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Small-molecule hormones play crucial roles in the development and in the maintenance of an adult mammalian organism. On
the molecular level, they regulate a plethora of biological pathways. Part of their actions depends on their transcription-regulating
properties, exerted by highly specific nuclear receptors which are hormone-dependent transcription factors. Nuclear hormone
receptors interact with coactivators, corepressors, basal transcription factors, and other transcription factors in order to modulate
the activity of target genes in a manner that is dependent on tissue, age and developmental and pathophysiological states. The
biological effect of this mechanism becomes apparent not earlier than 30–60 minutes after hormonal stimulus. In addition, small-
molecule hormones modify the function of the cell by a number of nongenomic mechanisms, involving interaction with proteins
localized in the plasma membrane, in the cytoplasm, as well as with proteins localized in other cellular membranes and in
nonnuclear cellular compartments. The identity of such proteins is still under investigation; however, it seems that extranuclear
fractions of nuclear hormone receptors commonly serve this function. A direct interaction of small-molecule hormones with
membrane phospholipids and with mRNA is also postulated. In these mechanisms, the reaction to hormonal stimulus appears
within seconds or minutes.

1. Introduction

Molecular mechanisms of action of small-molecule hor-
mones have been studied for decades.The biological function
of these hormones was initially attributed mostly to their
extranuclear activities presently referred to as nongenomic;
however, the exact mechanisms of such actions were then not
known. Subsequently, the majority of efforts were directed
towards the clarification of the transcription-modifying func-
tion of these hormones bound to their nuclear receptors that
are hormone-regulated transcription factors. This generated
an enormous amount of information regarding the genomic
action of hormones, the identity of their target genes, and
so forth. It finally became apparent that the genomic action
of hormones is insufficient to fully explain their biologi-
cal roles, so that the nongenomic mechanisms are again
being intensively studied. In this comprehensive paper we
present basic information regarding the genomic and nonge-
nomic mechanisms of action of small-molecule hormones,

emphasizing the intermediary role of various proteins
between the hormonal stimulus and the biological response
of the cell. It should be noted, though, that although our
current knowledge of the molecular mechanisms of action
of these hormones is impressive, not all has been solved and
many mechanisms still await explanation.

2. The Genomic Mechanism of Action of
Small-Molecule Hormones

“Genomic mechanism of hormone action” refers to the
regulation of target gene activity by hormones via their
protein receptors, which also possess all the features of a
transcription factor. This mechanism engages transcription
and translation, and its biological effects are executed by a
newly synthesized proteins. The first effects of engagement
of this mechanism might be detected 30–60 minutes after its
initiation; however,maximal effects are usually observed after
several hours.
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Table 1: Selected representatives of the nuclear receptor superfamily.

Family Receptor Ligand
I Triiodothyronine receptor (TR) Triiodothyronine

Retinoic acid receptor (RAR) All-trans-retinoic acid
Vitamin D receptor (VDR) 1𝛼,25(OH)2D3

Peroxisome-proliferator-activated receptor (PPAR)
Polyunsaturated fatty acids, benzopyran, eicosanoids,
15-deoxy-12,41-prostaglandin J2, thiazolidinediones,
other

Reverse-ErbA (Rev-ErbA) Unknown
Retinoic-acid-receptor-related orphan receptor (ROR) Unknown
Liver X receptor (LXR) Oxysterols

II 9-cis-Retinoic acid receptor (RXR) 9-cis-Retinoic acid
Hepatocyte nuclear factor-4 (HNF-4) Acyl-CoA thioesters

III

Estrogen receptor (ER) 17𝛽-estradiol
Androgen receptor (AR) Androgens
Progesterone receptor (PR) Progesterone
Glucocorticoid receptor (GR) Glucocorticoids
Mineralocorticoid receptor (MR) Mineralocorticoids, glucocorticoids

IV Nerve-growth-factor-induced clone-B (NGFI-B) Unknown
V Steroidogenic factor-1 (SF-1) Oxysterols
VI Germ cell nuclear factor (GCNF) Unknown
0 Heterodimerization small partner (HSP) Unknown

2.1. Nuclear Hormone Receptors. Nuclear receptors of small-
molecule hormones belong to the superfamily of nuclear
receptors, consisting of receptors for steroid hormones, thy-
roid hormone, vitamin D, retinoic acid and its derivatives,
fatty acids, prostaglandins, and cholesterol derivatives, as
well as of “orphan” receptors with unknown ligands. Small
fractions of some of these receptors also act outside of
the nucleus, in mechanisms generally called “nongenomic”,
which are mediated by processes other than a direct binding
of the receptor to DNA.

Structural similarities of nuclear receptors allow the sub-
division of the superfamily into 7 families/subfamilies (0–VI);
families I to VI are quite well defined [56–58], while family 0
contains various receptors, which donot fit into other families
(Table 1). Nuclear receptors, although recognizing their own
target genes and ligands with high specificity and being either
partly or completely devoid of affinity for other genes and
ligands, have a similar structure (Figure 1). A typical, full-
length nuclear receptor has a variable A/B domain at its
N-terminus, followed by a well-conserved DNA-binding C
domain, then by a hinge D domain, and by a well-conserved
ligand-binding E domain. Some receptors also have an F
domain on their C-termini, the function of which is usually
unclear.

The A/B domain of many nuclear receptors contains
elements involved in hormone-independent transcription
activation (AF1). Its function might be modified by phos-
phorylation, as was shown for the all-trans-retinoic acid
receptor (RAR), peroxisome-proliferator-activated receptor
(PPAR), orphan Nurr1 receptor, estrogen receptor (ER), and

so forth [59–62]. The sequence and tridimensional structure
of the C domain determine the recognition specificity of
the receptor’s target genes. The domain contains two zinc
fingers; in each of them four perfectly conserved cysteines
keep one zinc ion in place [63]. At the base of the first
zinc finger, a P-box is present; its amino acid sequence
determines the recognition of a specific (usually hexameric)
DNA sequence in the receptor’s target genes. At the base
of the second zinc finger, a D-box is located; its sequence
is, in turn, responsible for the recognition of the distance
between the two hexamers forming the hormone response
element (HRE) in the promoter of target gene [64]. In
addition, the D-box plays a role in receptor dimerization.
The C domain might contain the nuclear localization signal
(NLS) or fragments thereof. Next, the D domain contains
NLS and facilitates rotation of the DNA-binding domain in
relation to the ligand-binding domain. In addition, it contains
elements involved in cofactor binding, DNA binding, and
in heterodimerization [65]. Finally, the E domain binds a
specific hormone, takes part in homodimerization as well as
in heterodimerization, and, on its C-terminal end, contains
a ligand-dependent transcription activation domain (AF2)
[66]. In some cases the E domain might play a role in the
active inhibition of transcription.The E domain of the steroid
hormone receptors takes part in the binding of heat shock
proteins (HSP, chaperone). The structure of this domain is
formed by 12 𝛼-helices (H1–H12) and resembles pocket-like
hormone-binding site. The sizes, shapes, and charges of this
pocket present in various receptors differ from each other,
and this why most receptors bind only their own hormones
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Figure 1: Schematic diagram of nuclear hormone receptor structure.

with an extremely high specificity and affinity; however,
some of them, such as the PPAR𝛾 receptor, possesses a large
pocket allowing them to bind various ligands [67]. A very
important feature of nuclear receptors is that in the absence
of the hormone, conformation of their E domains differs
from that acquired upon hormone binding [68–70]. The
most spectacular is the change of position of the last helix
(H12), containing the AF2 domain. Without the hormone,
the H12 is moved to the side and protrudes from the rest
of the E domain, leaving the empty pocket opened. Upon
hormone binding, the H12 comes nearer and closes the
hormone inside the pocket [71]. This feature is crucial for
the majority of the functions of nuclear hormone receptors,
including subcellular localization (as for steroid receptors)
and transactivation activity.

