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Abstract: The microsomal cytochrome P450 3A4 (CYP3A4) and mitochondrial cytochrome P450 24A1
(CYP24A1) hydroxylating enzymes both metabolize vitamin D and its analogs. The three-dimensional
(3D) structure of the full-length native human CYP3A4 has been solved, but the respective structure
of the main vitamin D hydroxylating CYP24A1 enzyme is unknown. The structures of recombinant
CYP24A1 enzymes have been solved; however, from studies of the vitamin D receptor, the use of
a truncated protein for docking studies of ligands led to incorrect results. As the structure of the
native CYP3A4 protein is known, we performed rigid docking supported by molecular dynamic
simulation using CYP3A4 to predict the metabolic conversion of analogs of 1,25-dihydroxyvitamin
D2 (1,25D2). This is highly important to the design of novel vitamin D-based drug candidates of
reasonable metabolic stability as CYP3A4 metabolizes ca. 50% of the drug substances. The use of
the 3D structure data of human CYP3A4 has allowed us to explain the substantial differences in the
metabolic conversion of the side-chain geometric analogs of 1,25D2. The calculated free enthalpy of
the binding of an analog of 1,25D2 to CYP3A4 agreed with the experimentally observed conversion
of the analog by CYP24A1. The metabolic conversion of an analog of 1,25D2 to the main vitamin D
hydroxylating enzyme CYP24A1, of unknown 3D structure, can be explained by the binding strength
of the analog to the known 3D structure of the CYP3A4 enzyme.

Keywords: vitamin D analogs; cytochrome P450 3A4; cytochrome P450 24A1; in silico prediction;
molecular dynamics

1. Introduction

1,25-dihydroxycholecalciferol (1,25-dihydroxyvitamin D3, calcitriol, 1,25D3) and
1,25-dihydroxyergocalciferol (1,25-dihydroxyvitamin D2, 1,25D2) (Figure 1) are no longer
considered just as “vital amines” [1,2] that maintain the calcium and phosphate homeosta-
sis [3], they are also pleiotropic hormones [4] that regulate key physiological processes [5,6].
Several active vitamin D metabolites, their precursors, and synthetic analogs are used
as drug substances in the treatment of bone diseases (type I rickets, osteomalacia, hy-
poparathyroidism, pseudohypoparathyroidism, renal osteodystrophy, and osteoporosis),
and hyperproliferative skin diseases such as psoriasis [7,8]. Efforts are now focused on
fortifying standard anticancer chemotherapy by the addition of synthetic vitamin D analogs
to improve efficacy and delay cancer recurrence [9]. The active forms of vitamin D3 (1,25D3)
and D2 (1,25D2), jointly denoted as 1,25D, cannot be used for this purpose because they
are highly calcaemic. They also have a low resistance to vitamin D metabolizing en-
zymes [10]. The current search is for vitamin D analogs of therapeutic potential against
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leukemia [7,11,12] and solid tumors, including breast [13], lung [14], prostate [15], colorec-
tal [16,17], skin [18], and ovarian cancer [19]. We have developed analogs of 1,25D that
exceed the potency of the parent 1,25D against cancer cells in vitro and in vivo, and that
are less calcaemic and more enzymatically stable [10].
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Figure 1. Structural formulas of 1α,25-dihydroxyergocalciferol (1,25-dihydroxyvitamin D2, 1,25D2) 
and 1α,25-dihydroxycholecalciferol (1,25-dihydroxyvitamin D3, 1,25D3). 

The rational design of vitamin D analogs is hampered by the lack of the 3D structure 
of the native full-length human vitamin D receptor (hVDR); the use of an engineered and 
truncated hVDR∆ [20] might result in a misleading outcome. For example, an early and 
controversial finding is that the hVDR∆ structure has an identical conformation, but that 
there is overlapping of all of the hydroxyls for 1,25D3 and two other analogs of very dif-
ferent structures when 1,25D3 and the analogs are bound to the ligand-binding pocket 
[21]. This intriguing finding has never been explained. Therefore, the use of the native 
integral vitamin D protein is recommended for the reliable design of analogs [22]. There 
is also the need to predict the metabolic resistance of potential anticancer analogs of 1,25D; 
this is important to a drug candidate prior to initiating a multistep synthesis followed by 
broad biological screening. 

