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L E T T E R

Epigenetic changes in the metabolically healthy obese: 
A case-control versus a prospective study

1   |   INTRODUCTION

Obesity has become a worldwide health problem, in which 
latest statistics reported an increased trend over the last 
years. Accordingly, long-term obesity is involved in an in-
creased risk of developing several metabolic diseases, such 
as cardiovascular diseases, insulin resistance or type 2 di-
abetes. Although it is common to find obesity-related dis-
orders in the majority of individuals with obesity, some of 
them do not show metabolic complications.1 Obese people 
without these metabolic disorders are defined as metabol-
ically healthy obesity (MHO) individuals, whereas those 
who present metabolic complications are known as meta-
bolically unhealthy obesity (MUO) subjects.2 Importantly, 
the prevalence of this healthy phenotype varies widely, 
in which a correct diagnosis is critical for a good progno-
sis.2,3 Nevertheless, the variability of this prevalence may 
be due to the nature of related-study designs and the stud-
ied populations or the confounding variables considered. 
Therefore, conducting appropriately designed studies to 
evaluate important clinical research questions is crucial, 
to elucidate the impact of MHO in the progression of 
detrimental obesity-related phenotypes.4 In this case, epi-
genetic arises as a valuable tool for clinical applications. 
Epigenetic mechanisms might be implicated in the regu-
lation of several metabolic disorders.5 However, until now, 
only a few studies have been conducted to understand the 
epigenetic changes in individuals with MHO and MUO.6-8

Therefore, we hypothesized that epigenetic changes 
may be involved in the development and the transition from 
MHO to MUO phenotype. Consequently, the aim of this 
study was to analyze the epigenome-wide DNA methyla-
tion study in peripheral blood mononuclear cells (PMBCs) 
from participants with MHO and MUO, by using two study 
designs, such as case-control and prospective approaches.

2   |   MATERIALS AND METHODS

2.1  |  Study design

The participants of the current study were selected from 
the Pizarra cohort study (Malaga, Spain). This study 
was a population-based prospective study from 1051 
participants started in 1995–1997, in which 547 subjects 
completed a follow-up of 11  years.9 A total of 17 par-
ticipants were selected from this prospective cohort. We 
performed two approaches: (a) case-control analysis: 
we compared 9 participants with MHO (control) and 
8 participants with MUO at 11  years of follow-up; (b) 
prospective analysis: we included 8 participants with 
MHO (control) at the baseline who transitioned to MUO 
phenotype after 11  years of follow-up. The MHO and 
MUO were classified following the National Cholesterol 
Program Adult Treatment Panel criteria (NCEP-ATPIII) 
(Table 1). They were considered as MHO if had abdomi-
nal obesity (waist circumference >102  cm in men and 
>88 cm in women) and <2 of the NCEP ATPIII meta-
bolic syndrome criteria was present: systolic blood pres-
sure ≥135 mmHg or diastolic blood pressure ≥85 mmHg; 
fasting plasma glucose concentration ≥100  mg/dl; 
HDL-C concentration <40 mg/dl in men and<50 mg/dl 
in women; fasting plasma TG concentration ≥150  mg/
dl; or treatment with antihypertensive, lipid lowering, 
or glucose-lowering medication.10 Serum samples were 
used for measuring fasting glucose, HDL-c and tri-
glycerides by oxidase (Accu-Chek, Roche Diagnostics, 
Barcelona, Spain) and enzymatic methods respectively. 
All participants gave their informed consent. The study 
was reviewed and approved by the Ethics Committees 
of “Carlos Haya” Regional University Hospital (Málaga, 
Spain).
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2.2  |  DNA isolation, bisulfite 
reaction and epigenome-wide DNA 
methylation analysis

DNA was extracted from peripheral blood using the 
QIAmp DNA Blood Mini Kit (Qiagen, Hilden, Germany). 
DNA concentration was quantified with a Qubit 3.0 
Fluorometer (Thermo Fisher Scientific, Waltham, MA, 
USA) using Qubit dsDNA HS Assay Kit Fluorometer 
(Thermo Fisher Scientific, Waltham, MA, USA). 500 ng of 
genomic DNA was bisulfite-treated using Zymo Research 
Infinitum HD FFPE Methylation kit (Zymo Research 
Corp, Irvine, CA, USA) and purified using DNA-Clean-Up 
kit (Zymo Research Corp, Irvine, CA, USA).