The activity of the nuclear receptor might be modulated
by various posttranscriptional modifications including phos-
phorylation, acetylation, methylation, palmitoylation, and
sumoylation [72–76]. In addition, its biological efficiency
depends on the rate of its turnover [77]. Like many other
proteins, hormone receptors are degraded mainly by the
ubiquitin-proteasome-dependent pathway. To be degraded
by the proteasome, proteins must be tagged with multiple
ubiquitins.The process of tagging depends on three enzymes
acting sequentially; the third one, ubiquitin ligase, deter-
mines the specificity of protein ubiquitylation [78]; for exam-
ple, Hdm2 and carboxyl-terminal HSP70 interacting protein
(CHIP) promote degradation of the glucocorticoid receptor
(GR) [79, 80]. Blocking receptor degradation by protea-
some inhibitors impairs ER𝛼- and progesterone-receptor-
(PR-) mediated transactivation but enhances GR-mediated
transactivation [81, 82]. Notably, binding of chaperones such
as HSPs and associated proteins to steroid hormone receptor
prevents receptor ubiquitylation [83, 84]. Calmodulin (CaM)
binding to ER𝛼 also prevents receptor ubiquitylation and
degradation by the proteasome [85, 86], while its binding
to AR prevents receptor degradation by calpain [87]. In
addition, palmitoylation of ER𝛼 decreases 17𝛽-estradiol-
dependent receptor degradation [88].

2.2. Hormone Response Elements in the Promoters of Target
Genes. A classic, genomic mechanism of action of small-
molecule hormones is based on the binding of its nuclear

receptor to the target gene. Two elements facilitate such an
interaction: the DNA-binding domain of the receptor and
HRE, a specific sequence in the regulatory elements of the
gene. Such sequences (single ormultiple) are usually localized
close to the basal promoter, not farther than several hundred
base pairs in the 5 direction from the transcription start
site (TSS). However, they might also be present in atypical
positions, for example, in the enhancers localized even a
few thousand base pairs above the TSS. The negative HREs
(nHREs) tend to localize close to TSS, sometimes even below
this site [89, 90].

Analysis of the natural and artificial HREs showed that
nuclear hormone receptors preferentially recognize hexam-
ers, sequences consisting of six nucleotides. Steroid hormone
nuclear receptors (family III), with the exception of ER,
preferentially bind to the AGAACA sequence, while the
remaining receptors, including families I and II receptors
and ER, prefer the G/AGGTC/GA sequence [91–93]. Both
are consensus sequences and consist of the nucleotides most
commonly found at a given position in natural HREs; it
is then to be expected that natural HREs very commonly
differ from the consensus sequence. HREs usually are formed
by two hexamers and, most commonly, nuclear hormone
receptors bind to the DNA either as homodimers (mostly,
but not exclusively, family III receptors) or as heterodimers
(mostly families I and II receptors) [94–99]. The binding
of a monomeric receptor to a monomeric or to a dimeric
HRE is plausible, as in the case of steroidogenic factor-1 (SF-
1, family V) [100], but for “classic” receptors such situations
are less common. Depending on the relative position of the
two hexamers, dimeric HRE might be a direct repeat (DR),
palindromic (PAL), or inverted palindrome (IP) HRE.

HREs for steroid hormone receptors, also called steroid
hormone response elements (SREs), are usually palindromes
consisting of the AGAACAnnnTGTTCT or of a simi-
lar sequences with three neutral (e.g., of any sequence)
nucleotides between hexamers. As mentioned above, the
exception to this rule is ER which preferentially binds to
the G/AGGTC/GAnnnTC/GACCT/C palindrome [64, 101].
Nevertheless, each of these receptors preferentially recog-
nizes its own target SREs with a very high specificity being
a result of various factors, such as deviations from the SRE
consensus sequence, distinct amino acids surrounding DNA
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binding domain fragments of the receptor directly contacting
SRE, interactions with other transcription factors bound to
their own binding sites in the proximity of SRE, tissue-
specific expression of various receptor isoforms, and the level
of receptor expression [102, 103]. It should be mentioned that
other types of SREs are known, such as a selective androgen
response element (ARE)which is not PAL, butDR-type. It has
been recently shown that such AREsmight be recognized not
only by AR, but also by PR [104, 105]. In addition to classic
SREs, which mediate transcription activation, a number of
negative SREs are known that inhibit the transcription when
the steroid-hormone-activated receptor binds to nSRE [106,
107].

Nuclear receptors belonging to the families I and II
preferentially bind to the consensusG/AGGTC/GA sequence
organized into DR, PAL, or IP [108–111]. The binding to
DR drives the strongest biological effect; in fact, natural
HREs recognized by these receptors are most commonly
DRs. Specificity of the binding is achieved thanks to HRE’s
configuration, to the number of neutral nucleotides sepa-
rating the two hexamers, to the sequence of hexamers and
of HRE-flanking DNA-fragments, and to the sequence of
the receptor DNA-binding domain [112–115]. In DRs, one
neutral nucleotide between hexamers (DR1) warrants the
binding of RXR/RXR homodimers, of RAR/RXR or of
PPAR/RXR heterodimers; two nucleotides (DR2)—the bind-
ing of RAR/RXR heterodimer; three nucleotides (DR3)—
the binding of VDR/RXR heterodimer; four nucleotides
(DR4)—the binding of TR/RXR heterodimer; finally, five
nucleotides (DR5) – the binding of RAR/RXR heterodimer.
Nuclear receptors for nonsteroid small-molecule hormones
also bind to DR0 and to DRs with more than five neutral
nucleotides separating hexamers [116, 117] as well as to other
nonclassical HREs. In addition, some HREs might be bound
by various receptors; for example, the AGGTCATGACCT
PAL0 sequence is recognized by TR-, VDR-, and RAR-
containing dimers [118–120]. Specific nHREs are also known
for practically all nuclear hormone receptors belonging to the
families I and II [121–124].

In addition, nuclear hormone receptors might bind as
monomers to a single hexamer preceded by an A- and T-rich
sequence, as shown for Rev-ErbA, retinoic-acid-receptor-
related orphan receptor-𝛼 (ROR𝛼), and for nerve-growth-
factor-induced clone B (NGFI-B) orphan receptors [100, 125,
126].

2.3. Regulation of Transcription. On the basis of the molec-
ular mechanism of action and of the subcellular localization
in the absence of ligand, nuclear hormone receptors can be
divided into two types. In general, type I receptors prefer-
entially reside in the cytoplasm (in unliganded form) and,
while in the nucleus, aremost active as homodimers.The best
known receptors of this type are family III steroid hormone
receptors. Type II receptors, after being synthesized and
modified in the cytoplasm, in the presence or absence of their
ligand, preferentially translocate to the nucleus, where they
are most active as heterodimers. The best known receptors
of this type belong to families I and II. Binding of nuclear
hormone receptors to DNA might result in transcription
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Figure 2: Diagram of transcription regulation by small-molecule
hormones. H: hormone, HR: nuclear hormone receptor.

activation or in transcription inhibition, and such phenom-
ena result from variable molecular mechanisms. Each hor-
mone has a group of target genes which it activates (positively
regulated genes) and a group of genes which it inhibits
(negatively activated genes) (Figure 2).

