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ABSTRACT
Most commercial production of recombinant pharmaceutical proteins involves the use of
mammalian cell lines, E. coli or yeast as the expression host. However, recent work has
demonstrated the potential of eukaryotic microalgae as platforms for light-driven synthesis of such
proteins. Expression in the algal chloroplast is particularly attractive since this organelle contains a
minimal genome suitable for rapid engineering using synthetic biology approaches; with
transgenes precisely targeted to specific genomic loci and amenable to high-level, regulated and
stable expression. Furthermore, proteins can be tightly contained and bio-encapsulated in the
chloroplast allowing accumulation of proteins otherwise toxic to the host, and opening up
possibilities for low-cost, oral delivery of biologics. In this commentary we illustrate the technology
with recent examples of hormones, protein antibiotics and immunotoxins successfully produced in
the algal chloroplast, and highlight possible future applications.
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Introduction

Biopharmaceuticals (protein biologics) is an industry
estimated to be worth in excess of $140 billion1 and
encompasses products such as monoclonal antibodies,
immunotoxins, antigens, hormones, enzymes, clotting
factors and bioactive peptides.2 These recombinant
proteins are produced mainly using heterotrophic fer-
mentation technologies with the biological platforms
being either mammalian cell lines such as Chinese
Hamster Ovary cells, or microorganisms such as bac-
teria or yeasts.3 Whilst these are highly advanced and
successful technologies, there is a need for additional
platforms that offer new opportunities for the produc-
tion of therapeutic proteins. Emerging technologies
include virus-mediate transient expression in insect
cell lines4 or in tobacco plants,5 and stable expression
in the chloroplasts of plants and algae.6,7

The use of unicellular algae as cell factories is par-
ticularly attractive as a low-cost, low-tech and sustain-
able approach, especially for countries lacking
advanced fermentation infrastructures. As illustrated

in Fig. 1, efficient production of algal biomass can be
achieved in a cheap, sterile and disposable polythene
tubing system that is easily scaled and managed. Each
»40 litre ‘hanging bag’ is bubbled with CO2-enriched
air and illuminated directly with sunlight, or indirectly
using artificial lighting provided by LEDs powered by
sunlight captured using photovoltaic devices. Whilst
the latter adds to the capital costs, superior daily bio-
mass productivities are obtained through 24 hour
illumination using light of optimal intensity and wave-
length, and tight control of the culture temperature.
Cultivation of the algae uses a simple medium of basic
nutrients, thereby keeping media costs as low as
$0.002 per liter.8 Importantly, algal species grown
commercially for the food ingredients and healthfood
markets (e.g. species of Chlorella, Dunaliella and Hae-
matococcus) already have GRAS (generally recognized
as safe) status. The safety of these species offers the
possibility of topical application of a biopharmaceuti-
cal such as an anti-microbial protein as a crude cell
lysate (e.g. formulated into a cream or spray), and
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therefore avoiding costly investment in purification.
Alternatively, it might be possible to use the whole
algae for oral delivery (to animals, if not to humans)
of vaccines, anti-microbials or hormones – with the
dried cells exploited as a natural method of encapsula-
tion and storage that overcomes the need for a costly
cold chain, and the components of the algal cell possi-
bly acting as an effective adjuvant.9

Recent surveys of the literature show that over
50 different biopharmaceuticals have been success-
fully produced in microalgae.9,10 Although produc-
tion using nuclear genetic engineering is reported
for several freshwater and marine species of
eukaryotic microalgae, the majority of the research
has focused instead on chloroplast engineering
using the freshwater green alga Chlamydomonas

reinhardtii. Insertion of transgenes into the small
chloroplast genome rather than the nuclear genome
offers several clear advantages: not least the ability
to do precise and predictable ‘DNA surgery’ in
which transgenes are integrated into specific, neu-
tral loci within the genome via homologous recom-
bination, and stable, high-level, stable expression is
readily achieved.11 Furthermore, protein folding
and disulphide bond formation occurs readily in
the chloroplast allowing the correct assembly of
complex therapeutic proteins with multiple
domains or multiple subunits, as discussed below.
Finally, the chloroplast compartment can serve as a
safe sub-cellular site for hyper-accumulation of
recombinant protein without affecting the biology
of the rest of the cell.12 The growing interest in
exploitation of the algal chloroplast is now driving
the development of synthetic biology tools by our-
selves and other groups that allow a rapid and effi-
cient pipeline for design and production of
engineered strains. Below we highlight this technol-
ogy and give three examples of applications in the
field of biopharmaceuticals.

