-II as the active 
components of EZW, which potentially exerted therapeutic effects on AD through interacting with AR, CASP8, POLB, and PREP. A 
schematic overview of our study protocol is shown in Fig. 1. 

2. Methods 

2.1. Collection of the active components and ADME evaluation 

The active components of EZW were achieved from the Traditional Chinese Medicine System Pharmacology Database and Analysis 
Platform (TCMSP, https://old.tcmsp-e.com/tcmsp.php(accessed on October 6, 2022)) [30], followed by a pre-screening with the 
criteria as follows: oral bioavailability (OB) ≥ 30 % [31], drug-likeness (DL) ≥ 0.18 [32] and Caco-2 ≥ − 0.4 [33], along with the 
assessment of blood-brain barrier (BBB) permeability [34]. The properties of the obtained components were cross-checked using the 
SwissADME website (http://www.swissadme.ch/(accessed on October 6, 2022)) for the evaluation of the absorption, distribution, 
metabolism, and excretion (ADME) parameters, pharmacokinetic properties, and drug-like nature, especially the violation of Lipinski’s 
rule of five [35]. 

2.2. Target fishing of the EZW active components against AD 

The common names and the canonical SMILES strings of the active components were retrieved from the PubChem database 
(https://pubchem.ncbi.nlm.nih.gov/(accessed on October 6, 2022)). To predict the targets of these components, we utilized a com-
bination of sources: the SwissTargetPrediction website (http://www.swisstargetprediction.ch/(accessed on October 6, 2022)) [36], 
the PharmMapper server (https://www.lilab-ecust.cn/pharmmapper/(accessed on January 16, 2024)) [37], and the TCMbank 
(https://tcmbank.cn/(accessed on January 16, 2024)) [38]. The specific criteria for each method were targets with predicted prob-
ability above zero for SwissTargetPrediction, the top 300 targets based on fit scores that matched with the druggable pharmacophore 
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models in pharmMapper, and targets mapped with active components by TCMbank. 
Disease targets were collected from Genecards (https://www.genecards.org/(accessed on October 6, 2022)) [39], NCBI (https:// 

www.ncbi.nlm.nih.gov/(accessed on October 6, 2022)) [40], and OMIM (https://www.omim.org/(accessed on October 6, 2022)) 
[41], taking “Alzheimer’s Disease” as the keyword, while the duplications were removed using Microsoft Excel software. 

We further assessed the intersection targets of EZW and AD via the EVenn online tool (http://www.ehbio.com/test/venn/). The 
common targets represented the putative targets of EZW against AD. 

2.3. Drawing of “anti-AD Targets-Components-Herbs” network 

Cytoscape 3.9.1 software was employed to build the “anti-AD Targets-Components-Herbs” network for the visualization of the 
interconnections among herbs, their components, and the corresponding targets [42]. 

2.4. Construction of PPI network and clustering analyses 

Protein-protein interaction (PPI) information was obtained from the STRING website (https://string-db.org/(accessed on January 
16, 2024)) [43]. The organism criterion was set to Homo sapiens, and the interactions that conformed to the minimum required score 
(≥ 0.4) were considered significant. In the network, the node represented individual target proteins, while their connections were 
manifested by edges. The node degrees and the topological information of the PPI network were identified by built-in modules of 
Cytoscape 3.9.1 software. Isolated targets were removed before the visualization. 

We utilized the Molecular Complex Detection (MCODE) plugin to detect densely connected molecular complexes in the PPI 
network [44]. The parameters for MCODE were specified as follows: degree cutoff = 2, node score cutoff = 0.2, k-core = 2, and max 
depth = 100. 

2.5. GO and KEGG pathway enrichment analyses 

Selected targets were evaluated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment an-
alyses utilizing “clusterProfiler” and “org.Hs.eg.db” R packages [45]. The achieved datasets were subsequently uploaded to Sangerbox 
(http://sangerbox.com/) to visualize the results in the ascending order of log P values. 

2.6. GEO genetic difference analysis of AD pathology related EZW targets 

Potential targets of EZW against AD were input in Alzdata (http://www.alzdata.org/(accessed on January 18, 2024)) database for 
the calculation of convergent functional genomic (CFG) ranks to prioritize AD candidate genes [46]. One CFG score was added if the 
target met any following prerequisite: (1) governed by AD genetic variants; (2) exhibited physical interactions with APP, PSEN1, 
PSEN2, APOE, or MAPT; (3) differentially expressed in AD mouse models; (4) significantly correlated with Aβ or tau pathways. Only 
the targets correlated (P-value < 0.05) with AD pathology (Aβ and tau) were considered for the further Gene Expression Omnibus 
(GEO) gene differential analysis. Normalized expression profiles of screened targets were established from cross-platform GEO datasets 
of clinical AD case samples by the “Differential Expression” module of Alzdata. Accordingly, the defined differentially expressed genes 
(DEGs) of AD patients in the combined GEO dataset follow the criteria of log2 fold change greater than 0.1 (|logFC| > 0.1) and a false 
discovery rate smaller than 0.05 (FDR < 0.05). The results were subjected to R software, GraphPad Prism, and SangerBox for graphical 
presentations. 

2.7. Molecular docking and binding pockets prediction 

Molecular docking is a computational method frequently applied in drug discovery for its capability to predict the conceivable 
binding modes along with the affinity of protein-ligand complexes [47]. In our studies, the dockings were carried out between the core 
targets related to AD pathology and their corresponding active components. The procedure was as follows [48]: 

(1) Docking preparation: The protein crystal structures were obtained from Protein Data Bank (PDB, https://www.rcsb.org/ 
(accessed on October 24, 2022)) [49], and any missing residues were filled in using the SWISS-MODEL (https://swissmodel.expasy. 
org/) automated homology modeling server [50]. Briefly, the FASTA formats of the protein sequences were achieved from NCBI 
and cross-checked in the UniProt database (https://www.uniprot.org/). The sequences were then uploaded to the SWISS-MODEL 
server to build the models with previously determined templates. After the removal of water and ligands with PyMOL software, the 
proteins were configured in AutoDockTool 1.5.7 by adding hydrogen atoms, computing Gasteiger charges, and assigning Autodock4 
(AD4) type to each macromolecule atom.  

(2) Ligand preparation: The molecular structures of active components were collected from the TCMSP database and input in the 
AutoDockTool 1.5.7 as ligands. In the torsion tree module, choose root, detect root, show root expansion, and choose torsion 
were successively conducted to set the parameters.  

(3) Defining docking parameters: The configured proteins and ligands were input in the Macromolecule and the Set Map Type 
modules, respectively. A tunable grid box was constructed for each target protein to define the molecular docking range. The 
grid box sizes were adjusted until the proteins were fully covered to ensure a blind docking process. 
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(4) Molecular docking and visualization: Autodock 4.2.6 was applied for the molecular docking as well as the assessment of the 
binding affinity. Dockings were implemented by inputting the configured proteins and ligands in the Macromolecule and the 
Ligand modules, respectively. The Genetic Algorithm was adopted to generate 50 docking poses for each ligand. The docking 
parameters were set as default. Typically, binding energy less than − 5 kcal/mol indicated favorable binding affinity [51]. 

Subsequently, the achieved conformations underwent automatic pocket detection and druggability assessment using the DoGSi-
teScorer server (https://proteins.plus/(accessed on February 1, 2024)). Ligand interactions with protein pockets scoring higher than 
0.5 on the druggability scale were selected for further evaluation [52]. BIOVIA Discovery Studio Visualizer 2019 and PyMOL were 
utilized for the visualization of interaction types and the binding mode between ligands and proteins. 