2.3.1. Type I Receptors. In the circulation, steroid hormones
are bound to transporting proteins. They enter the cell by
diffusion or are actively transported by a cell-membrane-
bound transporting proteins. The majority of their nuclear
receptors, a classic examples of type I receptors, reside in the
cytoplasm forming inactive complexes with various proteins,
including heat shock proteins HSP70 and HSP90. Formation
of such complexes promotes proper folding of the receptor
into a conformation allowing steroid binding [127–131]. Upon
hormone binding, receptor conformation changes, and this
results in the breakup of the complex.The “activated” receptor
translocates to the nucleus thanks to its association with
chaperones and importins [132, 133], where it binds to its SREs
in the promoters of target genes (Figure 3). It is suggested that
intranuclear mobility of steroid receptors, some of the most
mobile proteins within the nucleus, depends on the presence
of chaperone proteins such as HSP90 [134].

Steroid hormone receptors usually bind to DNA as
homodimers. Their preferential SREs are palindromes sepa-
rated by three neutral nucleotides. Occasionally, they might
bind to DNA as monomers; in such a case SRE might consist
of only one hexamer and is usually preceded by an A- and
T-rich sequence. Binding of the steroid hormone receptor
to SRE initiates recruitment of a multiprotein coactivator
complex which, by modification of chromatin structure (e.g.,
histone acetylation by histone acetyltransferases, HATs) and
by interaction with the basal transcriptional machinery, acti-
vates transcription [135–140] (Figure 3). In addition, steroid
hormones acting by their nuclear receptors can potentiate the
transactivatory function of other transcription factors [141–
143].
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transporting proteins.The hormone enters the cell by diffusion or is actively transported by specific cell membrane proteins. In the cytoplasm,
hormone-free receptors form an inactive complex with heat shock chaperone proteins. Upon hormone binding, the receptor changes its
conformation, dissociates from the complex, and translocates into the nucleus. Hormone-activated receptors bind to HREs as homodimers.
Recruitment of a coactivator complex possessing a histone acetyltransferase activity results in local chromatin decondensation and increases
the accessibility of the promoter for transcription factor. As a result, transcription increases. SH: steroid hormone, HR: nuclear hormone
receptor, HSP: heat shock protein, HRE: hormone response element, CoA: coactivator complex, HAT: histone acetyltransferase, BTF: basal
transcription factors, RNA Pol II: type II RNA polymerase, and R: ribosome.

Inhibition of transcription by steroid hormones and
their receptors is a result of a variety of mechanisms,
such as hormone-receptor-complex-dependent inhibition of
the activity of other transactivators, for example, activator
protein 1 (AP1) and NF-𝜅B [144–146]. In this mechanism,
binding of the receptor to DNA is not necessary. A number of
nSREs are also known. Binding of a hormone-activated or a
hormone-free steroid receptor to nSRE leads to the inhibition
of transcription mediated either by corepressors bound to
hormone-activated receptor or by another group of corepres-
sors bound to hormone-free receptor. Such interaction results
in deacetylation of histones exerted by histone deacetylases
(HDACs) and in modification of chromatin structure. In
turn, chromatin becomes condensed and inaccessible to
transcriptional activators [147–151]. Other molecular mech-
anisms involved in the inhibition of gene transcription via
nSRE are also known, such as competition for a binding site
with transcriptional activators [107, 152–154].

2.3.2. Type II Receptors. Families I and II receptor proteins,
synthesized and modified in the cytoplasm, have their NLS
exposed so they can translocate to the nucleus in the absence
of the hormone.Therefore, both hormone-free and hormone-
bound forms of the receptor could be present in the nucleus.
Since the conformation of the DNA-binding D domain is
stable (independent of the hormone), both receptor forms
might bind to the promoter of the target gene; this is why
type II receptors are able either to activate or to inhibit
transcription of the same gene in a hormone-dependent
manner.

In contrast to type I receptors, type II receptors usually
bind to their HREs as heterodimers. Their universal het-
erodimerization partner is RXR. Heterodimerization with

RXR modulates nuclear trafficking of other receptors [155,
156] and increases both affinity of the other receptor to its
HRE as well as its transactivation activity [157–160]. Type II
receptors can also bind to DNA as heterodimers with nuclear
receptors other than RXR, as homodimers and as monomers
[111, 161–163]. In such a case, their affinity for DNA might be
lower than that of heterodimers with RXR.

It should be remembered that type II receptors preferen-
tially recognize HREs consisting of two hexamers creating
DR, PAL, and IP. In VDR, TR, and RAR heterodimers
with RXR, which bind to DR3, DR4, and DR5, respectively,
RXR preferentially binds to the first hexamer [164, 165]. On
the other hand, in RAR/RXR and PPAR/RXR heterodimers
bound to DR1, RXR occupies the second hexamer [166, 167].
The presence of RXR in receptor heterodimers raises the
question as to how 9-cis-retinoic acid modifies transcription
of other hormones’ target genes. Most probably it has no
influence on the level of activation of triiodothyronine (T3)
target genes bound by TR/RXR and of 1𝛼,25(OH)

2
D3 target

genes bound by VDR/RXR [168, 169]; however, there are
reports claiming otherwise [170]. In all-trans-retinoic acid
target genes bound by the RXR/RAR heterodimer, 9-cis-
retinoic acid alone does not regulate the activity of such
genes, but when both receptors are simultaneously bound
to their ligands (9-cis-retinoic acid and all-trans retinoic
acid, respectively), genes are activated synergistically [171].
Finally, when RXR forms heterodimers with a “permissive”
partner, such as PPAR, liver X receptor (LXR), or nerve-
growth-factor-induced B (NGFI-B) orphan receptor, 9-cis
retinoic acid can regulate transcription on its own or act
synergistically with the ligand of its partner [172, 173].

In addition to HREs mentioned above, type II receptors
bind to numerous untypical HREs and to very common
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Figure 4: Diagram of type II receptor genomic mode of action. (a) In the absence of the hormone, the receptor binds to HRE as heterodimer
with 9-cis-retinoic acid receptor. The hormone-free receptor recruits a corepressor complex possessing a histone deacetylase activity.
Deacetylation of histones results in chromatin condensation and in transcription inhibition. (b) In the circulation, the hormone forms
complexes with transporting proteins. The hormone enters the cell by diffusion or is actively transported by specific cell membrane proteins.
The majority of type II receptors reside in the nucleus. Upon hormone binding, the receptor changes its conformation, which results in the
dissociation of the corepressor complex and in the binding of the coactivator complex. Histone acetylation by HDAC results in chromatin
decondensation, which promotes transcription factor binding to DNA and transcription activation. H: hormone, RH: nuclear hormone
receptor, RXR: 9-cis-retinoic acid receptor, HRE: hormone response element, CoA: coactivator complex, HAT: histone actyltransferase,
CoR: corepressor complex, HDAC: histone deacetylase, TF: transcription factor, BTF: basal transcription factors, RNA Pol II: type II RNA
polymerase, and R: ribosome.

nHREs. Binding of the hormone-receptor complex to nHRE
results in transcription inhibition, so that the recruitment
of corepressors preferentially binding to hormone-activated
receptor plays here a major role.

Hormone target genes with unoccupied HREs are active
on the basal level, which depends on the presence of tran-
scription factors other than hormone receptors. In genes pos-
itively regulated by the hormone, the binding of a hormone-
free receptor heterodimer to HRE leads to the recruitment of
a corepressor complex, which, by deacetylation of histones,
leads to condensation of chromatin. This, in turn, hampers
the binding of transactivators and of basal transcription
factors to DNA; as a result, transcription is inhibited below
the basal level (Figure 4(a)) [147, 148, 174–176]. However,
upon hormone binding to the receptor, conformation of its
ligand-binding domain changes; this results in the dissoci-
ation of corepressors, in the recruitment of a coactivator
complex containing HATs and in transcription activation
markedly above the basal level (Figure 5(b)) [177–189]. In
genes negatively regulated by the hormone, transcription
inhibition occurs as a result of numerous mechanisms; some
of them are still not completely known. The inhibition could
be indirect, depending on the binding of hormone receptors
to a strong transactivator (such as AP1, NF-𝜅B, and p53); such
binding results either in a blockage of transactivator’s activity
or in its binding to DNA [190–192]. In this mechanism, the
binding of the receptor to the DNA is not a prerequisite for
the inhibition of transcription. In the direct mechanisms,
HRE might be present close to or might overlap the binding
site for a strong transactivator. Under such circumstances,
transcription inhibition is the result either of competition
for a binding site, or of binding of the receptor to the
transactivator resulting in the repression of its activity [193,

194]. In another direct mechanism, the binding of hormone-
activated receptor to nHRE initiates recruitment of spe-
cific corepressors preferentially recognizing hormone-bound
receptors [149–151, 195–198]. In addition, hormonal receptors
bound to nHREs located close to (commonly behind) the
transcription start sitemight affect the binding of type II RNA
polymerase to the basal promoter [199].

