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Resting-state functional magnetic resonance imaging (rs-fMRI) has been widely employed to examine brain functional
connectivity (FC) alterations in various neurological disorders. At present, various computational methods have been proposed
to estimate connectivity strength between different brain regions, as the edge weight of FC networks. However, little is known
about which model is more sensitive to Alzheimer’s disease (AD) progression. This study comparatively characterized
topological properties of rs-FC networks constructed with Pearson correlation (PC), dynamic time warping (DTW), and group
information guided independent component analysis (GIG-ICA), aimed at investigating the sensitivity and effectivity of these
methods in differentiating AD stages. A total of 54 subjects from Alzheimer’s Disease Neuroimaging Initiative (ANDI)
database, divided into healthy control (HC), mild cognition impairment (MCI), and AD groups, were included in this study.
Network-level (global efficiency and characteristic path length) and nodal (clustering coefficient) metrics were used to capture
groupwise difference across HC, MCI, and AD groups. The results showed that almost no significant differences were found
according to global efficiency and characteristic path length. However, in terms of clustering coefficient, 52 brain parcels
sensitive to AD progression were identified in rs-FC networks built with GIG-ICA, much more than PC (6 parcels) and DTW
(3 parcels). This indicates that GIG-ICA is more sensitive to AD progression than PC and DTW. The findings also confirmed
that the AD-linked FC alterations mostly appeared in temporal, cingulate, and angular areas, which might contribute to
clinical diagnosis of AD. Overall, this study provides insights into the topological properties of rs-FC networks over AD
progression, suggesting that FC strength estimation of FC networks cannot be neglected in AD-related graph analysis.

1. Introduction

Alzheimer’s disease (AD) is the most common cause for
dementia, which has an insidious preclinical stage in which
pathological tau accumulates slowly until clinical symptoms
are observable in prodromal stages [1, 2]. For this reason, the
neuroscience community is focusing on investigating early
signs of AD which could lead to the development of vali-
dated biomarkers. Now, abundant functional magnetic reso-

nance imaging (fMRI) studies have reported that cognitive
impairments in AD were associated with abnormal func-
tional connectivity (FC) interactions between different brain
regions [3–5]. As spontaneous neuronal activity plays an
important role in reflecting the brain’s intrinsic mental state
and human behavior [6], the investigation of brain resting-
state FC (rs-FC) might facilitate our understanding of the
neurophysiological mechanisms underlying AD progression.
Therefore, resting-state fMRI (rs-fMRI) has been widely
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employed to study the alterations in neuronal activity of AD
patients, with the measurement of resting brain synchro-
nized activity through low frequency oscillations in the
blood oxygen level-dependent (BOLD) signals [7, 8].

Currently, many rs-fMRI studies have showed altered func-
tional connectivity in AD [9–11]. These studies assumed that
FC patterns in the brain are static over the course of rs-fMRI
scans. However, there is a growing consensus that the spontane-
ous fluctuations and correlations of signals between two distinct
brain regions change over time, even in a resting state [12–15].
It is expected that dynamic properties of time-varying func-
tional networks may offer additional information for under-
standing AD mechanisms. Conventional methods do not
account for temporal variability and are not sensitive to associ-
ated connectivity changes in AD. As the brain works as a
dynamically integrated network [16, 17], topologic characteri-
zation of dynamic FC networks may be better for revealing
AD-linked FC alterations, which might be difficult to achieve
in the traditional static network analysis of rs-fMRI [18].