Cytochrome P450 hydroxylates vitamin D and its analogs. It also metabolizes several 
xenobiotics, including various drug substances. For instance, we postulated that our vita-
min D analogs and the drug substance imatinib compete for the active site of the same 
cytochrome P450 enzyme [23]. This competition delays the deactivating metabolism of a 
vitamin D analog and prolongs the synergistic anticancer activity of both agents. Our con-
cept has been confirmed recently [24] by studies that have shown that there is a pharma-
codynamic synergy between ginsengoside Rh2 and 1,25D3 regarding the growth inhibi-
tion and apoptosis of human prostate cancer cells. For human hepatic microsomes in vitro, 
this led to inhibition of cytochrome P450 3A4-mediated metabolism and inactivation of 
1,25D3. Of the several cytochrome P450 hydroxylating enzymes that are involved in me-
tabolizing 1,25D and analogs, cytochrome P450 24A1 (CYP24A1) is primarily considered. 
The expression of CYP24A1 mRNA is used as a measure of the transactivating activity of 
a vitamin D analog. We have already determined the metabolic conversion of 1,25D ana-
logs to CYP24A1 using the membrane fraction from recombinant Escherichia coli cells that 
expressed hCYP24A1 [25,26]. The crystal structure of rat recombinant CYP24A1 (Δ2-32, 
S57D mutant) has been reported (SSRL BL9-2 and BL12-2) [27,28], but the structure of the 
native full-length human CYP24A1 is still lacking. Therefore, taking-into-account the un-
certain results from the modeling of analog binding to the pocket of the recombinant VDR, 
we opted for the modeling of metabolic resistance 1,25D analogs to the native cytochrome 
P450 3A4 (CYP3A4). The crystallographic 3D structure of human CYP3A4, as solved [29], 
conforms with the protein fold that is typical for the cytochrome P450 superfamily. Our 
approach is additionally supported by the very recent finding that the docking of pep-
tidomimetic ligands to the cysteine-like protease of SARS-CoV-1 3CLpro (of the known 
3D structure) facilitated the design of potent inhibitors with antiviral potency against 
SARS-CoV-2 3CLpro (of unknown 3D structure) [30]. Therefore, we postulated that by 

Figure 1. Structural formulas of 1α,25-dihydroxyergocalciferol (1,25-dihydroxyvitamin D2, 1,25D2)
and 1α,25-dihydroxycholecalciferol (1,25-dihydroxyvitamin D3, 1,25D3).

The rational design of vitamin D analogs is hampered by the lack of the 3D structure
of the native full-length human vitamin D receptor (hVDR); the use of an engineered
and truncated hVDR∆ [20] might result in a misleading outcome. For example, an early
and controversial finding is that the hVDR∆ structure has an identical conformation, but
that there is overlapping of all of the hydroxyls for 1,25D3 and two other analogs of
very different structures when 1,25D3 and the analogs are bound to the ligand-binding
pocket [21]. This intriguing finding has never been explained. Therefore, the use of the
native integral vitamin D protein is recommended for the reliable design of analogs [22].
There is also the need to predict the metabolic resistance of potential anticancer analogs
of 1,25D; this is important to a drug candidate prior to initiating a multistep synthesis
followed by broad biological screening.

Cytochrome P450 hydroxylates vitamin D and its analogs. It also metabolizes several
xenobiotics, including various drug substances. For instance, we postulated that our
vitamin D analogs and the drug substance imatinib compete for the active site of the
same cytochrome P450 enzyme [23]. This competition delays the deactivating metabolism
of a vitamin D analog and prolongs the synergistic anticancer activity of both agents.
Our concept has been confirmed recently [24] by studies that have shown that there
is a pharmacodynamic synergy between ginsengoside Rh2 and 1,25D3 regarding the
growth inhibition and apoptosis of human prostate cancer cells. For human hepatic
microsomes in vitro, this led to inhibition of cytochrome P450 3A4-mediated metabolism
and inactivation of 1,25D3. Of the several cytochrome P450 hydroxylating enzymes that are
involved in metabolizing 1,25D and analogs, cytochrome P450 24A1 (CYP24A1) is primarily
considered. The expression of CYP24A1 mRNA is used as a measure of the transactivating
activity of a vitamin D analog. We have already determined the metabolic conversion of
1,25D analogs to CYP24A1 using the membrane fraction from recombinant Escherichia coli
cells that expressed hCYP24A1 [25,26]. The crystal structure of rat recombinant CYP24A1
(∆2-32, S57D mutant) has been reported (SSRL BL9-2 and BL12-2) [27,28], but the structure
of the native full-length human CYP24A1 is still lacking. Therefore, taking-into-account the
uncertain results from the modeling of analog binding to the pocket of the recombinant
VDR, we opted for the modeling of metabolic resistance 1,25D analogs to the native
cytochrome P450 3A4 (CYP3A4). The crystallographic 3D structure of human CYP3A4,
as solved [29], conforms with the protein fold that is typical for the cytochrome P450
superfamily. Our approach is additionally supported by the very recent finding that the
docking of peptidomimetic ligands to the cysteine-like protease of SARS-CoV-1 3CLpro (of
the known 3D structure) facilitated the design of potent inhibitors with antiviral potency
against SARS-CoV-2 3CLpro (of unknown 3D structure) [30]. Therefore, we postulated that
by using the 3D structure of the native human CYP3A4 we would be able to predict the
resistance of our new vitamin D analogs to CYP24A1 metabolism.
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To this end, we used, for the first time, the 3D crystallographic data of cytochrome
CYP3A4 (RCSD PDB: 2V0M.pdb) [31,32] for our theoretical simulations of vitamin D
analogs. CYP3A4 is a hepatic microsomal 24-hydroxylase of 1α-hydroxyvitamin D2 and
its analogs [33], and is also a vitamin-25 hydroxylase. We have previously shown that the
inducible enzyme CYP3A4 is also a source of oxidative metabolism of 1,25D3 in the human
liver and small intestine [33,34].

