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Every graph G � (V, E) considered in this paper consists of a finite set V of vertices and a finite set E of edges, together with an
incidence function that associates each edge e ∈ E ofGwith an unordered pair of vertices ofGwhich are called the ends of the edge
e. A graph is said to be a planar graph if it can be drawn in the plane so that its edges intersect only at their ends. A proper k-vertex-
coloring of a graph G � (V, E) is a mapping c: V⟶ S (S is a set of k colors) such that no two adjacent vertices are assigned the
same colors. )e famous Four Color )eorem states that a planar graph has a proper vertex-coloring with four colors. However,
the current known proof for the Four Color)eorem is computer assisted. In addition, the correctness of the proof is still lengthy
and complicated. In 2010, a simple O(n2) time algorithmwas provided to 4-color a 3-colorable planar graph. In this paper, we give
an improved linear-time algorithm to either output a proper 4-coloring of G or conclude that G is not 3-colorable when an
arbitrary planar graph G is given. Using this algorithm, we can get the proper 4-colorings of 3-colorable planar graphs, planar
graphs with maximum degree at most five, and claw-free planar graphs.

1. Introduction

Every graph G � (V, E) considered here consists of a finite
set V of vertices and a finite set E of edges, together with an
incidence function that associates each edge of G with an
unordered pair of vertices of G. If u, v{ } is the unordered pair
of vertices corresponding to the edge e of G, then e is
denoted by e � uv and u is said to be adjacent to v. In
addition, if e � uv, e is said to be incident to u and v and u

and v are called the ends of e. For the standard terminology
not given here, we refer the reader to [1]. )e number of
vertices of G is called the order of G. For a vertex v ∈ V, the
open neighborhood N(v) of v is defined as the set of vertices
adjacent to v. )e closed neighborhood N[v] of v is defined as
N[v] � N(v)∪ v{ }. )e degree of v is equal to |N(v)|,
denoted by dG(v) or simply d(v). By δ(G) and Δ(G), we
denote the minimum degree and the maximum degree of
graph G, respectively. A k-regular graph G is a graph such
that every vertex of G has the degree k. For a subset S⊆V, the

induced subgraph, denoted by G[S], is the subgraph of G

whose vertex set is S and whose edge set consists of all edges
of G which have both ends in S. A complete graph is a simple
graph in which any two vertices are adjacent. Let Kn denote
the complete graph on n vertices. Usually, K3 is called a
triangle. A cycle on three or more vertices is a simple graph
whose vertices can be arranged in a cyclic sequence in such a
way that two vertices are adjacent if they are consecutive in
the sequence and are nonadjacent otherwise. A graph G is
bipartite if its vertex set can be partitioned into two sets V1
and V2 so that every edge has one end in V1 and the other
one in V2. Specially, if every vertex in V1 is adjacent to every
vertex in V2, then G is called a complete bipartite graph. As
usual, Km,n denotes a complete bipartite graph with classes of
cardinality m and n. )e graph K1,3 is also called a claw.
Given a graph F, a graphG is F-free if it does not contain F as
an induced subgraph. In particular, a K1,3-free graph is claw-
free. By starting with a disjoint union of two graphs G and H

and adding edges joining every vertex of G to every vertex of
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H, one obtains the join of G and H, denoted by G∨H. )e
join Cn ∨K1 of a cycle Cn and a single vertex is referred to as
a n-wheel denoted by Wn.

A graph is said to be a planar graph if it can be drawn in
the plane so that its edges intersect only at their ends. Such a
drawing is called a planar embedding of the graph. Any such
particular embedding is called a plane graph. A proper
k-vertex-coloring, or simply a proper k-coloring, of a graph
G � (V, E) is a mapping c: V⟶ S (S is a set of k colors)
such that no two adjacent vertices are assigned the same
colors. In this paper, we refer to a proper coloring as a
“coloring” and to a proper k-coloring as a “k-coloring.” )e
famous Four Color )eorem states that a planar graph has a
proper coloring with four colors. )e original proof of the
Four Color )eorem by Appel and Haken [2] and Appel
et al. [3] relies heavily on the computer for checking details
involved in finding an unavoidable set and verifying that all
configurations in that set are reducible. It employs no fewer
than 487 discharging rules, resulting in a set of over 1400
unavoidable configurations. )e more recent proof by
Robertson et al. [4], although also dependent on the com-
puter, is simpler in many ways. In their proof, thirty-two
discharging rules are needed, generating a list of 633 un-
avoidable configurations.