At present, dynamic FC patterns have been primarily inves-
tigated using sliding-window technique [19–21], independent
component analysis (ICA) [12, 22, 23], and leading eigenvector
dynamics analysis (LEiDA) [24]. The sliding window technique
has been repeatedly applied to explore how dynamic FC is
affected by neurological disorders. In each windowed segment,
between-region statistical association was usually estimated
with Pearson correlation [11, 25] and dynamic time warping
(DTW) [26, 27]. Pearson correlation directly measures the sta-
tistical linear relationships between pairs of BOLD series. DTW
is an elastic matching algorithm, and as such can account for lag
and shape differences between BOLD series [27]. ICA enables
us to obtain dominant components by eliminating high-order
statistical correlation of concatenated FC matrix [21]. Specially,
group information guided ICA (GIG-ICA) showed promising
potential for detecting altered brain dynamic functional con-
nectivity [28, 29]. Differently, LEiDA captures themain orienta-
tion of BOLD signal phases over time by calculating the leading
eigenvector for dynamic phase-locking matrix, which estimates
the phase alignment between each pair of brain regions. These
pioneering studies motivated us to comparatively investigate
the sensitivity and effectivity of static and dynamic FC estima-
tion methods in detecting alterations in rs-FC networks over
AD progressive stages. In this study, after rs-FC networks were
constructed using Pearson correlation, DTW, and GIG-ICA,
topological analyses were performed. 54 subjects obtained from
Alzheimer’s Disease Neuroimaging Initiative (ANDI) database
were included, consisting of 18 healthy controls (HCs), 18 mild
cognition impairments (MCIs), and 18 ADs. The feasibility and
effectivity of Pearson correlation, DTW, and GIG-ICA in
exploring AD-related alterations were compared and discussed.

2. Materials and Methods

2.1. Data. Data used in our study were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-
base (http://www.adni.loni.usc.edu). Detailed descriptions
of the demographic and clinical features of the participants
are provided in Table 1. The subjects were examined on a
3T MRI scanner (Magnetom Trio Tim, Siemens, Erlangen,
Germany). MRI session included a high-resolution struc-
tural T1-weighted image (sagittal MPRAGE; TR = 2300ms,
TE = 2:98ms, matrix size = 256 × 256 × 240, and isometric
voxel 1 × 1 × 1mm3) and a 10-min resting-state fMRI
(TR = 3000ms, TE = 16ms, 128 × 128 × 40 matrix, and
voxel size = 1:72 × 1:72 × 3mm3). Participants were
instructed to rest with eyes opened and stay awake in rs-
fMRI scanning.

The entire processing flowchart in this study is shown in
Figure 1. The tissues of gray matter, white matter, and cere-
brospinal fluid were first segmented from T1-weighted MRI
images. Gray matter was then coregistered into Montreal
Neurosciences Institute (MNI) space. After original fMRI
images were smoothed and coregistered into MNI space,
whole-brain parcellation atlas in MNI space was employed
to parcellate whole-brain into 132 parcels (Table 2), includ-
ing cerebrum and cerebellum. ROI-specific time serial was
obtained by averaging BOLD signal timeseries correspond-
ing to the voxels within ROIs. At last, FC adjacent matrix
computed with Pearson correlation, DTW, and GIG-ICA,
respectively.

2.2. rs-FC Networks. In this work, CONN (functional con-
nectivity toolbox, https://web.conn-toolbox.org/) and
SPM12 (Statistical Parametric Mapping, https://www.fil.ion
.ucl.ac.uk/spm/) were used to perform T1-weighted MRI
and rs-fMRI preprocessing, including spatial coregistration,
functional realignment and unwarp, slice-timing correction,
outlier identification, segmentation and normalization, and
smoothing [30, 31]. T1-weighted images were normalized
into standard MNI space and segmented into gray matter,
white matter, and CSF tissue classes using SPM12 unified
segmentation and normalization procedure. rs-fMRI data-
sets were realigned using SPM12 realign and unwarp proce-
dure, where all scans were coregistered and resampled to a
reference image (the first scan) using b-spline interpolation.
This procedure successfully addressed potential susceptibil-
ity distortion-by-motion interactions by estimating the
derivatives of the deformation field with respect to head
movement and resampling the functional data to match
the deformation field of the reference image. Temporal mis-
alignment between different slices of the functional data,

Table 1: Demographic information for HC, MCI, and AD subjects.