2.8. Molecular dynamics simulation verification 

The optimal conformations of the protein-ligand complexes obtained from docking results were sequentially subjected to the 
molecular dynamics (MD) simulation approach to evaluate the binding stability utilizing GROMACS 2020.06 software [53]. MD 
simulation can predict the trajectory of atoms and molecules under physical conditions mimicking the body environment. We adopted 
the AMBER99SB-ILDN/GAFF force field for each simulation system, implemented by Sobtop (http://sobereva.com/soft/Sobtop/ 
(accessed on January 19, 2024)). The initial system was constructed in a dodecahedron box with a 1.2 nm layer between the pro-
tein surface and the edge of the box, populated by the TIP3P water model. Each system was neutralized by adding appropriate amounts 
of Na+ and Cl-counter ions. Prior to the MD simulation, energy minimization was executed with the steepest descent algorithm. Then, 
the canonical (NVT) and isothermal-isobaric (NPT) ensemble were implemented to equilibrate the system for 100 ps. The 
state-balanced system was configured to maintain a constant temperature of 310 K and standard 1.0 bar pressure, along with the 
periodic boundary condition. Finally, the system underwent a 100 ns MD simulation to assess complex stability. 

For the analysis of the MD simulation trajectory, we calculated the Root mean square deviation (RMSD), the Radius of gyration 
(ROG) value, the Root mean square fluctuation (RMSF), and the Solvent-accessible surface area (SASA) using GROMACS tools 
including gmx rms, gmx gyrate, gmx rmsf, and gmx sasa, respectively. The number of hydrogen bonds was determined using gmx hbond. 
The hydrogen bond coverage across the simulation period was estimated utilizing the gmx_hbdat bash script (http://github.com/ 
Jerkwin/gmxtools/tree/master/gmx_hbdat). Principal component analysis (PCA) of the last 50 ns MD trajectory and free energy 
landscape (FEL) analysis were performed using gmx covar and gmx sham, respectively. 

To estimate the binding free energy (BFE), the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) strategy was 
conducted via gmx_mmpbsa bash script (http://github.com/Jerkwin/gmxtools/tree/master/gmx_mmpbsa). Generally, the BFE of 
ligand and protein in an aqueous solvent (ΔGbind) can be expressed as: 

ΔGbind =GComplex −
(
GProtein +GLigand

)
(1)  

and each G term is given by 

Gi =EMM + Gsolvent − TS (2) 

Therefore, ΔGbind can be calculated as: 

ΔGbind =ΔH − TΔS (3)  

where ΔH can be further decomposed as: 

ΔH=ΔEMM + ΔGsolvent (4)  

ΔEMM =ΔEcou + ΔEvdw (5)  

ΔGsolvent =ΔGPB + ΔGSA (6)  

In the above equations, terms represented as follows: ΔEMM: change in gas-phase molecular mechanics energy; ΔGsolvent: change in 
solvent-free energy; –TΔS: change in conformational entropy upon ligand binding; ΔEcou: change in Coulomb interaction energy; 
ΔEvdw: change in van der Waals energy; ΔGPB: change in polar solvation energy; ΔGSA: change in non-polar solvation energy. The 
entropy term (–TΔS) was calculated by the interaction entropy (IE) method as follows [54]: 

− TΔS= kBTln < e(ΔEMM(i) − <ΔEMM>)/kBT > (7)  

where kB is the Boltzmann constant. The calculations were made with snapshots at 1 ns interval for the last 50 ns trajectory, resulting in 
a total of 50 frames to observe the evolution across the MD period. 
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3. Results 

3.1. Screening the active components of EZW 

In total, 167 chemical compounds from the two herbs in EZW were collected from the TCMSP database. After a stepwise screening 
process, we identified 17 active components under the criterion conditions of oral availability, intestinal permeability, and drug- 
likeness. The chemical structures of these filtered active components are provided in Supplementary Fig. S1. Remarkably, all the 
active components satisfy Lipinski’s rule of five, since no more than one violation is observed [55,56]. The pharmacological infor-
mation of these components is listed in Table 1. 

3.2. Preliminary exploration of holistic effects of EZW against AD 

Emerging evidence underscores a significant interplay between peripheral immunity and the central nervous system in AD [57,58]. 
Several drugs currently under clinical investigation have demonstrated efficacy against AD by mitigating peripheral inflammation 
[59]. For instance, semaglutide, a non-BBB permeable drug poised at Phase 3 trial, has shown promise in ameliorating cognition in the 
3xTg mouse model of AD [60,61]. To ensure a comprehensive evaluation of EZW, we initially considered all the identified active 
components. After the deduplication, we obtained 586 EZW-related targets from online tools corresponding to 17 active components. 
Additionally, 2260 AD-related targets were retrieved from Genecards, NCBI, and OMIM databases (Supplementary Table S1). A Venn 
diagram was then utilized to manifest the intersections (250 common targets) between EZW and AD (Fig. 2A). To achieve a preliminary 
understanding of the molecular mechanism in EZW’s action against AD, we performed a KEGG enrichment analysis on the intersected 
targets. The top-ranked enriched KEGG pathways in five categories are displayed in the ascending order of adjusted P-value (Fig. 2B). 
These pathways include lipid and atherosclerosis (hsa05417), PI3K-Akt signaling pathway (hsa04151), Apoptosis (hsa04210), IL-17 
signaling pathway (hsa04657), and Arachidonic acid metabolism (hsa00590). To further interpret the result of the KEGG enrich-
ment analysis, intersections among the top two enriched KEGG terms in each category were extracted alongside Alzheimer disease 
(hsa05010), and depicted in an UpsetR plot (Fig. 2C). The results reveal that Alzheimer disease (hsa05010) exhibits the most exclusive 
genes and shares common targets with other KEGG terms except for Tryptophan metabolism (hsa00380). Given that Alzheimer disease 
(hsa05010) is a defined pathway that mainly correlates with Aβ and tau pathology, we further concentrated on the mechanism of EZW 
against AD pathology in brain regions as such. 

3.3. Evaluating the synergic effects of active components with BBB permeability 

To assess the effects of EZW on AD pathology within brain regions, we extracted the active components that exhibit BBB 
permeability, along with their associated targets for subsequent investigations. These components include acacetin, β-sitosterol, 
pratensein, and 3-O-acetyldammarenediol-II, while the corresponding targets are listed in Table 2. It is noteworthy that these four 
components display satisfactory metabolism properties, with a drug half-life exceeding 4 h (Table 1) [62]. Afterward, we constructed 
an “anti-AD Targets-Components-Herbs” network, resulting in 194 connections between four active components and 140 potential 
targets (Fig. 3). Among these components, acacetin (degree = 76) exhibits the highest degree of connectivity, followed by β-sitosterol 
(degree = 44), pratensein (degree = 43), and 3-O-acetyldammarenediol-II (degree = 31). Meanwhile, we notice the average of the 
target degree is 1.38, indicating synergic effects among active components in targeting AD. These reflect the multi-component and 

Table 1 
Pharmacological properties of the active components in EZW.  