CYP3A4 is multifunctional and also metabolizes endobiotics and xenobiotics [35]. This
enzyme is responsible for the deactivating hydroxylation of ca. 50% of drug substances [29,36].
Therefore, we used CYP3A4 in our study because we were interested in the metabolic
stability of our vitamin D-based potential drug candidates. Additionally, both CYP24A1
and CYP3A4 show the same monooxygenase activity and catalyze the side-chain oxidation
of the hormonal form of vitamin D to the same side-chain hydroxylated metabolites [37].
In this study, we provide unprecedented evidence that the metabolic conversion of analogs
of 1,25D2 by CYP24A1 can be correlated with the free enthalpy of binding of the analogs
to CYP3A4. By using the 3D structural data of CYP3A4 as a starting parameter, we have
been able to explain the differences in the metabolic resistance of the side-chain geometric
analogs of 1,25D. We have also been able to predict the metabolic resistance of structurally
related analogs of 1,25D2 with a branched side-chain, and in turn, direct the design and
synthesis of vitamin D analogs toward more promising drug candidates.

The interactions of 1,25D analogs with CYP3A4 were elucidated by computational
approaches which included molecular docking, molecular dynamics simulations, binding
free enthalpy calculations, and density functional theory (DFT) calculations. The relatively
large active site of CYP3A4 shows large flexibility, allowing for side-chain fluctuations and
the presence of various functional groups. There is also a large malleability that allows
the adoption of a different shape depending on the ligand structure; making CYP3A4
a challenging protein to simulate [38]. Based on our experience of simulating molecular
mechanisms for similar systems [39,40], simulations of CYP3A4 complexed with vitamin D
analogs were carefully compared in terms of their structural and energetic properties. Their
molecular structures were used to explore the possible binding modes with the amino acids
of the active site of CYP3A4, as well as to show their different capacities for interaction with
heme groups, which has biological consequences. Our calculations were compared with
the previously determined metabolic resistance of analogs of 1,25D2 against the CYP24A1
hydroxylating enzyme. In order to check the extent of the correlation observed for the
series of structurally related 1,25D2 analogs, preliminary studies were performed using
two analogs of 1,25D3 that have very different structures.

2. Results and Discussion
2.1. Potential Binding Site of 1,25D Analogs in CYP3A4

Molecular docking studies were carried out to predict the binding site and the ori-
entation at the active site of CYP3A4 for ten analogs of 1,25D (eight analogs of 1,25D2
and two analogs of 1,25D3). The orientation and residue bonding of ketoconazole (as
a reference inhibitor for the testing of the binding affinities to the CYP3A4) were inferred
from the X-ray structure of human CYP3A4 (PDB entry 2V0M). This served as a model for
the simulations of the interactions of vitamin D analogs with the enzyme. We supposed
that the size of the molecular structure of vitamin D analogs was comparable to that of
ketoconazole, and assumed that the docking of 1,25D analogs into the activity domain did
not significantly perturb the crystal structure of the 2V0M. To validate the suitability of
the selected docking model, we first re-docked ketoconazole to ensure that its bonding to
the CYP3A4 binding site was consistent with the original structure of 2V0M. According
to the ketoconazole-docking simulation, the complex showed that eight significant amino
acids are involved in the interactions: Leu-210, Phe-241, Ile-301, Ala-305, Ala-370, Arg-372,
Gly-481, and Leu-482, as well as the heme group, and are indispensable for the activity
of the classic inhibitors. Next, all of our analogs were docked to the CYP3A4 pocket. The
analogs effectively filled the active site cavity of CYP3A4. The position of their 25-hydroxyl
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was located close to the heme ring, indicating that it might be the potential metabolic site
(see Figure 2).
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Figure 2. Close-up view of an active site of the CYP3A4 structure. (A) View of the binding of 1,25D2
(green) and 1,25D3 (brown) in the active site CYP3A4. (B,C) View of 1,25D2 and 1,25D3 analogs in
the pocket of CYP3A4. Predicted superposition of compounds. (B) 1,25D2 (C atoms shown as green),
PRI-5106 (C atoms shown as dark green), PRI-5105 (C atoms shown as magenta), PRI-1916 (C atoms
shown as cyan), PRI-1917 (C atoms shown as pink), PRI-1906 (C atoms shown as blue), PRI-1907
(C atoms shown as grey), PRI-5201 (C atoms shown as yellow), and PRI-5202 (C atoms shown as
orange). (C) PRI-1901 (C atoms shown as purple) and PRI-2205 (C atoms shown as blue). Surface
hydrophobicity is depicted by the shaded colors: negative values (blue) correspond to hydrophilic
residues, whereas positive values (brown) correspond to hydrophobic residues.