2.3.3. Interaction of Nuclear Hormone Receptors with Other
Proteins. Asmentioned above, the biological action of small-
molecule hormones depends on their interaction with their
receptors, as well as on the interactions of the receptor with
DNA and with other proteins. In the genomic mechanism
of hormone action, the most important interaction is that
of the receptor with coactivators, corepressors, and other
transcription factors. On the other hand, in the nongenomic
mechanisms, the most crucial role is played by the binding
either of the cytoplasmic fraction of nuclear receptors or of
hormone itself to extranuclear proteins.

Interaction of Nuclear Hormone Receptors with Basal Tran-
scription Factors. Transcription may occur only in the pres-
ence of basal transcriptionalmachinery, a complex consisting
of tens of proteins bound to DNA close to the transcription
start site. A typical basal promoter contains a TATA box
(TATAA/TAA/T) located 20–30 base pairs above TSS, a
sequence recognized by TATA-binding protein (TBP). Some
promoters do not have this sequence; however, the basal
transcriptional machinery binds to such promoters anyway
and at a similar distance form TSS as in the case of
typical promoters. Binding of TBP to the basal promoter
initiates a cascade of binding of other basal transcription
factors. TBP together with TBP-binding proteins (TAFs)



International Journal of Endocrinology 7

H

CoA

HAT RNA 
Pol IIBTF

HRE TATA

HRHR

p160 p300/CBP
p/CAFLXXLL

(a)

CoR

HRE

HR HR

NCoR /SMRT

HDAC

CoRNR

(b)

CoR

HDAC

nHRE

H
HR HR

RIP140/LCoR/HrLXXLL

(c)

Figure 5: Coactivators, corepressors, chromatin, and regulation of transcription. (a) The coactivator complex consists of many proteins,
including proteins with the LXXL (L: leucine, X: any amino acid) motif by which they bind to the hormone-activated nuclear receptor.
Histone acetyltransferase activity might be presented by more than one protein of this complex. Decondensation of the chromatin structure
upon histone acetylation and a direct interaction of the coactivator complex with basal transcription factors result in transcription activation.
(b) In the absence of the hormone, receptor conformation promotes the binding of a multiprotein corepressor complex. Binding of the
receptor to this complex occurs by the LXXI/HIXXXI/L (L: leucine, X: any amino acid, I: isoleucine, and H: histidine) motif present in a
corepressor protein.The complex includes class I or class II histone deacetylase. Histone deacetylation leads to the condensation of chromatin
and, as a result, limits the access of transcription factors to the DNA. As a result, transcription is inhibited. (c) Some corepressor proteins
contain the LXXL motif and preferentially bind to the receptors activated by the hormone. Next, by the recruitment of the corepressor
complex, including histone deacetylase, they stabilize tight chromatin structure and repress transcription. H: hormone, HR: nuclear hormone
receptor, HRE: hormone response element, nHRE: negative hormone response element, CoA: corepressor complex, p160, p300/CBP, and
p/CAF: coactivator proteins, LXXL: coactivator protein motif involved in receptor binding, HAT: histone acetyltransferase, CoR: corepressor
complex, NCoR/SMRT: classic corepressor complexes, CoRNR: LXXI/HIXXXI/L corepressor protein motif involved in receptor binding,
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forms transcription factor IID (TFIID). The next step of
preinitiation complex formation is the binding of IIB (TFIIB),
IIF (TFIIF), and IIH (TFIIH) transcription factors. Finally,
type II RNA polymerase is bound, and transcription is
initiated. Nuclear hormone receptors interact with the basal
transcription factors not only via other proteins (coactivators
and corepressors) but also interact with them directly. It has
been shown that TR, RXR, RAR, ER, GR, and androgen
receptor (AR) might directly bind to TBP, AR and ER—to
TFIIF, ER, TR, and VDR—to TFIIB, and so forth [200–205].
It is suggested that such binding might bidirectionally affect
(activate or inhibit) the recruitment of the basal transcription
factors to the preinitiation complex.

Interaction of Nuclear Hormone Receptors with Coactivators.
Transfer of information regarding binding of the receptor
to HRE and the receptor status (hormone-free or hormone-
bound) to the basal transcriptional machinery is usually
executed by other proteins that do not bind to DNA but form
a functional “bridge”. Such proteins possess various activities.
The same coactivator or corepressor complex might bind to
several nuclear receptors; some of these complexesmight also

coregulate transcription initiated by transcription factors of
other type.

The first coactivator cloned in humans was steroid recep-
tor coactivator-1 (SRC-1) [179]. Together with TIF-2 (SRC-2)
and TRAM-1 (SRC-3, ACTR, and RAC3), it forms the p160
coactivator family. The p160 proteins are indeed coactivators
of many nuclear receptors including GR, ER, PR, VDR, TR,
RXR, and PPAR [179, 180, 183, 189]. They contain an LXXLL
(L: leucine, X: any amino acid) motif, by which they bind to
the ligand-binding domain of the receptor activated by the
hormone. Importantly, a specific structure of the receptor,
first of all of its AF2 domain, is a prerequisite for such
interaction [206].

CREB-binding protein (CBP) and p300 possess a histone
acetyltransferase activity [207, 208] and are coactivators of
various transcription factors, including nuclear hormone
receptors [177, 178]. The binding of p300/CBP to the nuclear
receptor is hormone dependent and AF2 domain dependent.
p300/CBP bind to p160 proteins, to TBP, and to TFIIB basal
transcription factors, and, as such, are intermediates between
receptors and basal transcriptionalmachinery. Another coac-
tivator, p300/CBP-associated factor (p/CAF), interacts with
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p160, p300/CBP, and hormonal nuclear receptors. It also has
a histone acetyltransferase activity [182].

Multiprotein complexes containing thyroid-hormone-
receptor-associated proteins (TRAP) or vitamin-D-receptor-
interacting proteins (DRIP) have been identified [181, 185].
Both complexes are very similar, if not identical, and consists
of fourteen-sixteen 70–230 kDa proteins. Their DRIP205/
TRAP220/TRIP2 subunit, by the LXXLLmotif, interacts with
TR, VDR, and other nuclear receptors such as RXR and RAR
[209] in a hormone-dependent and a receptor-AF2-domain-
dependent manner. Other components of these complexes
interact with the basal transcriptional machinery.

A number of other coactivators interacting with nuclear
receptors are known, such as PPAR𝛾 coactivator 1 (PGC-1),
which also interact with other receptors, for example, with
TR [184, 188] and with activating signal cointegrators-1 and -
2 (ASC-1 andASC-2) interactingwith SRC-1, p300/CBP, basal
transcription factors, and nuclear receptors [186, 187].

The formation of a coactivator complex is initiated by
the binding of hormone-bound receptor to its HRE. This is
followed by the recruitment of the coactivator proteins, which
directly bind nuclear receptors and by the binding of other
proteins.Thefinalmulticomponent complex, bymodification
of chromatin structure and by interaction with the basal
transcriptional machinery, activates transcription of target
genes.