MOL Id Molecular name MW OB% Caco- 
2 

DL HL 
(Hour) 

Lipinski’s rules 
violation 

BBB 
permeability 

MOL001689 acacetin 284.28 34.97 0.67 0.24 17.25 0 moderate 
MOL003398 pratensein 299.27 39.06 0.39 0.28 17.13 0 moderate 
MOL000358 beta-sitosterol 414.79 36.91 1.32 0.75 5.36 0 strong 
MOL005169 3-O-Acetyldammarenediol-II 486.86 40.23 1.09 0.82 9.14 1 strong 
MOL000006 luteolin 286.25 36.16 0.19 0.25 15.94 0 No 
MOL000098 quercetin 302.25 46.43 0.05 0.28 14.40 0 No 
MOL000422 kaempferol 286.25 41.88 0.26 0.24 14.74 0 No 
MOL002975 butin 272.27 69.94 0.3 0.21 16.80 0 No 
MOL003378 1,3,8,9-tetrahydroxybenzofurano [3,2-c] 

chromen-6-one 
300.23 33.94 0.01 0.43 9.62 0 No 

MOL003389 3′-O-Methylorobol 300.28 57.41 0.45 0.27 17.31 0 No 
MOL003402 demethylwedelolactone 302.25 72.13 0.04 0.43 9.17 0 No 
MOL003404 wedelolactone 314.26 49.6 0.32 0.48 9.61 0 No 
MOL004576 taxifolin 304.27 57.84 − 0.23 0.27 14.41 0 No 
MOL005147 lucidumoside D_qt 406.47 54.41 − 0.04 0.47 5.83 0 No 
MOL005190 eriodictyol 288.27 71.79 0.17 0.24 15.81 0 No 
MOL005195 syringaresinol diglucoside_qt 450.48 83.12 0.33 0.8 3.29 0 No 
MOL005209 lucidusculine 401.60 30.11 0.16 0.75 10.55 0 No 

MW: molecular weight; OB: oral bioavailability; DL: drug likeness; HL: Drug half-life (t1/2); BBB: blood-brain barrier. 
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multi-target nature of TCM, highlighting the intricate interactions between the potential targets that warrant further investigation. 

3.4. PPI network analysis of the potential targets 

Subsequently, we constructed a PPI network comprising 140 potential targets (Fig. 4). The PPI network manifests the interactions 
among the targets, offering comprehensive visions regarding the disease pathway network [14]. As shown in Fig. 4A, the PPI network 
contains 140 nodes and 1355 undirected edges. The average node degree and cluster coefficient of the PPI network are 19.36 and 0.536 
respectively. The node sizes reflect the degree values, with the top ten targets highlighted based on their ranked degree. The topo-
logical information of these ten targets is listed in Table 3, including the degree value, betweenness centrality (BC), and closeness 
centrality (CC). MCODE plugin was applied for the clustery analysis, by which 8 clusters were identified. Table 4 presents detailed 
information on these MCODE clusters, and the three top-scored clusters are shown individually in Fig. 4B–D, along with the most 
relevant pathway per category excluding the human diseases. The seed nodes of clusters 1 and 3 were identified as AR and CYP19A1, 
respectively, while the seed node was not assigned to cluster 2 by the MCODE algorithm. As shown in Fig. 4B and C, cluster 1 is 
implicated with the p53 signaling pathway, PI3K-Akt signaling pathway, and IL-17 signaling pathway, while cluster 2 participates in 
Gap junction, Neuroactive ligand-receptor interaction, and Serotonergic synapse. These together indicate that the active components 
might exert therapeutic effects against AD pathology by modulating the network of potential targets. 

Fig. 2. Initial exploration of the potential efficacy that Erzhi Wan (EZW) exhibited against Alzheimer’s disease (AD). (A) Venn diagram displaying 
the common targets of EZW and AD. (B) Bubble diagram of the KEGG enrichment pathways in the ascending order of adjusted P-value per category. 
(C) UpsetR plot displaying the intersections of KEGG enrichment sets. 
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3.5. Functional pathway analysis of the potential targets in AD treatment 

To further explore the therapeutic mechanisms of active components against AD pathology, KEGG pathway analysis was carried out 
to annotate the functions of these 140 potential targets (Fig. 5A). The enriched signaling pathways mainly include Alzheimer disease 
(hsa05010), PI3K-Akt signaling pathway (hsa04151), P53 signaling pathway (hsa04115), Serotonergic synapse (hsa04726), and 
Arachidonic acid metabolism (hsa00590), indicating these pathways would play a predominant role in conferring efficacy of EZW 
against AD. 

Similarly, GO enrichment analysis was conducted particularly in terms of biological process (BP), cellular components (CC), and 
molecular function (MF) to reveal the representative functions of the targets. Accordingly, we obtained 2024 BP, 123 CC, and 203 MF 
terms and depicted the top 10 enrichments in each group in Fig. 5B. The result shows that the significantly enriched BP terms include 
response to oxygen level (GO:0070482), neuron apoptotic process (GO:0051402), and regulation of inflammatory response 
(GO:0050727). 

3.6. Derivation of core targets that correlated with Aβ and tau pathology through bioinformatics analysis 

To determine the relationship between the active components and the AD pathology, we uploaded the potential targets to the 
AlzData database for the mining of their correlations with Aβ and tau protein. Consequently, 41 out of 140 targets were identified, 
showing significant correlations with AD pathology in Aβ and tau line AD mouse models. Among these, 15, 8, and 18 targets map to the 
Aβ, tau, and Aβ and tau, respectively. The detailed information on these targets is listed in Supplementary Table S2. Additionally, the 
CFG points of these targets were calculated by integrating AD-relevant evidence (Fig. 6A). Typically, the prioritizing method indicates 
that NR1H3, AR, MMP2, CHRM2, RORA, LCK, RELA, PCSK9, B2M, FKBP4, and BACE1 exhibit high-level AD relations (CFG ≥ 4) 
compared to the others. 

To further validate the implications of these targets, we utilized the normalized cross-platform GEO datasets of clinical samples. 
Differentially expressed genes (DEGs) were examined in four brain regions—hippocampus, entorhinal cortex (EC), frontal cortex (FC), 
and temporal cortex (TC)—between control and AD patient groups. Accordingly, 41 targets related to Aβ and tau pathological events as 
well as APP itself were analyzed utilizing the embedded “Differential Expression” module in the Alzdata database. The expression 

Table 2 
Potential targets of the active components of EZW with BBB permeability.  