As shown in Figure 2B,C, the inner wall of the pocket of CYP3A4 is formed by
hydrophilic side chains (Asp-76, Arg-105, Arg-106, Ser-119, Thr-309, Arg-372, and Glu-374)
and a hydrophobic region (formed by Phe-57, Phe-108, Ile-120, Leu-211, Ile-301, Phe-304,
Ala-305, Ile-369, Ala-370, Leu-373, Gly-481, Leu-482, and Hem-499). The predicted location
of 1,25D analogs in the CYP3A4 pocket is different for the 1,25D2 and 1,25D3 analogs
(see Figure 2A). The 1,25D2 analogs interacted with the CYP3A4 pocket using hydrogen
bonds and hydrophobic and van der Waals interactions, while the interaction of 1,25D3
and its analogs were mainly hydrophobic in nature. To examine the stability of the 1,25D
analogs bound at the active site of CYP3A4, MD simulations were performed on the
CYP3A4-liganded analog complex.

2.2. Importance of Side-Chain Geometry of 1,25D2 Analogs in the CYP3A4 Binding Site

The structural formulas of PRI-1906 and PRI-1916, and PRI-1907 and PRI-1917
(Figure 3) are quite similar, but the extent to which they bind to CYP24A1 is different.
Experimental data indicated that the binding to CYP24A1 of the C-25 dimethyl analog
PRI-1916 of (24Z) geometry was much lower than that of the (24E)-25-dimethyl analog
PRI-1906. Similarly, the binding of (24Z)-25-diethyl analog PRI-1917 was lower than that of
the respective (24E)-25-diethyl analog PRI-1907 [33].
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Figure 3. Structural formulas of the analogs of 1α,25-dihydroxyvitamin D2 (PRI-1906, PRI-1907,
PRI-1916, and PRI-1917).

Theoretical calculations showed that the geometry of the side-chain of the series of four
analogs of 1,25D2 also followed the same trend as the predicted stereoselective activity of
cis/trans isomers in the human CYP3A4 model. The MD resulting orientations of analogs,
presented in Figure 4, define the geometric preferences of the four compounds on the active
site of CYP3A4.
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ring. (A) PRI-1906 (C atoms shown as blue) and PRI-1916 (C atoms shown as cyan); (B) PRI-1907 (C
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Analogs PRI-1906 and PRI-1916 bind to the active site in different ways and with
different affinities. Due to the side-chain geometry, PRI-1916 was predicted to adopt the
U-shaped conformation in the CYP3A4 pocket, while (24E)-25-dimethyl PRI-1906 adopted
an extended conformation. The most noticeable difference was that the U-shaped side-
chain A-ring of PRI-1916 was rotated by 180◦ to the heme group, compared with the
extended side-chain of the A-ring of PRI-1906 (Figure 4A). This could explain the lower
binding of PRI-1916 for CYP3A4. PRI-1916 was not able to form a significant portion of the
hydrophobic interactions as for PRI-1906 and with residues Phe-57, Ile-120, Ala-305, Ile-369,
Leu-482, and Arg-372. On the other hand, the A-ring 3-hydroxyl of PRI-1906 engaged
in a strong hydrogen bond at the binding site with the Asp-76 residue (see Figure 5 and
Figure S1 in Supplementary Materials). For PRI-1907/CYP3A4 and PRI-1917/CYP3A4
complexes, the position of their 25-hydroxyl was almost the same in the active site of the
receptor (Figure 4B), but the presence of the (24E)-25-diethyls of PRI-1907 affected the
parallel arrangement of A- and CD-rings to the heme group.