Interaction of Nuclear Hormone Receptors with Corepressors.
Inhibition of transcription is usually achieved by the interac-
tion of the receptor with corepressors [176]. The best known
corepressors are nuclear corepressor (NCoR, RIP-13), a large,
270 kDa protein, as well as silencing mediator for retinoic
acid and thyroid hormone receptors (SMRT) [147, 148]. Both
proteins have several isoforms. Other proteins, such as the
small ubiquitous nuclear corepressor (SUN-CoR) and the
Alien protein, might also serve as nuclear hormone receptor
corepressors [174, 175]. The motif that allows NCoR and
SMRT to bind to the receptor is LXXI/HIXXXI/L (L: leucine,
X: any amino acid, I: isoleucine, and H: histidine) [210, 211].
NCoR and SMRT bind to the families I and II nuclear
receptors, to ER and to PR (but not to other members of
family III) bound to a specific antagonists, and to some
orphan receptors. They also bind to other proteins, including
HDACs [212, 213].

Recent developments identified a heterogeneous group of
corepressors of a new type. What makes them unique among
corepressors is the fact that they bind to the receptor activated
by the hormone.Thegroup includes receptor-interacting pro-
tein 140 (RIP140) and ligand-dependent corepressor (LCoR).
They bind to a various ligand-bound receptors, including ER,
GR, PR, and VDR, via the coactivator-specific LXXLL motif,
but recruit HDAC proteins and other corepressors [149–151].

Hairless protein (Hr) contains both the hormone-
activated-receptor-binding LXXLL motif and a CoRNR
box—a sequence mediating the binding of the corepressor
to the hormone receptor. When it interacts with ligand-
bound ROR, it utilizes the LXXLL motif, whereas when it
interacts with VDR, it likely utilizes another domain. On the
other hand, Hr interacts with hormone-free TR as a typical

corepressor, utilizing the CoRNR box and recruiting HDAC
[195–197].

The preferentially expressed antigen in melanoma
(PRAME) is expressed in various cancers, but in healthy
tissues it is present only in testes, ovaries, endometrium,
and adrenal glands. PRAME contains the LXXLL motif and
selectively inhibits transcription in the presence of all all-
trans-retinoic-acid-bound RAR isoforms. It likely executes
this inhibition by recruiting other corepressors [198].

The repressor of estrogen activity (REA) binds to the ER-
agonist (e.g., 17𝛽-estradiol) and to the ER-antagonist (e.g.,
tamoxifen) complexes. By doing so in the presence of agonist,
it inhibits the activity of target gene, while in the presence
of antagonist it magnifies its action [214]. The suppression
by REA is a result of the competition with coactivators for
binding to ER, as well as of the recruitment of HDAC and of
chromatin modification.

Metastasis-associated factor 1 (MTA1) is another core-
pressor preferentially binding to a ligand-activated ER [215].
It inhibits the expression of estrogen target genes by com-
peting with coactivators for the binding to the receptor, by
recruiting HDAC, and by chromatin modification.

A group of corepressors that might bind both liganded
and nonliganded hormone receptors is also known. For
example, the NR-binding SET domain containing protein 1
(NSD1) possesses separate domains: one that binds hormone-
free receptors TR and RAR (NID−L) and another that binds
hormone-bound TR, RXR, ER, and RAR receptors (NID+L)
[216].

Interaction of Hormonal Nuclear Receptors with Other Tran-
scription Factors. Natural HREs are located relatively close
to TSS or in more distant regulatory elements, and bind-
ing sites for other transcription factors are usually located
nearby. Such proximity permits interaction between nuclear
receptors and these transcription factors, leading either to
the suppression of gene activity (as described above) or to
its additive or synergistic activation. The binding of nuclear
receptors to other transcription factors might also occur in
a DNA-binding-independent manner. In fact, the binding of
all known nuclear hormone receptors to the transcription
factors has been reported; the best known examples are the
binding of TR to p53, GR and PR to Oct-1, GR to AP-1 and to
NF-𝜅B, PPAR to NF-𝜅B, AP-1, and to STAT [217–221].

2.3.4. Nuclear Hormone Receptors and Chromatin. A nucle-
osome consists of eight histone molecules (two of each
H2A, H2B, H3, and H4). Their N-terminal ends (tails)
protrude from the compact nucleosome body. Epigenetic
modifications of amino acids forming such tails play a
marked role in chromatin organization. Increased acetylation
relieves compact chromatin, which results in an exposure
of the transcription-factor-binding sites and their increased
accessibility leading to transcription activation. On the other
hand, deacetylation of histone tails leads to the formation
of a compact chromatin. As a result, transcription-factor-
binding sites become inaccessible to transactivators, and the
gene becomes transcriptionally inactive. Such a mechanism
of modification of chromatin structure is utilized by nuclear
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Figure 6: Simplified diagram of nongenomic mechanisms of action of small-molecule hormones. All nongenomic mechanisms activate
numerous transduction pathways, and, by a series of phosphorylation events of cytoplasmic and of nuclear proteins, modify cell function.
(A) Interaction of the hormone with either cell membrane receptor or directly with membrane phospholipids modifies the function of
ion channels. (B) Activation of phospholipase (C) initiated by the hormone-activated cell membrane receptor, and of adenylate cyclase
(and, most possibly, of other enzymes) stimulates production of secondary messengers. (C) Activation of c-SRC by the hormone-activated
nuclear receptor. (D) The binding of the hormone-activated nuclear receptor to the phosphatidylinositol 3 kinase p85𝛼 subunit activates
this enzyme and results in an increased synthesis of inositol triphosphate. (E) In mitochondria, small-molecule hormones acting via their
nuclear receptors or by their shorter (mitochondrial) isoforms regulate transcription of mitochondrial DNA. In addition, interaction of
some hormones alone or of hormone-receptor complexes with mitochondrial proteins stimulates thermogenesis. (F) The binding of the
hormone activates protein kinase. (C) HR: various types of hormone receptors, Ca2+: calcium ion, p85𝛼, p110: phosphatidylinositol 3 kinase
subunits, PI3K: phosphatidylinositol 3 kinase, IP3: inositol triphosphate, PLC: phospholipase. (C) AC: adenylate cyclase, cAMP: cyclic AMP,
AKT: protein kinase. (B) c-SRC: tyrosine kinase, PKA: protein kinase. (A) PKC: protein kinase. (C) MAPK: mitogen-activated protein
kinase, RAS/MEK/ERK: protein kinases, p28: shortest isoform of TR𝛼, mtDNA: mitochondrial DNA, HRE: hormone response element,
TF: transcription factor, BTF: basal transcription factors, and RNA Pol II: type II RNA polymerase.

hormone receptors, which, as mentioned above, interact
with coactivators and corepressors. p160 and p300/CBP
coactivators themselves possess HAT activity and form
complexes with other HAT proteins, such as p/CAF. On
the other hand, corepressor proteins recruit class I and
class II HDAC proteins to the corepressor complex. The
binding of a ligand-activated receptor to HRE initiates the
formation of a coactivator complex, which, thanks to the
HAT activity, increases histone acetylation and induces local
decondensation of chromatin (Figure 5(a)). On the other
hand, the binding of a hormone-free receptor toHRE initiates
the formation of a corepressor complex, which, thanks to
its HDAC activity, induces local condensation of chromatin
(Figure 5(b)). Finally, the corepressor complex and its HDAC
activity are utilized by the specific corepressor proteins
described above, which bind to a hormone-activated receptor
and inhibit transcription of the target gene (Figure 5(c)).