No. Target No. Target No. Target No. Target 

1 ABAT 37 CYP19A1 73 LTF 108 PREP 
2 ABCB1 38 CYP1A1 74 MAOA 109 PRKCQ 
3 ACHE 39 DAPK1 75 MAOB 110 PRPS1 
4 ADAM17 40 DPP4 76 MAPK14 111 PRSS1 
5 ADORA1 41 DRD2 77 MIF 112 PTGER2 
6 ADORA2A 42 DRD4 78 MMP12 113 PTGES 
7 ADRB2 43 DSG2 79 MMP13 114 PTGS1 
8 AHR 44 EGFR 80 MMP2 115 PTGS2 
9 ALDH2 45 ESR1 81 MMP3 116 PTK2 
10 ALK 46 ESR2 82 MMP9 117 PTPN1 
11 ALOX12 47 F10 83 MPO 118 PYGL 
12 ALOX15 48 F2 84 MS4A1 119 RAB7A 
13 ALOX5 49 FASLG 85 MTRR 120 RELA 
14 APP 50 FKBP4 86 MYBPC3 121 RORA 
15 AR 51 FLT3 87 NAE1 122 S100A8 
16 ARG1 52 FOLH1 88 NCF1 123 SERPING1 
17 AVPR2 53 G6PD 89 NOS2 124 SHBG 
18 B2M 54 GART 90 NR1H2 125 SIGMAR1 
19 BACE1 55 GCDH 91 NR1H3 126 SLC6A2 
20 BAX 56 GLO1 92 NR3C1 127 SLC6A4 
21 BCHE 57 GLRA1 93 OGT 128 SNCA 
22 BCL2 58 GSK3B 94 OPRD1 129 SOD2 
23 CA2 59 GSTT1 95 PARP1 130 SRC 
24 CALM1 60 HMGCR 96 PCSK9 131 SYK 
25 CAMK4 61 HSD11B1 97 PIK3R1 132 TERT 
26 CASP3 62 HSP90AA1 98 PLA2G2A 133 THRB 
27 CASP8 63 HTR2A 99 PLAT 134 TLR9 
28 CCNA2 64 HTR2C 100 PLAU 135 TP53 
29 CDK1 65 IDE 101 PLG 136 TTR 
30 CDK5R1 66 IGF1R 102 POLB 137 TYR 
31 CDKN1A 67 IGFBP2 103 PON1 138 VDR 
32 CFTR 68 IGFBP3 104 POT1 139 WARS1 
33 CHEK1 69 IGFBP6 105 PPARA 140 XDH 
34 CHRM2 70 IL2 106 PPARD   
35 CSNK2A1 71 KDR 107 PPARG   
36 CYP17A1 72 LCK 108 PPP2R1A    
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profiles of these targets were integrated into a volcano plot (Fig. 6B). The details of the expression profile regarding the hippocampus 
are listed in Table 5, while the rest are available in Supplementary Table S3. The results show that 25 targets are differentially 
expressed in 4 brain regions yielding 45 variants, of which 17 are upregulated and 28 are downregulated. The normalized expression 
data of five DEGs in the hippocampus are displayed (Fig. 6C–G), while the remainder is presented in Supplementary Fig. S2 for clarity. 
The brain region distributions of the DEGs were consolidated into a Venn diagram (Fig. 6H). The results reveal that GLO1, POLB, PREP, 
and PPP2R1A are differentially expressed across all four brain regions, suggesting their potential predominant roles in therapy against 
AD pathology. Ultimately, an interactive network was constructed for the direct visualization of the associations among DEGs, active 
components, and herbs (Fig. 6I). The DEGs are intimately associated with Aβ and tau pathology in clinical practice and thus can be 
considered core targets for further validation. 

3.7. Molecular docking and binding pocket prediction 

To validate the interconnection between the 4 active components and 25 core targets, we performed an integrative approach of 
molecular docking and binding pocket prediction. 29 docking pairs from the previous findings were subjected to Autodock 4.2.6 for the 
assessment of binding affinity. The conformations with a favorable binding affinity were submitted to the DogSiteScorer server for the 
evaluation of ligand-binding pockets and their druggability. We collected the conformations that simultaneously met the criteria of 
molecular docking (binding energy < − 5 kcal/mol) and DogSiteScorer (druggability score > 0.5). Since we generated 50 ligand poses 
for each protein, we selected those with the lowest binding energy as the optimal conformation per docking pair (Table 6). The 
interaction types and residues of the optimal conformations are listed in Supplementary Table S4. The heatmaps of the binding en-
ergies (kcal/mol) of all docking pairs are shown in Fig. 7A. As aforementioned Aβ and tau pathology correlated with hippocampus 
impairment and thus led to the loss of memory and cognition function, we selected the protein-ligand complexes comprised of core 
targets in the hippocampal region for further presentation and evaluation. Accordingly, five protein-ligand complex systems including 
AR (PDB ID: 5v8q)-acacetin, AR (PDB ID: 5v8q)-pratensein, CASP8 (PDB ID: 3h11)-acacetin, POLB (PDB ID: 1tv9)-β-sitosterol, and 
PREP (PDB ID: 3ddu)-3-O-acetyldammarenediol-II were visualized in two- and three dimensions (2D and 3D) to make the docking 
results more intuitive (Fig. 7B–F). 

Additionally, we conducted literature research (see discussion below) on these five docking pairs and utilized experimentally 
determined agonists or inhibitors as ligand controls to perform molecular dockings with the same parameters. The ligand controls and 
the corresponding binding affinity for AR, CASP8, POLB, and PREP are dihydrotestosterone (− 6.73 kcal/mol), 2-(4-chlorophenyl)-N- 
(2-(1,2,3,6-tetrahydropyridazin-3-yl)ethyl)acetamide (− 4.25 kcal/mol), dATP (− 9.04 kcal/mol), and Z-Gly-Pro-PNA (− 6.5 kcal/ 

Fig. 3. The anti-AD Targets-Component-Herb network. The octagons represent herbs. The squares and the circles represent the active components 
and their corresponding intersected genes respectively, while the node sizes are proportional to the degrees independently between groups. 
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mol), respectively. The chemical structures of the ligand controls are shown in Supplementary Fig. S3A, while detailed information on 
the comparison of ligand controls and active components can be found in Supplementary Figs. S3B–E and Supplementary Table S5. The 
results confirm that active components can bind to the pockets with biological functions and verify the parameters of molecular 
docking. 

3.8. MD simulation validation 

Subsequently, these five docking systems were subjected to 100 ns MD simulation to test the binding stability in protein-ligand 
complexes. RMSD is a metric proposed for quantifying evolutions of atom coordinates in macromolecules against the initial frame. 
As shown in Fig. 8A, the RMSD values of all five simulation systems are less than 1 nm, indicating a stable binding between protein and 

Fig. 4. The protein-protein interaction (PPI) analysis of the 140 potential targets. (A) PPI network. The nodes represent the target genes, while the 
node sizes are proportional to the node degrees. The top 10 targets ranked by degrees are highlighted in purple. (B–D) Clusters 1–3 identified by 
clustery analysis of MCODE. The seed nodes of individual cluster are displayed in red. Seed node was not assigned for cluster 2 by the MCODE 
algorithm. The KEGG enriched terms of each cluster are listed below the graphic. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 
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ligand. However, fluctuations are observed in CASP8-acacetin and POLB-β-sitosterol, implying the possibility of conformational 
change. Then, RMSF was measured to examine the deviation of individual atoms in macromolecules (Fig. 8B). Intense fluctuations are 
observed in CASP8 (PRO370-LEU385) and PREP (LYS196). Both protein regions are cleavage sites that can facilitate protein activities 
[63,64]. This might partially explain the inhibitory roles of active components. Furthermore, ROG was calculated as it can reveal the 
conformational state (protein folding) of macromolecules. As shown in Fig. 8C, the ROG value of the POLB-β-sitosterol complex slightly 
decreases during the simulation. To further interpret the results of ROG, SASA analysis was conducted (Fig. 8D). The tendency of SASA 
is consistent with ROG values. These together highlight the increasing compactness and structural stability of the POLB-β-sitosterol 
complex with lower exposure to water molecules, which potentially prohibits the bindings with other ligands [65]. 