2.3  |  Genome wide DNA 
methylation profiling

Over 850.000 CpG were used in the 850  k Infinium 
Methylation EPIC Bead Chip Kit (Illumina, San Diego, 
CA, USA) following the Infinium HD Assay Methylation 
instructions. Methylation analysis workflow was based on 
a previous work.11 Raw data extraction and downstream 
processing were performed with R software (version 4.0.0) 
using bioconductor packages. Minfi package was used to 
DNA quality checks, bisulfite modification, hybridization, 

data normalization, statistical filtering, and value calcu-
lation were performed as described on Maksimovic work 
(2017). The annotation of the CpGs were analysed using 
IlluminaHumanMethylationEPICmanifest (version 3.0) 
and IlluminaHumanMethylationEPICanno.ilm10b4.hg19 
(version 6.0). Finally, probes with single nucleotide poly-
morphism (SNP) or single-base extension sites and sex 
chromosomes were removed.11

2.4  |  Methylation data analysis

The differentially methylated CpGs (DMPs) for case-
control and prospective analysis were obtained on the 
matrix of β-values in limma and minfi package using 
M-values (p  <  0.05)12 For case-control study, we ad-
justed data by age sex, fasting glucose and arterial hy-
pertension. For prospective analysis, we adjusted data 
by age and sex. We obtained differentially methylated 
regions (DMRs) in both case-control and prospective 
models, by using the dmrcate package and β-values. 
Gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) were obtained using the gometh 
package.11 A network analysis was performed using 
the STRING analysis (version 11.00) (https://strin​g-db.
org/). Clustering was conducted by using web-platform 
cytoscape (https://cytos​cape.org/).

Case-control design

Prospective design

Variables
MHO (n = 8) 
baseline

MUO (n = 8) 
11 years of 
follow-up

MHO (n = 9) 
11 years of follow-up

Age 53.2 ± 8.9 62.42 ± 8.7 55.9 ± 11.2

Sex (Male/Female) 2/7 3/6

Fasting glucose (mg/dl) 107.9 ± 10.1 109.25 ± 16.6 90 ± 4.9b

BMI (kg/m2) 29.02 ± 4.3 31.16 ± 4.3a 29.9 ± 3.4

Triglycerides (mg/dl) 92.6 ± 37.8 100.3 ± 53.0 82 ± 25.2

HDL-cholesterol 51.4 ± 9.5 53.5 ± 8.4 60.7 ± 6.3

DBP (mm Hg) 88.6 ± 16.8 90.5 ± 11.4 75.7 ± 9.3b

SBP (mm Hg) 138 ± 26 153.18 ± 23 126.3 ± 19.3b

HTA treatment (%) 22.2 55.6a NAb

Data are expressed as the mean ± standard deviation, or as percentages. Statistical significat were 
calculated using the Kruskal-Walli test, and for categoriacal data they were calculated using the chi-
square test or Fisher's exact test. Statistical significant were defined as p < 0.05 a) prospective study 
b) case-control study. They were considered as MHO if had abdominal obesity (waist circumference 
>102 cm in men and >88 cm in women) and <2 of the NCEP ATPIII metabolic syndrome criteria was 
present: systolic blood pressure ≥135 mmHg or diastolic blood pressure ≥85 mmHg; fasting plasma 
glucose concentration ≥100 mg/dl; HDL-C concentration <40 mg/dl in men and<50 mg/dl in women; 
fasting plasma TG concentration ≥150 mg/dl; or treatment with antihypertensive, lipid lowering, or 
glucose-lowering medications. Abbreviations: BMI, body mass index; HDL cholesterol, high density 
liporptein cholesterol; DBP, diastolic blood pressure; SBP, systolic blood pressure; HTA treatment, arterial 
hypertension treatment.

T A B L E  1   Anthropometric and 
biochemical characteristics in the 
population study

https://string-db.org/
https://string-db.org/
https://cytoscape.org/
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Differences in anthoprometric and biochemical vari-
ables with the chi-square test for categorical data and 
Kruskall–Wallis test for continous data. Statiscally signifi-
cant values were set at p < 0.05.

3   |   RESULTS

3.1  |  Clinical characteristic of study 
participants

Principal clinical variables are shown in Table 1. In prospec-
tive design, body mass index (BMI) and arterial hypertension 
(HTA) treatment were significant higher in MUO at 11 years 
of follow-up (p < 0.05). In case-control at 11-year follow-up 
desing, fasting glucose, diastolic and systolic blood pressure 
values were significantly higher in MUO group (p < 0.05).