The parallel arrangement of the A- and CD-rings to the heme group is conducive to
the formation of very strong hydrogen bonds by the A-ring hydroxyls with the
amino acid residues Ala-370, Arg-372, Glu-374, and Gly-481 in CYP3A4 (see Figure 5 and
Figure S1 in Supplementary Materials). Furthermore, the 1- and 3-hydroxyl of PRI-1907
formed hydrogen bonds with water molecules. In contrast, the docked analog PRI-
1917, with (24Z)-25-diethyls in the side-chain, showed the perpendicular arrangement of
A- and CD-rings to the heme group that caused only the 1-hydroxyl to be involved in
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a hydrogen bond with amino acid residue Gly-481. This could lead to a lower affinity of
PRI-1917 for the CYP3A4 cavity compared to that of PRI-1907 (see Figure 5 and Figure S1 in
Supplementary Materials).
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2.3. Molecular Interactions between the CYP3A4 Binding Site and 1,25D2 Analogs

MD simulations of the CYP3A4-vitamin D analog complexes were performed to fur-
ther investigate the binding of ligands and the effect of their structures on the intermolecular
interactions. The MD resulting orientations of analogs, presented in Figure 5, Figure 6,
Figure 7 and Figure S2 in Supplementary Materials, define the key interactions in the active
site of the human CYP3A4 model. The binding free enthalpy values, calculated using
the MM-PBSA method, are shown in Table 1, together with the experimental metabolic
conversions by CYP24A1. A correlation was observed between the experimental metabolic
conversion by CYP24A1 and the theoretically estimated binding free enthalpy of the
CYP3A4-ligand complexes (∆Gbind) (see Figure S3 in Supplementary Materials). The corre-
lation coefficient, equal to R2 = 0.853, confirmed that the calculated enthalpy of binding to
the vitamin D hydroxylating enzyme CYP3A4, with the crystal structure solved, shows
good agreement with the experimental metabolic conversion by the main vitamin D hy-
droxylating enzyme CYP24A1. In other words, the experimental metabolic conversion of
an analog by CYP24A1 advantageously decreases with the decrease in the calculated free
enthalpy of the binding of an analog of 1,25D2 to CYP3A4.

The lowest value for the ∆Gbind enthalpy was obtained for PRI-1907. This is most
likely a consequence of a good fit, as mentioned above, and the formation of very strong
hydrogen bonds with amino acids that have an important role in the CYP3A4 active
site. The analog of PRI-5202, which lacks a 19-methylene, showed a similarly folded con-
formation in the pocket of CYP3A4 but its location was rather different (see Figure S2A
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in Supplementary Materials). Apart from the typical interactions, the side-chain of
PRI-5202 allowed for favorable interactions of the 28-methyl with Ile-301 and 26,
27-methylene with amino acid residues Ala-305, Ile-369, and Leu-482. The A-ring
3-hydroxyl was involved in additional hydrogen bonds with the Phe-57 residue
(Figures 6 and S1 in Supplementary Materials). Importantly, PRI-5202 is also highly solvated
by water molecules that are present inside the pocket of CYP3A4.
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Figure 6. (A) Structural formulas of the analogs of 1α,25-dihydroxyvitamin D2 (PRI-5201 and
PRI-5202). (B) Molecular interactions between 1,25D2 analogs (PRI-5201 and PRI-5202) and CYP3A4
resulting from MD simulations. Hydrophobic interactions are shown as magenta dashed lines and
hydrogen bonds as green.
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Table 1. The experimental metabolic conversion of 1,25D2 and its analogs by CYP24A1 [10,16,41] and
the calculated free enthalpy of binding to CYP3A4.

Vitamin D Metabolite
and Its Analogs

Metabolic Conversion
by CYP24A1

(%) ± SD

Free Enthalpy of
Binding to CYP3A4 *

∆Gbind (kcal/mol)

1,25D2 34 ± 5 −24
PRI-5106 26 ± 3 −37
PRI-5105 25 ± 2 −27
PRI-1916 13 ± 4 −52
PRI-1917 10 ± 1 −65
PRI-1906 1.9 ± 0.7 −76
PRI-1907 0.9 ± 0.1 −120
PRI-5201 1.9 ± 0.1 −91
PRI-5202 2.0 ± 0.2 −100

* Rounded to the absolute value.

The relatively high values of enthalpy obtained for both PRI-5105 and PRI-5106 re-
sult from the presence of an additional 28-methyl at C-24, irrespective of the (24S)-or
(24R)-absolute configuration. PRI-5105 and its 24-diastereomer PRI-5106 were predicted
to be accommodated in the CYP3A4 pocket in twisted conformations (see Figure S2B in
Supplementary Materials). These conformations are energetically unfavorable and decrease
the hydrophobic interactions with the surrounding amino acids (see Figure 7). The molec-
ular flexibility conferred by one carbon extension (C-20a) to the side-chain of PRI-5105
and PRI-5106 results in a decreased metabolic resistance, emphasizing the importance
of side-chain rigidity and the correct position in the active site. Notably, these analogs
showed relatively low resistance to CYP24A1-dependent metabolic conversion (Table 1).
The MD simulation showed that the location within the cavity of analogs PRI-5105 and
PRI-5106 is largely the same, and the molecules are surrounded purely by the interior
pocket residues of Phe-57, Ile-301, Ala-305, Ile-369, Arg-372, and Glu-374 which create
hydrophobic interactions and hydrogen bonds.