MM/PBSA is a widely utilized strategy for the re-demonstration of the binding site and the binding strength between the protein 
and the ligand via the generated MD simulation trajectory without any additional efforts [66]. Combined with interaction entropy (IE), 
it is one of the most accurate estimation methods of binding free energy (BFE) in parallel with experiments. Herein, we calculated the 
BFEs of the five abovementioned ligand-protein complexes. The total BFEs of AR-acacetin, AR-pratensein, CASP8-acacetin, 
POLB-β-sitosterol, PREP-3-O-acetyldammarenediol-II are − 64.31 ± 9.11 kJ/mol, − 11.66 ± 12.32 kJ/mol, − 57.40 ± 23.01 kJ/mol, 
− 75.48 ± 13.12 kJ/mol, and − 70.08 ± 13.77 kJ/mol, indicating favorable binding affinities except for AR-pratensein complex [67]. 
The high BFE of AR-pratensein results from the high IE and low MM/PBSA terms, implying the continuous deviation in conformations. 
The MM/PBSA results are listed in Table 7. To achieve the energy contribution of each amino acid, we conducted the per-residue 
decomposition analysis for the MM/PBSA energy across the last 50 ns MD trajectory. As shown in Fig. 8G, VAL684, VAL715, and 
MET745 contribute most to the binding energy of AR-acacetin. The MM/PBSA energies of these three residues are − 5.272 kJ/mol, 
− 4.789 kJ/mol, and − 5.328 kJ/mol, respectively. For the AR-pratensein complex, the most contributed residues are PRO801 (− 3.877 
kJ/mol), LEU805 (− 2.617 kJ/mol), and TRP751 (− 2.235 kJ/mol). In the CASP8-acacetin complex, the most contributed residues are 
LEU381(− 5.269 kJ/mol), VAL406 (− 6.788 kJ/mol), and MET463 (− 4.768 kJ/mol). For the POLB-β-sitosterol complex, the most 
contributed residues are ILE33 (− 8.337 kJ/mol), ARG40(− 4.755 kJ/mol), ASN279 (− 4.096 kJ/mol), LYS280 (− 8.488 kJ/mol), and 
ARG283 (− 3.678 kJ/mol). In the case of PREP-3-O-acetyldammarenediol-II, the most contributed residues are ARG128 (− 2.297 
kJ/mol), ILE478 (− 3.163 kJ/mol), GLY553 (− 3.353 kJ/mol), VAL578 (− 3.433 kJ/mol), and ALA682 (− 4.707 kJ/mol). Collectively, 
active components bind to the pockets of AR, CASP8, and PREP-3-O-acetyldammarenediol-II mainly by VDW interactions, while the 
binding of POLB is favored by low polar solvation energy. 

Table 3 
The topological information of top 10 targets in the PPI network.  

Target Degree ClosenessCentrality BetweennessCentrality 

TP53 75 0.668 0.073 
EGFR 68 0.647 0.064 
CASP3 68 0.647 0.047 
PTGS2 68 0.644 0.069 
MMP9 64 0.626 0.043 
SRC 64 0.629 0.069 
BCL2 64 0.635 0.035 
ESR1 64 0.632 0.062 
PPARG 64 0.629 0.064 
HSP90AA1 54 0.610 0.031  

Table 4 
The clustering information of MCODE analysis.   

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 

Node Count 29 6 13 3 3 3 3 3 
MCODE Score 23.357 5.2 3.333 3 3 3 3 3 
Seed node AR  CYP19A1 IGFBP3 XDH F10 PLA2G2A NR1H2 
Lists of targets in clusters MMP2 CCNA2 DRD2 FLT3 MMP3 MAOA F2 ALOX15 OGT 

IGF1R CDK1 HTR2C PTPN1 PLG ACHE SERPING1 PTGES NR1H3 
PPARG PLAU DRD4 IL2      
PTGS2 PPARA SLC6A4 HMGCR      
RELA HSP90AA1 HTR2A PPARD      
ESR2 SRC SLC6A2 PIK3R1      
MAPK14 NR3C1  ALK      
CDKN1A KDR  LCK      
CASP8 BCL2  MPO      
GSK3B CASP3  PCSK9      
PARP1 EGFR  CYP1A1      
MMP9 ESR1  ARG1      
APP TP53        
TERT PTK2        

No seed node was assigned to the cluster 2. 
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Hydrogen bonding analysis is important in featuring ligand-protein binding, as hydrogen bonds can steer the binding strength of 
small molecules. Through the built-in module of GROMACS software, we calculated the number and the population of hydrogen bonds 
between ligands and proteins in a time-dependent manner (Fig. 8E). The average number of hydrogen bonds in AR-acacetin, AR- 
pratensein, CASP8-acacetin, POLB-β-sitosterol, and PREP-3-O-acetyldammarenediol-II is 0.576, 0.769, 0.747, 0.125, and 0.040 per 
frame, respectively. Additionally, the hydrogen bond occupancy in each complex was estimated to reveal the key interacting residues. 
The occupancy results are listed as follows: AR-acacetin (PRO682: 32.2%; VAL685: 15.3%; LYS808: 9.7%); AR-pratensein (TRP751: 
31.7%; ARG752: 16.3%; PRO801: 8.8%); CASP8-acacetin (ASN407: 21.5%; GLN465: 12.8%; ASN408: 11.5%); POLB-β-sitosterol 
(ARG283: 6.2%; LYS280: 3.4%; ASP: 1.8%); PREP-3-O-acetyldammarenediol-II (TYR471: 2.8%; CYS78: 0.4%; THR385: 0.3%). 
Apparently, AR and CASP8 complexes exhibit relatively stable hydrogen bonds that contribute to system stabilization, but not for 
POLB and PREP complexes. 

To further analyze the interactions that contribute to stability between ligand and protein, the free energy landscapes (FELs) of the 
last 50 ns simulations were established by depicting the graphic between free energy and the first two principal components extracted 

Fig. 5. The results of GO and KEGG enrichment analysis. (A) Bubble diagram of the top four KEGG enrichment pathways in the ascending order of 
logP values per category. (B) GO enrichment terms. Top 10 GO terms of biological process (BP), cellular components (CC), and molecular functions 
(MF) are displayed in the ascending order of logP values individually. The discussed BP terms are highlighted in red square. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

M. Yu et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e33761

13

from principal component analysis (PCA). The FELs of POLB-β-sitosterol and PREP-3-O-acetyldammarenediol-II complexes are dis-
played in Fig. 8H and I, while the rest are shown in Supplementary Fig. S4. The result suggests the interactions between β-sitosterol and 
POLB are mainly van der Waals, Carbon Hydrogen Bond, Pi-Alkyl, and Alkyl in minimum energy conformation. Combining with the 
results of the per-residue decomposition of MM/PBSA, ILE33 (− 8.337 kJ/mol) and LYS280 (− 8.488 kJ/mol) are reckoned to be the 
most contributed residues in complex stabilization through Pi-Alkyl and Alkyl interactions. In the case of PREP and 3-O- 

Fig. 6. Identification of the core targets correlating with Aβ and tau pathology based on bioinformatics analysis. (A) Circular bar plot displaying the 
targets that significantly correlated with Aβ and tau pathology. The bar sizes represent the convergent functional genomic (CFG) points. (B) The 
volcano plot showing the differentially expressed genes (DEGs) between control and Alzheimer’s disease (AD) patients. (C–G) Results manifesting 
DEGs expression profiles from the GEO datasets. For the hippocampus, sample sizes are n = 66 and n = 74 in the control and AD patient group 
respectively. Results are shown in mean ± SD. (H) Venn diagram showing the targets distribution in 4 brain regions. (I) Interaction network dis-
playing connections among DEGs, active components, and herbs. The circle, square, and the octagons are DEGs, active components, and herbs, 
respectively. 
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acetyldammarenediol-II, the protein and ligand merely interact through van der Waals and Pi-Alkyl. However, the residues PHE80 
(− 0.02 kJ/mol), PHE89 (− 0.309 kJ/mol), TRP340 (− 0.052 kJ/mol), and TYR385 (− 0.046 kJ/mol) that formed Pi-Alkyl with the 
ligand barely contribute to the MM/PBSA, indicating van der Waals interaction dominated the binding stability. Additionally, we 
observe the existence of two minimum energy basins in the AR-pratensein simulation system (Supplementary Fig. S4B. This might 
explain the high value of IE, as these two conformations can continuously transform into each other. 