3. The Nongenomic Mechanisms of Action of
Small-Molecule Hormones

Fast biological effects of hormones, just seconds or minutes
after hormone administration, have already been described
several dozen years ago. The rapidity of biological response

and its independence from transcription and from trans-
lation suggested that the genomic mechanism of hormone
action is not involved; therefore, this mechanism was called
nongenomic or extragenomic.The nongenomic mechanisms
of hormone action are multiple, variable, and only partially
known (Figure 6).

3.1. Nongenomic Mechanisms of Hormone Action Induced by
the Interaction of Hormones with Membrane and Cytoplasmic
Receptors. Steroid and nonsteroid small-molecule hormones
bind to various proteins localized outside the nucleus and
activate transduction pathways leading to a fast biological
response. The presence of binding sites in the cell membrane
was proved for all major representatives of these hormones;
however, in many cases the identity of the binding protein
remains unknown. In addition, it is likely that such hormones
have more than one type of membrane receptors. In the case
of receptors already identified, their mode of action is by and
large only partially resolved.

Just next to the cell membrane or directly in it, usually
within caveolae (a bubble-like, 50–100 nm invaginations of
the cell membrane), proteins identical to the nuclear recep-
tors for glucocorticoids, estrogen, androgen, and vitamin
D, have been identified [222–225]. It is then plausible that
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nuclear receptors of other small-molecule hormones are
present close to or in the cell membrane. Some small-
molecule hormones bind to other than nuclear receptor-like
cell membrane proteins. For example, the integrin receptor
𝛼V𝛽3 plays a role of cell membrane receptor for thyroxin
(T4) [226]. mPR𝛼, mPR𝛽, mPR𝛾, mPR𝛿, and mPR𝜀 cell
membrane receptors for progesterone possess seven trans-
membrane domains (some authors even suggest the presence
of eight such domains) and interact with G proteins [227,
228]. The G-protein-interacting cell membrane receptor for
steroid-hormone-binding protein (SHBG) binds androgens
with higher and estrogenswith lower affinity.Theprerequisite
for signal transduction from the hormone to the cell interior
by this receptor is the binding of a hormone-free SHBG first,
followed by hormone binding [229, 230]. 𝛾-Aminobutyric
acid A (GABAA) receptor serves as the cell membrane
receptor for neurosteroids [231].

3.1.1. Nuclear Hormone Receptor Targeting at the Membrane.
Thebest studied ismembrane targeting of ER. It is induced by
palmitoylation of cysteine 447 [232], a modification increas-
ing protein hydrophobicity and, therefore, facilitating protein
association with lipid bilayer. Truncated 46 kDa variant of
ER𝛼 is preferentially palmitoylated and enriched in the cell
membranes [233]; it is suggested that it might be more active
than full-length receptor [234]. Anothermembrane-localized
variant of ER𝛼, ER𝛼-36, is also functionally active [235].
Palmitoylation of ER is promoted by HSP27 [236].

Enzymes identified as palmitoylacyltransferases for sex
hormone receptors are DHHC-7 and DHHC-21 proteins
[237]. A highly conserved 9-amino acidmotif (FVCLKSIIL in
ER𝛼) that is crucial for palmitoylation and membrane local-
ization has been identified in the ligand-binding domains
of ER𝛼, ER𝛽, PR𝛼, PR𝛽, GR, and AR [238]. TR𝛼 and TR𝛽
possess a motif (LPCEDQIIL) that slightly differs from the
one described above, but presumably, it is also involved in the
receptor palmitoylation and membrane targeting. Notably,
MR, PPARs, and RAR do not have any sequence resembling
this motif [238].

Translocation of nuclear hormone receptors to the mem-
brane is also induced in the presence of the respective ligand;
this was shown for ER𝛼- and 17𝛽-estradiol [239] and for VDR
and 1𝛼,25(OH)

2
D3 [240].

In the cell membrane, nuclear hormone receptors interact
with caveolae-specific proteins; for example, ER𝛼 and AR
physically interact with Caveolin-1 [234, 241], while VDR
binds to Caveolin-3 [242]. Binding to caveolins is required for
membrane localization of the receptor [234]. Furthermore,
binding to caveolins allows hormone receptors to initiate fast,
specific nongenomic response to hormonal stimulus.

3.1.2. Induction of Transduction Pathways. Upon binding
to the cell membrane receptors, small-molecule hormones
activate various transduction pathways by a receptor-type-
dependent mechanism. By activation of phospholipase C
(PLC) and generation of the secondary messenger inositol
1,4,5-trisphosphate (IP3), they might activate the cell mem-
brane and the sarcoplasmic reticulum (the most impor-
tant Ca2+ storage) ion channels. Such activation leads to

the increase of intracellular concentration of Ca2+, another
secondary messenger crucial for many cellular functions.
Ca2+ activates, among others, RAS/RAF/MEK/ERK kinases,
protein kinase C (PKC), and protein kinase A (PKA). As a
result, activated kinases phosphorylate and activate numer-
ous cytoplasmic and nuclear proteins, including hormonal
receptors, transcription factors and coactivators. This, in
turn,modulates various biological processes in the cytoplasm
and influences transcription of genes regulated by newly
phosphorylated hormone receptors and transcription factors.
Cell-membrane-located small-molecule hormone receptors
interacting with G proteins might also activate adenylate
cyclase, which results in the generation of yet another
secondary messenger, cAMP, and in the activation of cAMP-
dependent proteins, such as PKA, and of their substrates
[243–247]. By nongenomic mechanisms, small-molecule
hormones also regulate the activity of ion channels, influenc-
ing cross-membrane movement of Na+, H+, Cl−, and of K+
[245, 248, 249].

Small-molecule hormones also bind to the proteins
present in the cytoplasm; commonly, such proteins are cyto-
plasmic fractions of nuclear receptors. Upon hormone bind-
ing, the receptor interacts with numerous proteins, elements
of various signal transduction pathways which, as described
above, might be also activated by hormones on a “higher”
level, namely, that of a cell membrane receptor. For exam-
ple, hormone-activated TR, ER, and RAR bind to a p85𝛼
subunit of phosphatidylinositol 3 kinase. Activated kinase
increases production of IP3 which, in turn, activates the
mitogen-activated protein kinase (MAPK) pathway [250–
252]. Hormone-activated AR, PR, and ER bind to SH3 or to
SH2 subunit of c-SRC tyrosine kinase localized close to the
cell membrane. Such binding activates c-SRC which, subse-
quently, activatesMAPK and RAS/RAF/MEK/ERK pathways
leading to the phosphorylation of various cytoplasmic and
nuclear receptors [253–255].

3.2. Nuclear Hormone Receptor Binding to Calmodulin. Of
note is nuclear hormone receptors’ binding to CaM, being
an example of cross-talking of hormonal signaling with other
signal transduction pathways. Such binding has been proved
for ER𝛼 (but not for ER𝛽), AR, and orphan receptor ERR𝛾,
among others [85–87, 256–258]. It results in the increased
stability of the receptor due to CaM-dependent protection
from degradation [85–87]. CaM facilitates dimerization of
ER𝛼 in the absence of 17𝛽-estradiol [86]. The binding pro-
foundly affects receptor function: CaM is required for normal
transactivation by ER𝛼 since its elimination or blockage by
antagonists prevents 17𝛽-estradiol from inducing transcrip-
tional activity of this receptor [256, 257]. Similarly, CaM
stimulates transcriptional activity of AR (since its antagonist
W-7 blocks AR-dependent expression of prostate-specific
antigen) and of ERR𝛾 [258, 259].

3.3. Hormone Binding to Nonreceptor Proteins. Small-mole-
cule hormones could also bind to another, nonreceptor type
cytoplasmic proteins. For example, 1𝛼,25(OH)

2
D3, dehy-

droepiandrosterone (DHEA), and dexamethasone bind to
PKC𝛼, PKC𝛾, and PKC𝜀 isoforms of PKC, which results in
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Table 2: Selected human pathologies associated with hormone receptors.