Compared to PRI-1906, PRI-5201 has the 19-nor modification and the PRI-5201/CYP3A4
complex showed an extended conformation, as seen for the PRI-1906/CYP3A4 complex,
but the position of 1-and 3-hydroxyls at the A-ring of PRI-5201 formed a very strong
hydrogen bond with Asp-76, Arg-106, Arg-372, and three water molecules (see Figure 6 and
Figure S1 in Supplementary Materials). This is likely responsible for the higher affinity of
PRI-5201, versus that of PRI-1906.

2.4. Metabolic Conversion of 1,25D3 Analogs PRI-1901 and PRI-2205 to hCYP24A1-Mediated Degradation

The membrane fraction prepared from the recombinant Escherichia coli cells that ex-
pressed hCYP24A1 [25,26] was used to examine the metabolism of 1,25Ds, as previously
done for the 1,25D2 analogs. The HPLC metabolic profiles of PRI-1901 and PRI-2205 are
shown in Figure 8.

The metabolic conversion of PRI-2205 was 44 ± 6% and the same as that observed for
the parent 1,25D3 [10]. This suggests that modifications such as introducing an isolated
double bond in the regular vitamin D3 side-chain at C-22 as well as the formal transfer of
the 19-methylene from C-10 to C-4 position in the A-ring do not improve the metabolic
resistance of analogs. Quite unexpectedly, the extension of the side-chain by two carbon
units in PRI-1901 increased the metabolic conversion up to 58 ± 9%.

2.5. Molecular Interactions between CYP3A4 Binding Site and 1,25D3 Analogs

Based on the experimental data obtained for the metabolic conversion of 1,25D3
analogs by the CYP24A1 enzyme, we examined the nature of the mode of action that can be
created between analogs and the CYP3A4 enzyme. This was investigated for the PRI-1901
and PRI-2205 analogs of 1,25D3 by using the human CYP3A4 model (see Figure 9). The
calculated binding free enthalpy values for PRI-1901 and PRI-2205 were −62 kcal/mol
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and −64 kcal/mol, respectively (compared to −29 kcal/mol for 1,25D3). The interactions
inside the complexes of PRI-1901 and PRI-2205 are shown in Figure 9 and Figure S4 in the
Supplementary Materials.
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resulting from MD simulations. Hydrophobic interactions are shown as magenta dashed lines and
hydrogen bonds as green.

Analog PRI-1901, which has a (24aE) double bond that is located in the vicinity of
the C-25 center in the side-chain, is more flexible and adopts a U-shaped conformation.
This does not allow for the correct disposition in the active site. The binding model for
the PRI-1901 and CYP3A4 protein revealed that the 1,25D3 analog forms two hydrogen
bonds with the two residues of the active site of CYP3A4 (Arg-372 and Glu-374) and that
there are hydrophobic interactions with the amino acid residues Phe-108, Ile-301, Ala-305,
Ile-369, and Leu-482. On the other hand, the higher affinity of PRI-2205 can be attributed
to its extended conformation and may also be due to the presence of the cyclopropyl ring
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on the C-25 carbon atom at the side-chain which forms hydrophobic interactions with the
amino acid residues Ile-369, Ala-370, and Leu-482 as well as with the heme ring. It can be
seen (Figure 9) that the 19-methylene at the C-4 position makes strong π-alkyl interactions
with the key residues of the active site of CYP3A4, such as the aromatic ring of Phe-108,
Phe-213, and Phe-220. Furthermore, the positions of the A-ring hydroxyls of PRI-2205 allow
the formation of a network of hydrogen bonds with water molecules which stabilize the
binding of the PRI-2205 in the active site of CYP3A4.

3. Materials and Methods
3.1. Theoretical Calculations
3.1.1. Dataset Preparation

In this study, we made use of our previously published and new experimental data for
the metabolic resistance of analogs of 1,25D2 (PRI-5106, PRI-5105, PRI-1916, PRI-1917, PRI-
1906, PRI-1907, PRI-5201, and PRI-5202) and 1,25D3 (PRI-1901 and PRI-2205) [16,41,42]. The
starting conformations of the analogs were constructed based on the solid-state diffraction
data of structurally related compounds to eliminate any subjectivity in generating the
three-dimensional structure [43]. The molecular structures of the 1,25D analogs were
optimized using the density functional theory (DFT) at the B3LYP/6-311+G(d,p) level
implemented in the Gaussian 16 program [44]. The electrostatic potential (ESP) of the
atomic partial charges of the atoms was computed using the Breneman model [45] which
reproduces the molecular electrostatic potential. The crystal structure of human CYP3A4
(PDB entry 2V0M) was obtained from the RCSB Protein Data Bank [32]. The PDB file
presents a co-crystal with a ketoconazole ligand in the active site. Ligand (except for
the heme group), water molecules, and inorganic ions were removed before making the
calculations, and hydrogen atoms were added to reflect the physiological pH. Prior to the
analysis, the iron atom in the heme group was constrained to preserve its bonding to the
nitrogen atoms of the heme after the application of the CHARMm force field.