In 2010, a simple O(n2) time algorithm is provided to
4-color a 3-colorable planar graph by Kawarabayashi and
Ozeki [5]. In this paper, given a planar graph G, we design
an improved linear-time algorithm to either output a 4-
coloring of G or conclude that G is not 3-colorable. Using
this algorithm, we can get the 4-colorings of 3-colorable
planar graphs, planar graphs with maximum degree at
most five, and claw-free planar graphs.

2. Proof and Algorithm

First, we give some definitions and lemmas which are related
to our algorithm. A plane graph G partitions the plane into a
number of arcwise-connected open sets which are called the
faces of G. We call f a k-face if f is incident to k edges of G.
For a simple plane graph G, we call a vertex v of degree five
bad if all faces incident with v, except for the at most one, are
triangles and the exceptional face has size at most five.
Moreover, v is Type I, Type II, and Type III if the exceptional
face is a triangle, a 4-face and a 5-face, respectively, as shown
in Figure 1. Obviously, if a plane G has a bad vertex of Type I,
then G is not 3-colorable. Note that, if v is a bad vertex of
Type I of the plane graph, the induced subgraph G[N[v]] is
not necessarily a 5-wheel since G[N(v)] may have a triangle
and thus G[N[v]] has a K4. To identify nonadjacent vertices
x and y of a graph G is to replace the two vertices by a single
vertex incident to all the edges which are incident to either x

or y. About the bad vertex v of Type II or III, the following
observation is obvious.

Observation 1. Let v be a bad vertex of Type II or III of G (see
Figure 1). )en, u1 and u2 are contained in the same color
class for any 3-coloring of G. Let G′ be the graph obtained
from G by identifying u1 and u2. )en, G is 3-colorable if and
only if G′ is 3-colorable.

)e following lemmas are useful for our proofs.

Lemma 2 (see [5]). Every simple planar graph G contains (i)
a vertex of degree at most 4 or (ii) a bad vertex.

Lemma 3 (see [5]). Let G be a plane graph with a 4-coloring
c′, and let f be a face of size at least four. Take four vertices x1,
x2, x3, and x4 (along clockwise order) in f. 2en, G also has a
4-coloring such that at most three colors are used for x1, x2,
x3, and x4. Moreover, given the graph G and the coloring c′,
we can find such a 4-coloring of G in O(n) time, where
n � |G|.

Lemma 4 (see [6]). If v is a vertex of planar graph G and
G[N[v]] is {claw, K4}-free, then d(v)≤ 5 and G[N[v]] is a
5-wheel if d(v) � 5.

)e icosahedron is the 5-regular planar graph in Figure 2.
In order to give our algorithm, we first give a well known fact
about planar graphs.

Observation 5. )e icosahedron is the unique 5-regular
planar graph G such that, for every vertex v ∈ V(G), the
induced subgraph G[N[v]] is a 5-wheel.

Further, we can prove the following theorem.

Theorem 6. Let G be a claw-free planar graph. If G is not the
icosahedron, then G has a vertex of degree at most four.

Proof. Let G � (V, E) be a claw-free planar graph. If G has
no vertex of degree at most four, then δ(G)≥ 5. In the
following, we just prove that G is the icosahedron. If G has
no K4, by Lemma 4, every vertex v of G induces a 5-wheel of
G. So, by Observation 5, G is the icosahedron. If not, let
[x1x2x3x4] be a K4 of G and assume that x1 is inside the
triangle [x2x3x4] in the embedding of G on the plane.
Without losing of the generality, we may assume that there is
no other K4 inside the triangle [x2x3x4]. Suppose not, we
can continue to find another K4 inside the triangle [x2x3x4]

and consider the inner situation in this K4 until finding such
a triangle since G is a finite graph. Note that d(x1)≥ 5.
Assume that some neighbors of x1 are inside the triangle
[x1x2x3]. Let G∗ be the plane graph induced by the vertices
on and inside [x1x2x3]. We have the following claim. □

Claim 1. For every vertex x inside [x1x2x3], G[N[x]] �

G∗[N[x]] and G[N[x]] is isomorphic to a 5-wheel by
Lemma 4 and the assumption that there is no K4 in G∗.