Collectively, we identified three active components including acacetin, β-sitosterol, and 3-O-acetyldammarenediol-II with thera-
peutic potentials against Aβ and tau pathology by targeting AR, CASP8, POLB, and PREP in the hippocampal region. We demonstrated 
the binding affinities, the binding pocket druggabilities, and the interactions between ligand and protein complexes. 

4. Discussion 

Alzheimer’s disease (AD) is a neurodegeneration disorder that entails severe chronic consequences, leading to a costly burden [1]. 
Current anti-AD drug discovery is mainly addressed in aspects of Aβ and tau protein, often through their relevant mechanisms of 
oxidative stress, synaptic plasticity, etc. [10]. By its complicated and multifactorial nature, a causative treatment of a single cure for AD 
has yet to be enrolled [11–13]. As a complementary treatment, Traditional Chinese Medicine (TCM) has established its reputation for 
its multi-targeting and few side effects in treating diseases [16]. Erzhi wan (EZW) is a time-proven herbal prescription that contains 
Nvzhenzi (NZZ) and Mohanlian (MHL). In China, the applications of EZW in clinical practice mainly focus on treating aging-related 
diseases [19,20]. Additionally, modern pharmacological studies have shown that EZW (0.75 and 1.5 g/kg/day for 14 days) can 
ameliorate cognitive impairment in AD model rats [23]. However, its anti-AD mechanism has barely been illustrated. Herein, network 
pharmacology, bioinformatics, molecular docking, and molecular dynamics (MD) simulation were employed to analyze the spectrum 
relationship between active components of EZW with blood-brain barrier (BBB) permeability and their corresponding targets. As a 

Table 5 
DEGs information based on analysis of GEO datasets.  

Target Brain region log2 (Fold Change) P-value Expression pattern 

SERPING1 HP 0.42 0.005 Upregulated 
PTGES HP 0.21 0.033 Upregulated 
CASP8 HP 0.2 0.036 Upregulated 
AR HP 0.19 0.026 Upregulated 
PREP HP − 0.21 0.006 Downregulated 
CDK5R1 HP − 0.23 0.033 Downregulated 
GLO1 HP − 0.31 0.001 Downregulated 
POLB HP − 0.35 7.06E-05 Downregulated 
PPP2R1A HP − 0.37 0.001 Downregulated 

HP: Hippocampus. 

Table 6 
Results of molecular docking and binding pocket detection.  

PDB ID MOL ID Target Affinity Pocket volume (Å3) Ligand coverage (%) Pocket coverage (%) DrugScore 

5v8q MOL001689 AR − 6.49 906.69 96.97 25.82 0.837163 
5v8q MOL003398 AR − 5.23 906.69 88.24 20.6 0.837163 
3h11 MOL001689 CASP8 − 5.03 837.89 100 25.65 0.845761 
1tv9 MOL000358 POLB − 5.52 437.25 70 46.02 0.806264 
3ddu MOL005169 PREP − 7.36 1001.93 61.8 16.17 0.797201 
5d5a MOL001689 ADRB2 − 7.04 1653.18 100 18.14 0.806962 
3n80 MOL003398 ALDH2 − 6.6 369.51 52.94 26.23 0.613977 
Q5IS80 MOL001689 APP − 5.4 7137.88 15.15 0.07 0.805306 

1058.86 51.52 9.85 0.801846 
4dju MOL001689 BACE1 − 6.01 795.46 72.73 12.12 0.835135 
5zk3 MOL000358 CHRM2 − 6.41 1493.99 38.75 9.48 0.821135 

262.7 6.25 3.23 0.359991 
4lay MOL005169 FKBP4 − 7.09 247.68 25.84 30.41 0.510928 
1j1b MOL001689 GSK3B − 6.04 868.42 100 33.69 0.80214 
1ck7 MOL001689 MMP2 − 6.66 391 57.58 37.1 0.604516 

308.32 18.18 4.81 0.678196 
245.38 3.03 0.27 0.382771 

1ck7 MOL005169 MMP2 − 6.15 125.87 35.96 39.78 0.604516 
4nqa MOL000358 NR1H3 − 5.15 468.88 76.25 40.86 0.809455 
2vnt MOL003398 PLAU − 5.96 458.82 100 59.59 0.708267 
1l5q MOL001689 PYGL − 5.31 446.71 69.7 28.64 0.628925 

148.2 27.27 24.69 0.273259 
1nfi MOL001689 RELA − 5.24 307.22 69.7 42.31 0.532964 

The affinity is provided in kcal/mol; The DrugScore ranges from 0 to 1. 
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Fig. 7. Results of molecular docking. (A) Heatmap of the binding affinities (kcal/mol) between the active components and the core targets. (B–F) 
The graphic illustrations of the binding sites in two- and three dimensions (2D and 3D). (B) AR-acacetin. (C) AR-pratensein. (D) CASP8-acacetin. (E) 
POLB-β-sitosterol. (F) PREP-3-O-acetyldammarenediol-II. The binding pocket, zoomed-in views of hydrogen bonds in binding sites, ligand- 
interacted residues, and the corresponding interaction types are shown from left to right. 
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Fig. 8. Results of molecular dynamics (MD) simulation. (A) Root mean square deviation (RMSD). (B) Root mean square fluctuation (RMSF). 
Intensely fluctuated residues are highlighted. (C) Radius of gyration (ROG). (D) Solvent-accessible surface area (SASA). (E) Number of hydrogen 
bonds across the simulation period. (F) Evolution of molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) energies in last 50 ns 
simulations. (G) Per-residue decompositions of MM/PBSA energies. (H–I) The two-dimensional free energy landscape (FEL). The maximum and 
minimum energy basins are depicted in red and blue, respectively. The ligand-interacted residues and the corresponding interaction types of 
minimum energy conformations are illustrated in two- and three dimensions. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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result, we found the molecular mechanism of EZW treating AD intimately associated with the Aβ and tau pathology, oxidative stress, 
and synaptic plasticity, especially in the hippocampal region. Specifically, the in-depth bioinformatics and computational analyses 
demonstrate that acacetin, β-sitosterol, and 3-O-acetyldammarenediol-II are the main active components of EZW conferring efficacy 
against AD through targeting AR, CASP8, POLB, and PREP. Through literature research, we found these targets significantly involved 
in Aβ and tau pathology, oxidative stress, synaptic plasticity, and neuronal death. 

Through database retrieval and a follow-up screening process, we eventually screened four active components of EZW with BBB 
permeability, along with their 140 corresponding anti-AD targets. Among these components, acacetin (100, 300, and 500 μM) can 
reduce Aβ production via the inhibition of BACE-1 activity and APP synthesis [68]. In an amyloidogenic cleavage process, abnormal 
regulation of BACE-1 would cleave APP at the Asp1 cleavage to produce a secreted form of carboxy-terminal fragments and reinforce 
the toxic Aβ production [69]. β-sitosterol is a member of phytosterols structurally similar to cholesterol. Evidence suggests that 
β-sitosterol can attenuate Aβ induced neuro-toxicity in the PC12 cell model by relieving oxidative stress [70]. Oxidative stress entails 
the imbalance between antioxidants and oxidants, that leads to the generation of reactive oxygen species (ROS). ROS can upregulate 
phosphorylated tau protein by inducing the malfunction of mitochondria in neurons and thus contribute to AD pathology [5,71]. 
Likewise, after oral administration for three weeks in the AD rat models, pratensein (10 and 20 mg/kg/day for 6 days) can improve 
cognitive deficits by reducing oxidative stress [72]. For the 3-O-acetyldammarenediol-II, no studies focus on its anti-AD effects 
currently. For the first time, our study demonstrates the potential of 3-O-acetyldammarenediol-II on AD therapies. As summarized, 
these four active components are proposed to treat AD in aspects of reducing abnormal Aβ and phosphorylated tau production and 
mitigating the neuro-toxicity through antagonizing oxidative stress. 