3.2  |  Differential Methylation Patterns 
in the case-control and prospective studies

DNA methylation patterns from both case-control and 
prospective models clearly distinguished two clusters 
(individuals with MHO and MUO) by the methylation 
levels, as is shown in the principal component analysis 
(PCA) (Figure  1). Additionally, by studying differential 
methylation analysis, we found significant DMPs around 

the genome, as Manhattan plot display (Figure  1B,E). 
Moreover, Volcano plot shows differentially hypo- and hy-
permethylated CpGs (Figure S1A,C), in both approaches 
(p < 0.05). Overall, in the case-control approach, we ob-
served that the average global DNA methylation was 
decreased in the MUO group (p  <  0.001) (Figure  1C), 
whereas in the prospective design, individuals with MUO 
at 11-years follow-up showed increased average global 
DNA methylation in comparison with subjects at baseline 
(MHO) (p < 0.001).

DMPs from both case-control and prospective analyses 
were mainly distributed in open sea regions, body genes and 
intergenic regions (Figure  2A,B). At the promoter region, 
the majority of DMPs were located at the transcription start 
site (TSS)1500, TSS200 and 5´UTR (untranslated region) 
(Figure  2B). The chromosomal distribution of DMPs are 
shown in the Figure 2C. The illustration of hypo- and hyper-
methylated probes according to the chromosomal location 
and the genomic regions are summarized in the Figure S2.

3.3  |  Differential Methylation 
Positions and Regions in the case-
control and prospective analyses

The logistic regression analysis identified 46,035 DMPs 
in the case-control model (25,768  hypermethylated 
probes and 20,267 hypomethylated probes), and 50,464 

F I G U R E  1   Differential methylation patterns: (A) PCA plot of Case-control analysis, (B) CpGs chromosome distribution in Manhattan 
plot in case-control (C) Boxplot of global β-methylation of significant DMPs case-control; (D) PCA plot of prospective analysis (E) CpGs 
chromosome distribution in Manhattan plot in prospective analysis
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DMPs in the prospective model (18,092 hypermethylated 
probes and 32,372  hypomethylated probes) (p  <  0.05). 
Table S1 and Table S2 show the most 20 differentially 

methylated probes. We found 2824 common DMPs be-
tween the case-control and prospective models. We 
further filtered them using those DMPs located at the 

F I G U R E  2   Localization of Differentially methylated positions (A) % of DMPs distribution according to CpG island position (OpenSea, 
Island, South-shore, North-shore, North-Shelf, South-Shelf) in Case-control (Grey) and prospective (black) analysis. (B) % of DMPs 
distribution according to gene localization (TSS1500, TSS200, 3’-UTR, 5’-UTR, Exon Boundary, Body, 3’UTR and IGR) in Case-control (grey) 
and prospective (black) approaches. (C) % of DMPs according to chromosome in Case-control (grey) and prospective (black) analysis D) The 
most enriched DMPs in case control and in prospective Model (logFC>|30|, p-value < 0.001)
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promoter regions and within island regions. We also se-
lected those genes that contain ≥2 DMPs. Thus, we found 
14 enriched genes, such as AC008806.2, AC018464.3, 
C5orf15, CPNE2, GNG12, HYAL1, JAK1, L3MBTL4, 
LZTS1, NKAIN1, OR10H1, RP11-522N14.1, TAS2R7 and 
VWC2.

Additionally, to find additional enriched genes that 
are strongly associated with MUO phenotype, we selected 
those genes that contain more than 20 DMPs. A total 
of 19  genes (U6, Y_RNA, TBCD, PI16, snoU13, PRKCZ, 
SDK1, C7orf50, FOXP1, ATP11A, INPP5A, HDAC4, 
RPTOR, B3GNTL1, AKAP13, DAB1, DDR1 and RBFOX3) 
were found in the case-control model, and 17 genes (U6, 
Y_RNA, snoU13, RP11-73O6.4, 7SK, C7orf50, TBCD, 
RPTOR, PI16, PRDM8, RBFOX3, MSLN, FOXP1, PRKCZ, 
SDK1, SPRN and SHANK2) from the prospective model 
(Figure  3A). Interestingly, U6, TBCD, RPTOR, PI16 or 
RBFOX3 genes were common in both analysis.

In addition, to identify potential epigenetically reg-
ulated genes in blood samples and with a strong associ-
ation with the MUO phenotype, we first filtered DMPs 
from both case-control and prospective models, by using 
a cut-off value of p  <  0.001 and fold change >|30%|. 
Interestingly, 9 DMPs were found in the case-control anal-
ysis and only cg24147543 was selected from the prospec-
tive model (Figure 2D).

Finally, to identify highly correlated CpG regional clus-
ters, we studied the DMRs. Our DMR analysis identified 
2973 DMRs from the case control model and 2491 DMRs 
from the prospective model. Table S3 and Table S4 show 
the top 20 DMRs. Importantly, ISO2 and DPYS genes were 
commun in both models, being related to metabolic path-
ways. Furthermore, a correlation analysis was performed 
to test whether these DMRs were associated with the clin-
ical variables of the study population. DMR3 and DMR4 
(overlapping DPYS gene) were correlated with blood pres-
sure and fasting glucose variables in both case-control and 
prospective designs (Figure S3).