The C. reinhardtii chloroplast as an emerging synbio
platform

Chloroplast genomes (or ‘plastomes’) are polyploid
circular molecules possessing 100–200 genes, with
most encoding core components of the photosyn-
thetic apparatus or the organelle’s transcription-
translation machinery (Fig. 2). Gene structure and
expression is essentially prokaryotic in nature,
reflecting the evolution of the chloroplast from a
cyanobacterial ancestor. Hence, genes are often
arranged as operons, transcribed by a eubacterial-
type RNA polymerase and the mRNA translated on
70S ribosomes.13 Chloroplast transformation was
first achieved using C. reinhardtii whereby a photo-
synthetic mutant carrying a chloroplast gene dele-
tion was restored to phototrophy by microparticle
bombardment with a plasmid carrying the wild-type
gene. Molecular analysis showed that the mutant
locus had been repaired through efficient homolo-
gous recombination (HR) between sequences on the
plastome and the introduced DNA. Since then, C.
reinhardtii has been used extensively as a laboratory
model for reverse-genetic studies of chloroplast
gene expression and photosynthetic function, with

Figure 1. A low-cost, single-use photobioreactor system for
commercial production of algal biomass. This ‘hanging bag’ sys-
tem was developed by the Cawthron Institute, New Zealand for
production of microalgae as aquaculture feed and for cultivation
of Haematococcus pluvialis – a natural source of the high-value
nutraceutical astaxanthin. We have successfully adapted the sys-
tem for endolysin and vaccine production in C. reinhardtii (L.
Stoffels, B. Parker and S. Purton, submitted). The 40 litre bags
are optimally illuminated and sterile 5% CO2/95% air supplied
at the base of each bag for phototrophic growth and for mixing.
Both batch and continuous operation is possible. ©Supreme
Health, New Zealand. Reproduced by permission of Supreme
Health, New Zealand. Permission to reuse must be obtained
from the rightsholder.
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specific gene knockouts or site-directed changes
introduced into the plastome through HR-mediated
engineering.14

More recently, the focus has shifted to biotechno-
logical applications and the development of the C.
reinhardtii chloroplast as a protein factory through
the addition of novel genes into the plastome to make
valuable recombinant products.11 Improvements
in the transformation technology have helped to
advance this field and we now are beginning to see the
application of synthetic biology (synbio) principles.
These include gene design in silico using dedicated
codon optimization software and validated cis ele-
ments such as promoters and untranslated
regions.15,16,17 Building the designed constructs in
vitro is then aided by rapid assembly of standardized
DNA parts using methods such as Golden Gate18 that
ensure the ‘one-step’ assembly of multiple parts in the
correct order and orientation (Fig. 3). Accompanying
this are methods for large-scale refactoring of the

plastome and for regulating the expression of the
transgenes.19,20,21 Finally, the development of strate-
gies for ‘marker-free’ generation of transgenic lines
that avoid the use of antibiotic resistance markers,22

and a technique for bio-containment of the transgene
through codon reassignment23 will help to address
regulatory issues and public concerns regarding com-
mercial cultivation of transgenic microalgae. Further
details of these tools are given in Fig. 3.

Three case studies: Human growth hormone,
endolysins and an immunotoxin

Human growth hormone (hGH) is a 22 kDa protein
that is produced naturally in the pituitary gland. Defi-
ciency of the hormone results in growth defects, but
can be successfully treated by administration of
recombinant hGH.24 As the only post-translational
steps required for biological activity are removal of
the N-terminal methionine and formation of two

Figure 2. The chloroplast genome of Chlamydomonas reinhardtii. Generated from Genbank entry BK000554 using OGDRAW (ogdraw.
mpimp-golm.mpg.de). Genes are coloured according to function (e.g. photosystem II genes in dark green), with genes transcribed anti-
clockwise on the outer side of the circle; those transcribed clockwise on the inner side. Examples of verified neutral sites for transgene
insertion are indicated by arrowheads, with those within the inverted repeat (IR) regions that therefore give rise to two transgene copies
per genome shown in light or dark blue.
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intrapeptide disulphide bonds, then recombinant pro-
duction is feasible using a prokaryotic host. E. coli is
currently the preferred platform, although correct
folding and bond formation requires export into the
periplasm.25 However, the demand for recombinant
hGH is huge and growing, with a predicted global
market of $4.5 billion by 2022, thereby justifying
the exploration of alternative production platforms
including chloroplasts. Recent work by our group has
demonstrated that functional hGH can be produced
in the C. reinhardtii chloroplast by expression of a
codon-optimized synthetic gene fused to the promoter
and 50 untranslated region of the endogenous psaA
gene.22 Yields of hGH in the transformant were
approximately 500 mg per liter of culture, so there is a
need to increase this significantly before we can com-
pete with bacterial platforms. Nevertheless, biological
activity could be demonstrated even in crude cell
lysates using a standard assay where addition of the
lysate specifically stimulated growth of a rat lym-
phoma cell line. This work highlights the potential of

the algal chloroplast as a future platform for making
simple biopharmaceuticals such as hGH, insulin and
bioactive peptides.