The spectrum relationships of active components and the corresponding targets were manifested in a network diagram of “anti-AD 
Targets-Components-Herbs” that included four active components and 140 potential targets. Then, we constructed the PPI network to 
display the interconnections of these targets. Top 10 targets ranked by node degree are TP53, EGFR, CASP3, PTGS2, MMP9, SRC, BCL2, 
ESR1, PPARG, and HSP90AA1. Further interpretations of the PPI network rest on the MCODE, GO, and KEGG enrichment analysis. The 
results show that the targets are mainly enriched in Alzheimer disease (hsa05010), PI3K-Akt signaling pathway (hsa04151), P53 
signaling pathway (hsa04115), Serotonergic synapse (hsa04726), and Arachidonic acid metabolism (hsa00590). Among these path-
ways, P53 and PI3K-Akt signaling pathways are associated with cluster 1 classified by the MCODE algorithm, while the Serotonergic 
synapse is implicated with cluster 2. In AD pathology, Src family kinase can enhance the BACE activity resulting in the Aβ production 
[73,74]. COX-2 (a key enzyme encoded by PTGS2) is involved in arachidonic acid conversion to prostaglandins, while the upregulation 
of the latter can induce Aβ deposition in the AD mice model [75]. Roles of MMPs in the brain can vary, wherein MMP9 can degrade Aβ 
plague, while on the contrary, MMP2 is able to facilitate the Aβ plague formation and tau aggregation [76]. TP53 and EGFR can be 
activated by Aβ oligomers, leading to Aβ-dependent memory loss. Their activations are often accompanied by the inhibition of PI3K 
signaling pathways that are significant in governing synaptic plasticity, which impairment hallmarks the early stage of AD [77–79]. 
The modulation of the serotonin/G-protein coupled receptor/PI3K/Akt signaling pathway has been debated as possible for AD pre-
vention and therapy through mitigating abnormal synaptic activities induced by Aβ and tau proteins [80–82]. Additionally, the 
PI3K/Akt signaling pathway is intimately related to Aβ induced apoptosis. The activation of the PI3K-Akt signaling pathway can 
prevent neuronal loss by suppressing pro-apoptosis protein (i.e., CASP3 and p53) and by activating anti-apoptotic protein (i.e., BCL2) 
[83,84]. Apart from these, the significantly enriched GO terms in biological process (BP) include response to oxygen levels, neuron 
apoptotic process, and regulation of inflammatory response. Together, a reasonable deduction is that abnormal accumulation of Aβ 
and tau accompanied by oxidative stress mutually modulate the p53/PI3K/Akt signaling pathway and further induce neuronal 
apoptosis and impair synaptic plasticity, wherein the mechanism of active components in EZW against AD underlying the whole 
process. 

To further achieve the core targets with therapeutic potentials in clinical practice, we performed an in-depth validation with 
approaches of bioinformatics tools, molecular docking, and molecular dynamics (MD) simulations. We identified 41 out of 140 targets 
that correlated with Aβ and tau. Among these, we found 25 targets differentially expressed in the hippocampus, entorhinal cortex, 
frontal cortex, or temporal cortex between control and AD patient samples from GEO datasets. Then, we conducted the molecular 
docking and binding pocket prediction to assess the binding affinity and pocket druggability. We found 18 docking pairs exhibiting 
favorable binding affinities and binding sites. As previously demonstrated that the hippocampus served a pivotal role in the unveiled 

Table 7 
Calculated binding free energyvia MM/PBSA strategy.   

AR-MOL001689 AR-MOL003398 CASP8-MOL001689 POLB-MOL000358 PREP-MOL005169 

MM/PBSA (ΔH) − 77.48 ± 12.55 − 40.71 ± 10.67 − 83.92 ± 14.92 − 93.58 ± 13.38 − 102.28 ± 15.54 
MM − 181.19 ± 10.52 − 100.32 ± 19.29 − 171.61 ± 24.06 − 112.26 ± 12.46 − 150.39 ± 12.78 
PB 124.28 ± 9.46 72.81 ± 16.58 108.23 ± 24.11 39.29 ± 8.43 73.65 ± 14.92 
SA − 20.56 ± 0.56 − 13.21 ± 1.70 − 20.54 ± 1.07 − 20.61 ± 1.53 − 25.54 ± 2.23 
COU − 21.44 ± 7.44 − 18.89 ± 9.71 − 24.71 ± 13.76 − 1.83 ± 2.14 − 1.30 ± 4.20 
VDW − 159.76 ± 8.57 − 81.43 ± 15.38 − 146.90 ± 16.49 − 110.43 ± 12.60 − 149.09 ± 12.12 
-TΔS 13.34 ± 6.86 28.33 ± 10.67 25.82 ± 17.30 17.73 ± 5.01 10.16 ± 4.32 
ΔG − 64.31 ± 9.11 − 11.66 ± 12.32 − 57.40 ± 23.01 − 75.48 ± 6.15 − 92.28 ± 7.83 

The presented values were given in kJ/mol and with standard deviations (±SD). MM: gas-phase molecular mechanics energy. 
PB: polar solvation energy; SA: non-polar solvation energy; COU: coulomb interaction energy; VDW: van der Waals energy. 
–TΔS: change in conformational entropy. 

M. Yu et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e33761

18

mechanism, we selected targets differentially expressed in the hippocampus for further presentation and evaluation. Accordingly, we 
obtained five protein-ligand complexes including AR-acacetin, AR-pratensein, CASP8-acacetin, POLB-β-sitosterol, and PREP-3-O- 
acetyldammarenediol-II. Notably, POLB and PREP are differentially expressed across four brain regions, while AR is the seed node of 
MCODE cluster 1. These indicate the predominant roles of AR, POLB, and PREP in the mechanism of EZW against AD. Afterward, we 
performed molecular docking with positive ligand controls to validate the biological functions of the binding pockets and the docking 
parameters. Through literature research, we identified the role of ligand-binding pockets for each target protein and selected the ligand 
control accordingly. The binding poses between AR, CASP8, POLB, and PREP and their respective ligand controls have been exper-
imentally validated with crystal structure models [85–88]. 