Take any vertex v in V(G∗) − x1, x2, x3􏼈 􏼉. G[N[v]] is
isomorphic to a 5-wheel by Claim 1. Let Cv � v1v2v3v4v5v1
be the cycle of 5-wheel G[N[v]]. Note that at least three
neighbors of v are inside the triangle [x1x2x3] since it is
impossible that three neighbors of v are the vertices of the
triangle [x1x2x3]. Without losing of the generality, we as-
sume that v1, v2, and v3 are inside [x1x2x3]. )en, G[N[v1]],
G[N[v2]], and G[N[v3]] are isomorphic to the 5-wheel by
Claim 1. Let Cv1

� v2vv5v6v7v2 be the cycle of 5-wheel
G[N[v1]] and Cv2

� v3vv1v7v8v3 be the cycle of 5-wheel
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G[N[v2]] (see Figure 3). Further, letCv3
� v4vv2v8v9v4 be the

cycle of 5-wheel G[N[v3]] (see Figure 4). Note that v4 is not
adjacent to v8 in Figure 4, without losing of the generality,
assume that v4 is inside [x1x2x3]. )en, G[N[v4]] is a
5-wheel, and we claim that neither v6 nor v7 is the fifth
neighbor of v4. If v7 is the fifth neighbor of v4, by the fact that
G[N[v4]] is a 5-wheel, v5 is also adjacent to v7, a contra-
diction to the fact that G[N[v1]] is a 5-wheel. If v6 is the fifth
neighbor of v4, by the fact that G[N[v4]] is a 5-wheel, v9 is
also adjacent to v6. )en, no matter how we draw the two
edges v4v6 and v9v6 in the plane, we can get a vertex of degree
four by the claw-freeness, a contradiction. So, let
Cv4

� v5vv3v9v10v5 be the cycle of 5-wheel G[N[v4]]. By the
claw-freeness, v10 is adjacent to v6. We claim that v5 is also
inside [x1x2x3], and thus G[N[v5]] is a 5-wheel (see Fig-
ure 5). Suppose not, if v5 � x1, x4, v5(x1), v4, v1􏼈 􏼉 would
induce a claw, a contradiction. Consider the vertices in
v6, v7, v8, v9, v10􏼈 􏼉 in Figure 5. Without losing of the gen-
erality, assume that v10 is inside [x1x2x3]. )en,
dG∗(v10) � 5, and G[N[v10]] is a 5-wheel. We can easily see
that neither v7 nor v8 is the fifth neighbor of v10. So, let Cv10

�

v9v4v5v6v11v9 be the cycle of 5-wheel G[N[v10]]. Hence,
v11v6, v11v9􏼈 􏼉 ⊂ E(G∗) by the claw-freeness and both v6 and

v9 are inside [x1x2x3]. Further, we have that
v11v7, v11v8􏼈 􏼉 ⊂ E(G∗) by the claw-freeness (see Figure 2).
Further, by the claw-freeness, no one in v7, v8, v11􏼈 􏼉 is in the
set x1, x2, x3􏼈 􏼉. Suppose not, if v11 � x1, x4, v11(x1), v6, v9􏼈 􏼉

would induce a claw, a contradiction. )en, all the vertices
inside the triangle [x1x2x3] induce the icosahedron (see
Figure 2), still a contradiction to the assumption that some
neighbor of x1 is inside the triangle [x1x2x3].
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Figure 1: A bad vertex.
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Figure 4: G[N[ v, v1, v2, v3􏼈 􏼉]].
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Immediately, we have the following corollary.