3.4  |  Functional enrichment analysis

To perform the functional analysis, we selected a total of 
50  genes. First of all, we selected 14  genes which were 
in common between case-control and prospective analy-
sis, also they were located at promoter and islands area 
and they had more than 2 DMPs per gene. In addition, 
we looked for those genes in case-control a prospective 
with more than 20 DMPs. Then, we obtained 19 genes in 
case-control and 17 in the prospective study (Figure 3A). 
We used STRING to perform a network analysis with 
the 50 genes selected (Figure 3B). The network obtained 
showed two differentiated clusters. One of them related 

to insulin and mammalian target of rapamycin (mTOR) 
signalling pathways, whereas the other cluster was re-
lated to JAK-STAT signalling pathway. These results 
were according to the GO and KEGG analyses (Figure 
S4). Interestingly, KEGG also provided important path-
ways, such as pancreatic and insulin secretion, as well as 
chemokine and cGMP-PKG signaling pathways or carbo-
hydrate digestion and absorption.

4   |   DISCUSSION

This study presented an epigenome-wide DNA meth-
ylation analysis for the epigenetic changes in the MUO 
phenotype, using both the case-control and prospective 
designs, with a follow-up of 11  years. After analyzing 
both approaches, this study demonstrated that the DNA 
methylation landscape in blood samples between MHO 
and MUO phenotypes was significantly different. In this 
context, our findings offer several methylated candidate 
genes, which may be further considered in the epigenetic 
regulation processes in metabolic related-pathways.

Previous studies evaluating the role of epigenetic in 
the transition from MHO to MUO are relatively scarce, 
despite the potential role of epigenetic in metabolic dis-
orders.13 Accordingly, a case-control study conducted by 
Desiderio and colleagues (2019) found that the methyl-
ation of the ANKRD26  gene was significantly increased 
in individuals with MUO when compared to subjects 
with MHO (p = 0.009).6 A prospective study carried out 
by Gallardo-Escribano et al. (2020) reported that several 
metabolic genes (LPL, SCD, SREBF1, LXR) were epige-
netically altered in the MHO group after 12  months of 
follow-up.7 Recently, our group identified in a prospec-
tive study two differentially methylated positions located 
in the ZFPM2 and CYP2E1 genes, closely associated with 
the transition from MHO to MUO state.8 A recent meta-
analysis conducted by Andrade et al. (2021) found more 
than 2000 DMRs in the adipose tissue of individuals with 
MUO compared to individuals with MHO, as our study 
reported.14  There are several genes that overlapped our 
DMRs, such as FLRT, FRMPD4 PSMD5, NKX or LRRC, 
suggesting a similar effect in obesity.14,15 However, all of 
these studies did not provide potential candidates to bet-
ter predict the pathways implicated in the transition from 
MHO to MUO.

In our study, we found a list of potential candidates for 
the transition from MHO to MUO phenotype. These genes 
were strongly related to insulin and mTOR signalling path-
ways, suggesting that these pathways are epigenetically 
associated with the progression of metabolic disorders. 
Interestingly, we found potential DMRs overlapped genes, 
in which two genes were common in both approaches, 
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such as ISCO2 and DPYS. In this way, a study reported 
that ISOC2 was able to inhibit p16 (INK4a) in a dose-
dependent manner, in which p16  may enhance glucose 
uptake and mitochondrial activity.16 Similarly, DPYS gene 
provides instructions for making an enzyme called dihy-
dropyrimidinase. This enzyme leads to the production of 
beta-aminoisobutyric acid as metabolite of enzymatic re-
action, in which beta-aminoisobutyric acid increases the 
production and release of leptin, an important hormone 
in obesity and insulin secretion.17

In spite of the sample size limitation, the selected co-
hort analyses was very homogeneous. Moreover, by using 
both approaches provide enough data to avoid possible 
biases in the analysis, to establish strong relationship be-
tween epigenetic and MUO phenotype. In addition, we 
also adjusted our analyses by potential confounding vari-
ables, such as glucose, sex or age, which can strongly in-
fluence the DNA methylation pattern of the participants.

5   |   CONCLUSION

In conclusion, our study displayed the potential of DNA 
methylation profile to differentiate between MHO and 
MUO phenotypes. We found potential candidate genes 
and significant related-pathways, which suggest that DNA 
methylation changes may have a strong effect in the regu-
lation of insulin metabolism. However, future studies are 
needed to clarify the implication of these pathways in the 
transition from MHO to MUO phenotype.
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