3.1.2. Molecular Docking and Dynamic Simulation

Docking and molecular dynamic (MD) simulations were performed using the Dis-
covery Studio 2020 with a visual interface BIOVIA [46]. To identify the starting structures
for the subsequent computations of the binding affinity of 1,25D analogs for CYP3A4;
a rigid docking procedure was performed using the CDOCKER protocol of Discovery
Studio 2020. The active site was defined with a radius of 15 Å around the analog present
in the 2V0M crystal. The analogs were allowed to interact with the residues within the
binding site spheres to generate ten conformations. The best poses predicted by CDOCKER
were used as the starting points in the MD simulation.

MD simulations were run using the CHARMm force field [47] implemented in the
module of Discovery Studio 2020. The molecular parameters and atomic charges for the
protein were taken from a set of CHARMm force field parameters. Each model of the
CYP3A4-analog complex was inserted into a cubic box of water molecules (TIP3P mod-
els) [48] extending up to 10 Å from any solute atom. Counter-ions (Na+, Cl−) were added
randomly to each complex at a concentration of ~0.15 M, close to physiological conditions,
by using the Solvation Module of Discovery Studio 2020. All energy minimization and MD
simulations were performed using the Particle Mesh Ewald (PME) algorithm [49] for the
correct treatment of electrostatic interactions [50] and periodic boundary conditions. Prior
to MD simulations, all systems were minimized based on the steepest descent method with
3000 steps followed by 3000 conjugate gradient energy-minimization steps (until the RMS
gradient of the structure was below 0.01 kcal/mol·Å) with an applied restraint potential of
10 kcal/mol·Å2 for protein. The conjugate gradient algorithm without restraint was further
carried out with an additional full minimization of 1000 steps. A gradual heating MD
simulation from 50 to 300 K was executed for 50 ps. Following heating, an equilibration
estimating 100 ps of each system was conducted (the operating temperature was kept
constant at 300 K). In the stages of heating and equilibration, the protein was fixed with
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a force constant of 5 kcal mol−1 Å−2. Using two phases, the equilibrated system was taken
as the starting structure for production runs. In the first phase, NVT was performed at
300 K for 10 ns in the presence of a weak harmonic restraint on the solute, and in the second
phase, NPT at 300 K and 1 bar for 10 ns. During the 20 ns simulations, snapshots were
stored every 1 ps and used for the analysis. All simulations were run with SHAKE on
hydrogen atoms with a 2 fs time step and Langevin thermostat for temperature control [51].
The integration time step was set to 1 fs. The cut-off distance for non-bonded terms was set
to 10 Å.

3.1.3. Binding Free Enthalpy Calculation

Even though docking combined with MD simulations provides a clear image of the
shape complementarity between the analog and the protein, there is the need for additional
and essential information regarding the free enthalpy of binding. This assesses the affinity
of an analog to its target. To compare the stability of each binding mode while considering
solvent effects, we calculated the binding free enthalpy (∆Gbind) for each mode by using
the MM/PBSA method in Discovery Studio 2020. The ∆Gbind of 1,25D analogs to CYP3A4
was calculated using Equation (1):

∆Gbind = GCYP3A4-analog − GCYP3A4 − Ganalog (1)

where GCYP3A4–analog is the free enthalpy of complex, GCYP3A4 is the free enthalpy of
CYP3A4, and Ganalog is the free enthalpy of tested analogs. Binding free enthalpy was
calculated based on the average structures obtained from the 20 ns of MD trajectories.