Receptor Pathology

TR Mutation-related generalized and pituitary resistance to thyroid hormone [1–4]; mutations and/or altered expression in
various cancers [5–9]

RAR Translocation in acute promyelocytic leukemia [10]; reduced expression in cancers [11]; altered signaling in neurological and
psychiatric diseases [12]

VDR
Mutation-related resistance to 1𝛼,25(OH)2D3/hereditary vitamin D resistant rickets [13–15]; polymorphisms in osteoporosis
[16]; mutations in alopecia [17]; altered expression and polymorphisms in various cancers [18–20]; altered function in
inflammation [21]; altered function in liver pathology [22]

PPAR
Mutations in insulin resistance in nonobese [23]; mutations in familial partial lipodystrophy [23–25]; excessive
phosphorylation in insulin resistance and obesity [26]; mutations in cancers, low expression in cancers with poor prognosis
[27]; alterations in atherosclerosis, inflammation, and osteoarthritis [28–30]

RXR Polymorphisms in colorectal cancer and in metabolic diseases [31–33]

ER
Mutations and altered expression in breast cancer [34–36]; altered posttranslational modifications in breast cancer [36, 37];
overexpression in endometriosis [38]; polymorphisms in ovulatory dysfunction [39]; impaired function in metabolic diseases
[40]

AR
Mutation-related androgen insensitivity syndrome [41–43]; overexpression, mutations, CAG repeat extension, excessive
receptor phosphorylation in prostate cancer [26, 41, 44–46]; CAG repeat extension in spinal and bulbar muscular atrophy
[45, 47]; mutations and the AR gene trinucleotide repeat variations in male infertility [48]; mental disorders [41]

PR Lack of expression in breast cancer [35, 36]; decreased expression in endometriosis [49]; altered expression in testis of infertile
men [50]

GR Mutation-related glucocorticoid resistance [51, 52]; polymorphisms in tissue-specific sensitivity to glucocorticoids and
hypersensitivity to glucocorticoids [52]; polymorphisms in depression [53]

MR Mutations in mineralocorticoid resistance syndrome (pseudohypoaldosteronism type 1) [54]; polymorphisms in depression
[53]; mutation in severe hypertension [55]

enzyme activation. In addition, PKC𝛼 isoform is also directly
activated by aldosterone and by 17𝛽-estradiol, while PKC𝛿
isoform is activated by 17𝛽-estradiol [260, 261].

3.4. Small-Molecule Hormones Action in Mitochondria.
Small-molecule hormones modulate the function of mito-
chondria by a number of mechanisms. One of them is based
on the action of their nuclear receptors as transcription
factors. Each mitochondrion has multiple copies of its own
DNA (mtDNA) encoding 37 genes, including genes for 13
proteins involved in oxidative phosphorylation. A shortened
isoform of TR (mtTR𝛼1, so-called p43), RXR𝛼 (mtRXR𝛼),
and PPAR𝛾2 (mtPPAR𝛾2), as well as full-lengthGR, ER𝛼, and
ER𝛽 receptors are present in mitochondria [109, 262–265],
where they form dimers such as mtRXR𝛼/p43, mtPPAR𝛾2/
p43, GR/GR, and ER/ER or couple with other transcription
factors. It has been shown that glucocorticoids, T3 and 17𝛽-
estradiol, acting by their mitochondrial receptors bound to
mitochondrial HREs, activate the transcription of mtDNA,
leading to an increased activity of oxidative phosphorylation.

Another mechanism of small-molecule hormones action
in mitochondria is based on their interactions with other
proteins. For example, diiodothyronine (T2) binds to the Va
subunit of cytochrome 𝑐 oxidase and activates this enzyme
[266]. Adenine nucleotide translocase (ANT) binds all-trans-
retinoic acid [267].

In addition, the shortest isoform of TR𝛼1, p28, is bound
to the internal mitochondrial membrane [263], where, most
likely, it stimulates the function of ANT and of uncoupling
proteins (UCPs) [263, 268]. Orphan nuclear receptor Nur77

mediates apoptosis by interaction with Bcl-2 and by induc-
tion of cytochrome 𝑐 release [269].

Small-molecule hormones acting in mitochondria regu-
late Ca2+ wave activity in this organelle, as shown in the case
of estrogens and T3 [270, 271].

Finally, hormonal receptors can directly bind to mito-
chondrial membranes and modify membrane potential, as
shown, for example, for stress-activated GR [272].

3.5. Interaction of Hormonal Nuclear Receptors with RNA. It
has been shown that RAR𝛼 molecules present in the cyto-
plasm can bind mRNA via the C-terminal F domain, which
recognizes a specific sequences in the target mRNA. Such
a mechanism was described for mRNA encoding neuronal
GluR1 protein, a subunit of the glutaminergic receptor. The
binding of GluR1 mRNA by a hormone-free receptor results
in the inhibition of translation. The binding of all-trans-
retinoic acid induces the change of receptor conformation
and decreases its affinity for mRNA; as a result the receptor
dissociates from mRNA [273].

3.6. Direct Interaction of Small-Molecule Hormones with
Membranes. A very rapid effects of androgens, progesterone,
glucocorticoids, and other steroid hormones, evident just
a few seconds after hormone administration, might be a
result of a nonspecific, nongenomic mechanism of small-
molecule hormones action, based on their interactions with
lipid bilayers. Lipophilic steroid hormone molecules could
directly bind to membrane phospholipids and, by doing
so, modulate their function. This, in turn, influences the
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function ofmembrane proteins such as the calciumpumpand
other channel proteins, leading to an immediate transport
modification of various ions. Nonspecific binding of steroid
hormones to a mitochondrial membrane might increase
proton leak [274, 275].

4. Human Pathologies Associated with
Receptor Abnormalities

Medical conditions associated with out-of-range level of
small-molecule hormones are known for decades, relatively
common, and have been exhaustively described in numerous
handbooks and articles. In contrast,much less is known about
diseases initiated by abnormalities of the receptor. They are
uncommon, with a wide range of signs and symptoms of
variable severity (related to both the type and site of genetic
error within the receptor-encoding gene or related genes)
that might mimic signs and symptoms of other diseases
(e.g., resistance to thyroid hormone might be erroneously
diagnosed as hyperthyroidism). Detailed description of these
diseases exceeds the scope of this paper; however, in Table 2
the reader can find a comprehensive summary and references
to the review and original articles regarding selected human
hormone-receptor-related pathologies.

Hormone-receptor-related diseases constitute an impor-
tant diagnostic challenge. Among them, a monogenic dis-
eases arising due to mutation are the easiest to diagnose,
provided that a candidate gene is identified and its sequencing
showsmutation. It is muchmore difficult, though, to evaluate
the influence of altered expression or function (e.g., due to
the abnormal posttranslationalmodifications) of the receptor
on the phenotype, especially ofmultifactorial diseases such as
obesity, insulin resistance, atherosclerosis, cardiovascular dis-
ease, cancer, neurodegeneration, and so forth the Diagnostic
problems are the reasonswhyhormone receptor dysfunctions
commonly remain undiagnosed and untreated. However,
the importance of such dysfunctions in pathophysiology of
both rare and common diseases fully justifies the efforts
to elucidate the molecular mechanisms of action of these
receptors. Importantly, identification of these mechanisms is
crucial for designing new targeted therapeutic strategies.