The binding pocket of AR is highlighted by the interaction with ARG752, a binding site for natural androgen dihydrotestosterone 
(DHT) [85]. The observations of sex differences and hormonal alterations in the incidence of AD have long been noted, as women 
exhibited a two-fold risk of developing late-onset AD than men [89]. Age-related serum androgen depletion (i.e. testosterone) 
correlated with the pathological events of AD in elderly males. On the contrary, an increased serum testosterone level displayed 
neuroprotective abilities and ameliorated cognitive and behavioral processes [90]. In the AD mice model, endogenous testosterone can 
reduce Aβ deposit by downregulating the expression level of BACE1 [91]. AR is distributed in multiple brain regions, especially the 
hippocampus that involved in learning and memory abilities [92]. In the AD rat model, testosterone can mitigate oxidative stress and 
facilitate the dendritic spine density in the hippocampus CA1 region in an AR-dependent manner [93]. On the cellular level, androgens 
can elongate the neurite outgrowth and ameliorate oxidative stress-induced cell death through an AR-dependent mechanism [94,95]. 
Additionally, the depletion of AR eliminated the protective effects of androgens against tau pathology through the PI3K/Akt/GSK3β 
signaling pathway in the PC12 cell model [96]. Together, these studies underscore the crucial roles of androgens and AR in combating 
AD, and acacetin and pratensein could potentially function as alternatives to androgens. Caspase-8 (CASP8) is a pivotal initiator of 
several cell death pathways induced by death receptor interactions. Upon activation, caspase-8 is recruited, followed by coordinated 
dimerization and cleavage, and subsequently initiates apoptosis through activating effector caspases or interacting with BCL2 family 
members [97,98]. In AD pathology, caspase-8 can be activated by Aβ, leading to neuronal death [99]. Likewise, inhibition of caspase-8 
by small molecules conferred neuroprotection in rats injected with Aβ and alleviated cognitive impairment [100]. Additionally, 
activated caspase-8 was reported to cleave APP at position 664 in the presence of Aβ and induce synapse loss [101]. Caspase inhibition 
has been proposed as a potentially novel therapeutic option [102,103]. In our study, acacetin binds to a pocket close to SER375, 
ASP384, and LEU385 residues. Notably, residues 374–375 in caspase-8 serve as a cleavage site for caspase-6, while residues 384–385 
represent an auto-cleavage site, and both are significant in programmed cell death [63,104]. Caspase-6 can be directly regulated by 
p53, and its knockout in the 5xFAD AD model improved memory deficits [105]. Moreover, intense fluctuations of residues 370–385 are 
observed in the MD simulation study, which might explain the inhibitory role of acacetin in caspase-8. Despite these findings, the 
acacetin-binding pocket of caspase-8 is not a primary active site, which might require further attention [86]. POLB plays a significant 
role in the base-excision repair (BER) pathway for DNA damage repair, which maintains genomic stability [106]. The deficiency of 
POLB resulting from aging can exacerbate AD symptoms by inducing oxidative stress and impairing synaptic plasticity, and in-
terventions to sustain the POLB level can reduce the risks of AD [107]. This is consistent with the findings that oxidative stress induced 
DNA damage would lead to cognitive impairment in AD patients, which manifests the neuroprotective role of POLB [108]. However, 
inhibition of POLB through small molecules can reduce neuron death against Aβ neurotoxicity in vitro and in vivo studies [109,110]. 
This dilemma might be reconciled by the discovery that POLB is implicated with the Aβ induced cell cycle reentry, and ensuing 
neuronal apoptosis [111,112]. Through molecular docking investigation, we found β-sitosterol can bind to the active site of POLB 
competing with deoxyribonucleotide triphosphate (dNTP) [87]. β-sitosterol interacts with residues ASP190, ASP192, ASP276, LYS280, 
and ARG283, which are crucial in the activity and fidelity of POLB [113]. The MD simulation of the POLB-β-sitosterol complex 
manifests the conformational alteration of the protein. The ROG and SASA values decrease across the simulation period, which fa-
cilitates complex stability and might prevent additional ligand bindings. Moreover, the functions of POLB are intimately associated 
with the p53/PI3K/Akt signaling pathway, as p53 can stabilize the interaction between POLB and DNA backbone, while PI3K/Akt 
induces the expression of APE1, a significant enzyme in the BER pathway [114,115]. PREP is a peptidase able for short peptides 
hydrolyzation highly expressed in the brain region [116]. Accordingly, it can modulate the neuropeptide level in the brain, yet its 
physiological substrate remains unconcluded [117]. Neuropeptides are crucial in extensive brain functions including cognition, 
memory, and learning [118]. PREP also functions through protein-protein interaction, as its colocalization with Aβ plague and tau 
protein has been observed in AD patients [119]. Inhibition of PREP results in a significant decrease in Aβ and tau aggregation and 
alleviation of oxidative stress, while the mechanism is still in debate [120]. PREP comprises two distinctive domains: a protease 
catalytic domain (residues 1–71 and 436–710) and a β-propeller domain (residues 72–435). The propeller domain mainly functions as 
a substrate gate (~4 Å in bottom entrance) that merely permits the access of short peptides to the catalytic site [121]. Our results 
suggest that 3-O-acetyldammarenediol-II interacts with the β-propeller domain of PREP similar to a synthetic unnatural dipeptide 
inhibitor [88]. This indicates 3-O-acetyldammarenediol-II potentially inhibits PREP by obstructing short peptide entrance. The sta-
bilities of five docking pairs were further evaluated by the MD simulations approach. RMSD values of the complexes are less than 1 nm 
across the simulation periods, indicating that the systems stabilize under near-physiological conditions. The MM/PBSA strategy was 
employed to re-demonstrate the binding pose and affinity between ligands and proteins. The calculated mean value of binding free 
energies (BFEs) ranges from − 11.66 to − 92.28 kJ/mol, manifesting strong affinities except for the AR-pratensein complex. The 
compromised stability of AR-partensein can partially be explained by the free energy landscape (FEL) plot and interaction entropy 
terms, that a continuous alteration of ligand-binding poses in the protein pocket might exist. Decompositions of MM/PBSA energies per 
residue display the significant interactions between the ligands and the proteins. The interaction analyses of complex conformations in 
the minimum energy basins of FELs re-confirm the pivotal roles of these residues in binding modes. Further examination of hydrogen 

M. Yu et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e33761

19

bonding patterns suggests that AR-acacetin and CASP8-acacetin form relatively stable hydrogen bonds. The interaction analyses 
manifest the predominant roles of Pi-Alkyl and Alkyl interactions in the POLB-β-sitosterol complex, and van der Waals interaction in 
the PREP-3-O-acetyldammarenediol-II complex. Together, acacetin, β-sitosterol, and 3-O-acetyldammarenediol-II exhibit potential as 
small molecular drugs in AD therapy by targeting AR, CASP8, POLB, and PREP. 

Despite the encouraging discoveries in the mechanisms of EZW against AD, there are still certain limitations. Firstly, the present 
study is mostly established on existing databases and thus might yield inadequate inference if the databases were not fully compre-
hensive and reviewed. Additionally, the combined roles of the active components in activating or inhibiting the AD-relevant pathways 
remain unknown. Moreover, although we take a step forward in the systemic demonstration of EZW efficacy, the determined active 
components and targets can’t represent the holistic effects across the body. Since our study mainly relies on in-silica approaches, future 
in vivo and in vitro experimental validations are needed to reinforce our findings. 

5. Conclusion 

To summarize, our study, for the first time, explored the active components and the mechanism of EZW in treating AD through a 
multi-disciplinary strategy. Based on a network pharmacology approach, acacetin, β-sitosterol, pratensein, and 3-O-acetyldammar-
enediol-II were identified as the active components of EZW with BBB permeability and potentially exerted therapeutic effects on AD 
through regulating p53/PIK3/Akt signaling pathways that related to Aβ and tau pathology, oxidative stress, synaptic plasticity, and 
neuronal apoptosis. Moreover, we employed a combination approach of bioinformatics analysis, molecular docking, and molecular 
dynamics simulation to validate the previous predictions, and found acacetin, β-sitosterol, and 3-O-acetyldammarenediol-II could 
stably bind to AR, CASP8, POLB, and PREP, which were druggable targets enriched in the hippocampus. Overall, our study demon-
strated a multi-component and multi-target basis to combat AD and provided a promising reference for subsequent research regarding 
drug discovery and clinical applications. 
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