3.2. Metabolic Conversion of 1,25D3 Analogs PRI-1901 and PRI-2205 to CYP24A1-Mediated Degradation

CYP24A1-mediated degradation of the two analogs of 1,25D3 (PRI-1901 and PRI-2205)
was determined using recombinant human CYP24A1 (hCYP24A1) as described previ-
ously [25,26]. The reaction mixture containing 2.0 µM bovine adrenodoxin, 0.2 µM bovine
adrenodoxin reductase, 20 nM CYP24A1, 5 µM 1,25D3 analog, 1 mM NADPH, 100 mM
Tris-HCl (pH 7.4), and 1 mM EDTA in total volume of 100 mL, was incubated at 37 ◦C for
15 min. The reaction was quenched by the addition of four volumes of chloroform/methanol
(3:1) and vigorous shaking. The organic phase was collected and dried down under re-
duced pressure. The residue was dissolved in acetonitrile and centrifuged at 20,000× g
for 15 min. The supernatant (applied volume 40 µL) was submitted to HPLC Capcell-Pak
C18 UG120 4.6 mm × 250 mm column (Phenomenex, Tokyo, Japan) at a flow rate of
1 mL/ according to previously described conditions [25,26]. Samples were eluted by linear
gradients of water-acetonitrile 20–100% solution (0–25 min) followed by 100% acetonitrile
(25–40 min). The eluted metabolites of 1,25D3 analogs were detected by UV absorbance at
254 nm. The amount of a 1,25D3 analog in the eluates was calculated from the peak area.
The percent of metabolic conversion of the analog was calculated as a ratio of the peak
area of metabolites to the sum of the peak areas of the remaining 1,25D3 analog and the
metabolite or metabolites (assumed as 100%).

4. Conclusions

This work has shown for the first time how the mode of action of 1,25D analogs
at the active site of CYP3A4 can be predicted using simulation models. The prediction
is of high importance for vitamin D-based drug candidates as CYP3A4 deactivates ca.
50% of drug substances. The results of the computational analysis have revealed that
the molecular interactions with the active site of the CYP3A4 enzyme were very different
for the 25-dimethyl analogs PRI-1906 and PRI-1916, as well as for the 25-diethyl analogs
PRI-1907 and PRI-1917. For PRI-1906 and PRI-1916, there was a head (A-ring) and tail
(side-chain) inversion; while for PRI-1907 and PRI-1917 there was a completely different
arrangement of the CD-ring system. Differences of the same kind might occur regarding
the binding of the above analogs to the CYP24A1 enzyme. The differences in molecular
interactions explain why pairs of analogs differing only in the (24E)-and (24Z)-geometry of
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the side-chain showed substantial differences in their metabolic resistance. The enzymatic
conversion of (24E)-analogs PRI-1906 and PRI-1907 by CYP24A1 was relatively very low,
while the conversion of (24Z)-analogs PRI-1916 and PRI-1917 was six times and ten-times
higher, respectively. As we anticipated, the calculated free enthalpy of binding of a vitamin
D metabolite or analog to CYP3A4 showed agreement with the experimental conversion
of an analog by CYP24A1. The very low values obtained for the enthalpy for the analogs
PRI-1906, PRI-1907, PRI-5201, and PRI-5202 correspond to the lowest values of metabolic
conversion. Similarly, high values for the enthalpy of the analogs PRI-1916 and PRI-1917
correspond with their high metabolic conversion. Finally, the relatively high values of
enthalpy for both 1,25D2 and 1,25D3 correspond well with their very high metabolic
conversion. Quite unexpectedly, the predicted location of 1,25D analogs in the CYP3A4
pocket is different for 1,25D2 and 1,25D3 analogs. The 1,25D2 analogs interact with the
CYP3A4 pocket using hydrogen bonds, and hydrophobic and van der Waals interactions,
while the interaction of 1,25D3 and its analogs are mainly hydrophobic in nature. Our
metabolic studies of the two series of analogs of 1,25D2 and 1,25D3 have revealed that
the position at C-10 or C-4 and the absence of 19-methylene in the A-ring, as well as
the modifications that retained the regular size of the side-chain, did not influence the
metabolic resistance of the analog. Regarding the structural modifications of vitamin D,
a combination of both an extension by one carbon unit and introducing a conjugated system
of double bonds in the side-chain results in the most pronounced increase in the resistance
of an analog to hCYP24A1-mediated degradation.

In summary, we have shown that the metabolic resistance of a vitamin D analog
to the CYP24A1 degrading enzyme, of unknown 3D structure, can be estimated by the
binding strengths of the analogs to the CYP3A4 enzyme, which is of known 3D structure.
The metabolic conversion of vitamin D analogs by CYP24A1 can be related to the free
enthalpy of binding to CYP3A4 only for analogs of 1,25D2 that have very similar structures.
Accordingly, examination of the correlation for analogs of 1,25D3 requires an extensive
series of analogs that have a similar structure.
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side-chain truncated vitamin D analogs (PRI-1203 and PRI-1204) against human malignant melanoma cell lines. Eur. J. Pharmacol.
2020, 881, 173170. [CrossRef] [PubMed]
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41. Bolla, N.R.; Corcoran, A.; Yasuda, K.; Chodyński, M.; Krajewski, K.; Cmoch, P.; Marcinkowska, E.; Brown, G.; Sakaki, T.;
Kutner, A. Synthesis and evaluation of geometric analogs of 1α,25-dihydroxyvitamin D2 as potential therapeutics. J. Steroid.
Biochem. Mol. Biol. 2015, 164, 50–55. [CrossRef]
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