Corollary 7. 2e icosahedron is the unique 5-regular planar
graph such that every vertex is a bad vertex of Type I.

Proof. Let G � (V, E) be a 5-regular planar graph such that
every vertex is a bad vertex of Type I. )en, G is also a claw-
free planar graph. By )eorem 6, G is the icosahedron.

Based on Observation 1, Lemma 2, Lemma 3, Corollary 7,
and )eorem 6, we design an algorithm as follows. □

Theorem 8. Given a planar graph G, Algorithm 1 is a linear-
time algorithm to output either a 4-coloring of G or the
decision that G is not 3-colorable. In addition, if G is a 3-
colorable planar graph or a planar graph with maximum
degree at most five or a claw-free planar graph, Algorithm 1
gives a 4-coloring of G.

Proof. Based on Lemmas 2 and 3 and the fact that iden-
tifying u1 and u2 in step 2 keeps the 3-colorability of G, we
can say that Algorithm 1 outputs either a 4-coloring of G or
the decision that G is not 3-colorable. Now, we prove that
Algorithm 1 is a linear-time algorithm by induction on the
order of G. Assume that it holds when the order of G is less
than n. )en, let |G| � n. In step 1, we can find such a

partition in at most O(n) time. In step 2, we can give a
4-coloring of G directly in constant time if G is the icosa-
hedron or has at most four vertices. If not, we can construct a
graph G′ in constant time at most. Note that |G′| � n − 1. By
induction, A(G′) needs O(n − 1) time which is the total time
of all repeated steps from 1 to 5 in A(G′). In step 3, it needs
only the constant time by deciding the result of A(G′). In
step 4, we can give a 4-coloring of G from the 4-coloring of
G′ in O(n) time by Lemma 3. In step 5, it needs only the
constant time. )us, the total time is also O(n).

If G is a 3-colorable planar graph, we are sure to get a
4-coloring of G by Observation 1 and Lemmas 2 and 3. If
G is a planar graph with maximum degree at most five, we
just consider the case that a vertex of degree greater than
five occurs in G′ by identifying u1 and u2 of G in step 2.
When a vertex of degree greater than five occurs in G′,
then v becomes a vertex of degree four of G′ (see Fig-
ure 1). According to our algorithm, we first take a vertex v

of degree at most 4 in step 2 when we carry out A(G′).
Hence, after several steps, the vertex of degree greater
than five will disappear. So, the final G′ will be the ico-
sahedron or a graph with at most four vertices by Cor-
ollary 7, and we get a 4-coloring of G at last. If G is a claw-
free planar graph, we can get a 4-coloring of G by Lemma
3 and )eorem 6. □
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Figure 5: G[N[ v, v1, v2, v3, v4, v5􏼈 􏼉]].

Input. A planar graph G � (V, E).
Output. A 4-coloring of G or the decision that χ(G)> 3.
Step 1. Give a partition V(G) � V1 ∪V2 ∪V3 such that the vertices in V1 have degree at most four and the vertices in V2 are bad
vertices of Type II and III.
Step 2. If the current graph is the icosahedron or have at most four vertices, we give a 4-coloring of G directly. If not, first take a vertex
v in V1. Let G′ � G − v and carry out A(G′), turn to step 3. If there is no such a vertex, take a bad vertex v of Type II or III. Identifying
u1 and u2 and denoting it byG′, then we carry outA(G′), turn to step 5. If there is no such a vertex, stop the algorithm and output that
χ(G)> 3.
Step 3. If we get a 4-color of G′, turn to step 4. If we get that χ(G′)> 3, then stop the algorithm A(G) and output that χ(G)> 3.
Step 4. Find a 4-color of G − v such that at most three colors are used in N(v) (see Lemma 3). Give a 4-coloring of G. Stop the
algorithm.
Step 5. If we get a 4-color ofG′, extend the coloring ofG′ into a 4-coloring ofG by assigning u1 and u2 the same color as in G′, stop the
algorithm. If we get that χ(G′)> 3, then stop the algorithm A(G) and output that χ(G)> 3.

ALGORITHM 1: An algorithm of coloring planar graphs.
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