5. Conclusion

Small-molecule hormones, usually of quite simple chemical
structure, have an enormously wide range of biological
functions. The effects of their action are due to their inter-
action with various receptors, which, by further interaction
with other proteins or with DNA, activate various signal
transduction pathways or regulate the activity of numerous
target genes. Even though our knowledge regarding these
nongenomic and genomic mechanisms is already impressive,
a lot of information regarding, first of all, their interdepen-
dence still awaits elucidation.
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“Identification of a novel negative retinoic acid responsive
element in the promoter of the humanmatrix Gla protein gene,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 94, no. 6, pp. 2227–2232, 1997.

[122] D. W. Eubank, E. Duplus, S. C. Williams, C. Forest, and E.
G. Beale, “Peroxisome proliferator-activated receptor 𝛾 and
chicken ovalbumin upstream promoter transcription factor
II negatively regulate the phosphoenolpyruvate carboxykinase
promoter via a common element,” Journal of Biological Chem-
istry, vol. 276, no. 32, pp. 30561–30569, 2001.

[123] M. S. Kim, R. Fujiki, A. Murayama et al., “1𝛽,25(OH)
2
D
3
-

induced transrepression by vitamin D receptor through E-
box-type elements in the human parathyroid hormone gene
promoter,”Molecular Endocrinology, vol. 21, no. 2, pp. 334–342,
2007.

[124] C. J. Guigon, D. W. Kim, X. Zhu, L. Zhao, and S. Y. Cheng,
“Tumor suppressor action of liganded thyroid hormone recep-
tor 𝛽 by direct repression of 𝛽-catenin gene expression,”
Endocrinology, vol. 151, no. 11, pp. 5528–5536, 2010.

[125] H. P. Harding and M. A. Lazar, “The orphan receptor Rev-
ErbA𝛼 activates transcription via a novel response element,”
Molecular and Cellular Biology, vol. 13, no. 5, pp. 3113–3121, 1993.

[126] V. Giguere, M. Tini, G. Flock, E. Ong, R. M. Evans, and
G. Otulakowski, “Isoform-specific amino-terminal domains
dictate DNA-binding properties of ROR𝛼, a novel family of
orphan hormone nuclear receptors,” Genes and Development,
vol. 8, no. 5, pp. 538–553, 1994.

[127] W. B. Pratt and D. O. Toft, “Steroid receptor interactions with
heat shock protein and immunophilin chaperones,” Endocrine
Reviews, vol. 18, no. 3, pp. 306–360, 1997.

[128] K. Graumann and A. Jungbauer, “Quantitative assessment of
complex formation of nuclear-receptor accessory proteins,”
Biochemical Journal, vol. 345, no. 3, pp. 627–636, 2000.

[129] T. Rajapandi, L. E. Greene, and E. Eisenberg, “The molecular
chaperones Hsp90 and Hsc70 are both necessary and sufficient
to activate hormone binding by glucocorticoid receptor,” Jour-
nal of Biological Chemistry, vol. 275, no. 29, pp. 22597–22604,
2000.

[130] N. S. Cintron and D. Toft, “Defining the requirements for
Hsp40 and Hsp70 in the Hsp90 chaperone pathway,” Journal of
Biological Chemistry, vol. 281, no. 36, pp. 26235–26244, 2006.

[131] J. P. Schülke, G. M. Wochnik, I. Lang-Rollin et al., “Differential
impact of tetratricopeptide repeat proteins on the steroid
hormone receptors,” PloS one, vol. 5, no. 7, article e11717, 2010.

[132] M. Nishi andM. Kawata, “Dynamics of glucocorticoid receptor
and mineralocorticoid receptor: implications from live cell
imaging studies,”Neuroendocrinology, vol. 85, no. 3, pp. 186–192,
2007.

[133] M. Kawata, M. Nishi, K. Matsuda et al., “Steroid receptor sig-
nalling in the brain—lessons learned frommolecular imaging,”
Journal of Neuroendocrinology, vol. 20, no. 6, pp. 673–676, 2008.

[134] C. Elbi, D. A. Walker, G. Romero et al., “Molecular chaperones
function as steroid receptor nuclear mobility factors,” Proceed-
ings of the National Academy of Sciences of the United States of
America, vol. 101, no. 9, pp. 2876–2881, 2004.

[135] T. E. Spencer, G. Jenster, M. M. Burcin et al., “Steroid receptor
coactivator-1 is a histone acetyltransferase,”Nature, vol. 389, no.
6647, pp. 194–198, 1997.

[136] Z. Liu, J. Wong, S. Y. Tsai, M. J. Tsai, and B. W. O’Malley,
“Sequential recruitment of steroid receptor coactivator-1 (SRC-
1) and p300 enhances progesterone receptor-dependent initia-
tion and reinitiation of transcription from chromatin,” Proceed-
ings of the National Academy of Sciences of the United States of
America, vol. 98, no. 22, pp. 12426–12431, 2001.

[137] M. Y. Kim, S. J. Hsiao, and W. L. Kraus, “A role for coactivators
and histone acetylation in estrogen receptor 𝛼-mediated tran-
scription initiation,” EMBO Journal, vol. 20, no. 21, pp. 6084–
6094, 2001.

[138] B. Belandia, R. L. Orford, H. C. Hurst, and M. G. Parker,
“Targeting of SWI/SNF chromatin remodelling complexes to
estrogen-responsive genes,” EMBO Journal, vol. 21, no. 15, pp.
4094–4103, 2002.

[139] Z. Kang, O. A. Jänne, and J. J. Palvimo, “Coregulator recruit-
ment and histonemodifications in transcriptional regulation by
the androgen receptor,”Molecular Endocrinology, vol. 18, no. 11,
pp. 2633–2648, 2004.

[140] D. J. van de Wijngaart, H. J. Dubbink, M. E. van Royen,
J. Trapman, and G. Jenster, “Androgen receptor coregulators:
recruitment via the coactivator binding groove,”Molecular and
Cellular Endocrinology, vol. 352, no. 1-2, pp. 57–69, 2012.

[141] D. Pearce, W. Matsui, J. N. Miner, and K. R. Yamamoto,
“Glucocorticoid receptor transcriptional activity determined by
spacing of receptor and nonreceptor DNA sites,” Journal of
Biological Chemistry, vol. 273, no. 46, pp. 30081–30085, 1998.



International Journal of Endocrinology 17

[142] P. J. Kushner, D. A. Agard, G. L. Greene et al., “Estrogen
receptor pathways to AP-1,” Journal of Steroid Biochemistry and
Molecular Biology, vol. 74, no. 5, pp. 311–317, 2000.

[143] H. Takai, Y. Nakayama, D. S. Kim et al., “Androgen recep-
tor stimulates bone sialoprotein (BSP) gene transcription via
cAMP response element and activator protein 1/glucocorticoid
response elements,” Journal of Cellular Biochemistry, vol. 102, no.
1, pp. 240–251, 2007.

[144] H. Konig, H. Ponta, H. J. Rahmsdorf, and P. Herrlich, “Interfer-
ence between pathway-specific transcription factors: glucocor-
ticoids antagonize phorbol ester-induced AP-1 activity without
altering AP-1 site occupation in vivo,” EMBO Journal, vol. 11, no.
6, pp. 2241–2246, 1992.

[145] N. Gionet, D. Jansson, S. Mader, and M. A. C. Pratt, “NF-𝜅B
and estrogen receptor 𝛼 interactions: differential function in
estrogen receptor-negative and -positive hormone-independ-
ent breast cancer cells,” Journal of Cellular Biochemistry, vol. 107,
no. 3, pp. 448–459, 2009.

[146] N. A. Rao, M. T. McCalman, P. Moulos et al., “Coactivation of
GR and NFKB alters the repertoire of their binding sites and
target genes,” Genome Research, vol. 21, no. 9, pp. 1404–1416,
2011.

[147] J. D. Chen and R. M. Evans, “A transcriptional co-repressor that
interacts with nuclear hormone receptors,” Nature, vol. 377, no.
6548, pp. 454–457, 1995.
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