In a second study from our group, the production
of endolysins in the C. reinhardtii chloroplast was
investigated.26 Endolysins are antibacterial proteins
produced during bacteriophage infection that digest
the bacterial cell wall for phage progeny release at the
end of the lytic cycle. These enzymes typically show a
high degree of specificity for the target bacterium of
the phage. Furthermore, the emergence of resistance
to endolysins appears to be extremely rare. Conse-
quently, endolysins have potential as protein antibiot-
ics, with recombinant forms shown to be highly
effective when added to bacterial cultures or bio-
films.27 The chloroplast is a particularly attractive plat-
form for recombinant production since it mimics the
prokaryotic environment where endolysins are pro-
duced naturally, but unlike bacterial hosts, it lacks any
peptidoglycan cell wall that might be compromised
during over-expression of an endolysin gene. Using
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parts are assembled in order using Golden Gate to create the transgene device, with left (L) and right (R) flanking plastome elements
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the same strategy as for hGH production, two differ-
ent endolysins – Pal (36 kDa) and Cpl1 (40 kDa) –
that target the major human pathogen Streptococcus
pneumoniae were successfully produced in C. rein-
hardtii. Each enzyme showed a high lytic activity
against cultures of S. pneumoniae even when pre-
sented as crude cell lysates, suggesting that the algal
platform could be used for simple, low-cost formula-
tions of anti-bacterial creams or sprays targeting topi-
cal bacterial infections, or infections of the nasal
pharynx.

The third case study illustrates a possible niche for
the algal chloroplast platform that addresses issues
encountered with existing prokaryotic and eukaryotic
hosts. Tran et al.12 investigated the synthesis of immu-
notoxins in the C. reinhardtii chloroplast. These chi-
meric proteins are targeted therapeutics that have
applications in cancer treatment, and consist of an
antibody domain for binding to the target cell and a
cytotoxic enzyme that inhibits proliferation of the cell.
As shown in Fig. 4, the immunotoxin is a complex
multi-domain protein that requires correct folding
and disulphide bond formation to generate the active
homodimer. Production of such proteins within bacte-
rial hosts is challenging because these expression

platforms often fail to fold proteins with multiple
domains efficiently and are unable to form disulphide
bonds. Conversely, production of such cytotoxic pro-
teins in eukaryotic hosts such as CHO cells or yeast is
not feasible because of the lethal effect of the toxin on
the cytosolic translation apparatus. The work of Tran
et al.12 demonstrates that the algal chloroplast not
only possesses the machinery necessary to fold and
assemble complex eukaryotic proteins, but that the
70S ribosomes are unaffected by the toxic protein and
the organelle is able to contain the protein preventing
any inhibitory effect on the host’s cytosolic ribosomes.
The chloroplast therefore offers an attractive platform
for efficient production of these highly complex
therapeutics.

Resources and future applications

Advances in the genetic engineering of the C. rein-
hardtii plastome, in particular the application of
synbio strategies, have simplified and accelerated
the process of creating designer strains expressing
therapeutic proteins. In our lab, we have sought to
develop a simple, low-cost pipeline that can readily
be adopted by other groups, including those in
developing countries. Chassis strains and DNA
parts are available through the Chlamydomonas
Resource Center (www.chlamycollection.org) and
our software for codon optimization is free to down-
load (github.com/khai-/CUO). Our chloroplast trans-
formation protocol simply involves agitation of a cell/
DNA suspension in the presence of glass beads, rather
than the use of expensive microparticle bombardment
equipment, and we have developed a simple PCR-
based method for confirming transgene insertion and
homoplasmy of the plastome.22 Our on-going work
on scale-up using the hanging bag system shows that
this is a cost-effective and easily manageable cultiva-
tion method; and biomass productivity could be fur-
ther improved through optimization of key
parameters such as light, CO2 delivery, mixing and
media composition.28

Currently, recombinant protein yields are low (typi-
cally 0.5-5% of total soluble protein) compared to
established microbial platforms, but better understand-
ing of chloroplast gene regulation and the use of
orthogonal mechanisms to induce and drive transgene
expression,29 should lead to marked improvements.
Indeed, recombinant protein levels achieved in
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chloroplasts of tobacco have been reported as high as
70% of total soluble protein.30 In addition, protein pro-
ductivity could be improved through genetic enhance-
ment (“domestication”) of the chassis strains to
improve their performance in photobioreactors.31

Alternatively, the chloroplast engineering technology
could eventually be transferred to faster-growing and
more robust native species of green algae such as Chlo-
rella that are better suited to intensive commercial
cultivation.32

Possible applications of the algal chloroplast plat-
form extend beyond human therapeutics, and are par-
ticularly attractive where the cost of production and
storage are key issues. For example, microalgae are a
natural part of the diet for insect larvae, juvenile shell-
fish, fish fry, etc. Consequently, engineered C. rein-
hardtii strains have been proposed for oral delivery of
toxins to insect pests such as mosquitoes,33,34 or deliv-
ery of vaccines and growth hormones to farmed fish
and shellfish.35 Similarly, the GRAS status and nutri-
tional value of various green algal species opens up the
possibility of “functionalized feed” for poultry and
livestock whereby dried algae formulated into the feed
also contains beneficial vaccines, anti-microbials or
dietary enzymes.36

To date, no biopharmaceuticals produced in micro-
algae has been approved for commercial production
and only a handful have been tested in animal experi-
ments. Significant further research and development
of microalgal platforms is therefore required. How-
ever, conventional production of protein biologics is
expensive and technically demanding – requiring cap-
ital-intensive fermentation facilities, and costly down-
stream processing, cold storage and transportation,
and sterile delivery methods. To meet the future needs
of the global population, alternative low-tech, low-cost
and sustainable production systems such as microal-
gae must be considered.
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