Number Age (mean ± standard) Gender MMSE score (mean ± standard) CDR global score (mean ± standard)
HC 18 69:11 ± 7:87 15F, 3M 29:1 ± 1:0 0:0 ± 0:0

MCI 18 72:00 ± 5:89 12F, 6M 27:0 ± 1:8 0:5 ± 0:0

AD 18 73:17 ± 7:85 6F, 12M 23:3 ± 2:1 0:7 ± 0:3
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induced by the sequential nature of fMRI acquisition proto-
col, was corrected using SPM12 slice-timing correction pro-
cedure, where the functional data was time-shifted and
resampled using Sinc interpolation to match the time in
the middle of each acquisition time. Last, functional data
was smoothed using spatial convolution with a Gaussian
kernel of 8mm full width half maximum, in order to
increase BOLD signal-to-noise ratio (SNR) and reduce the
influence of residual variability in functional and gyral anat-
omy across subjects. Then, functional data was coregistered
to the structural data using SPM12 intermodality coregistra-
tion procedure with a normalized mutual information cost
function. This procedure estimated an optimal affine trans-

formation between the reference functional image (mean
BOLD signal) and the reference structural image (T1-
weighted volume) that maximizes the mutual information
between the two-modal imaging.

MNI-registered gray matter was divided into 132 regions
(including 91 cortical regions, 15 subcortical regions, and 26
cerebellar regions) based on FSL Harvard-Oxford Atlas
maximum likelihood cortical atlas and the automated ana-
tomical labeling (AAL) template (Table 2) [32]. Then,
whole-brain rs-FC networks were built, with gray matter
parcels defined as nodes and the FC strength between the
nodes considered as edge weights. Thus, weighted matrices
were obtained for further analyses. In this study, for
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Figure 1: Flowchart for topological analyses of rs-FC networks. (a) T1-weighted MRI images were used to extract the tissues of gray matter,
white matter, and cerebrospinal fluid. (b) Gray matter was coregistered into MNI space. (c) Original fMRI images were smoothed and
coregistered into (d) MNI space. (e) Whole-brain parcellation atlas in MNI space was used to parcellate whole-brain into 132 parcels
(Table 2), including cerebrum and cerebellum. (f) ROI-specific time serial was obtained by averaging BOLD signal timeseries within ROI
voxels. (g) FC adjacent matrix computed with Pearson correlation. (h) FC adjacent matrix estimated with DTW. (i–m) Five ICA
components extracted with GIG-ICA.
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Table 2: Index and name of 132 brain parcels, including 91 cortical, 15 subcortical, and 26 cerebellar subregions. This parcellation atlas was
based on FSL Harvard-Oxford and the automated anatomical labeling (AAL) template.

Index/name Index/name Index/name Index/name Index/name Index/name

1 Frontal pole right
23 Middle temporal gyrus,
posterior division right

45 Lateral occipital
cortex, inferior division

right
67 Lingual gyrus left

89
Supracalcarine
cortex left

111
Cerebellum

3 left

2 Frontal pole left
24 Middle temporal gyrus,
posterior division left

46 Lateral occipital
cortex, inferior division

left

68 Temporal fusiform
cortex, anterior division

right

90 Occipital
pole right

112
Cerebellum
3 right

3 Insular cortex right
25 Middle temporal gyrus,
temporooccipital part

right

47 Intracalcarine cortex
right

69 Temporal fusiform
cortex, anterior division

left

91 Occipital
pole left

113
Cerebellum
4, 5 left

4 Insular cortex left
26 Middle temporal gyrus,
temporooccipital part left

48 Intracalcarine cortex
left

70 Temporal fusiform
cortex, posterior division

right

92 Thalamus
right

114
Cerebellum
4, 5 right

5 Superior frontal gyrus
right

27 Inferior temporal
gyrus, anterior division

right
49 Frontal medial cortex

71 Temporal fusiform
cortex, posterior division

left

93 Thalamus
left

115
Cerebellum

6 left

6 Superior frontal gyrus
left

28 Inferior temporal
gyrus, anterior division

left

50 Supplementary
motor cortex right

72 Temporal occipital
fusiform cortex right

94 Caudate
right

116
Cerebellum
6 right

7 Middle frontal gyrus
right

29 Inferior temporal
gyrus, posterior division

right

51 Supplementary
motor cortex left

73 Temporal occipital
fusiform cortex left

95 Caudate left
117

Cerebellum
7 left

8 Middle frontal gyrus
left

30 Inferior temporal
gyrus, posterior division

left
52 Subcallosal cortex

74 Occipital fusiform
gyrus right

96 Putamen
right

118
Cerebellum
7 right

9 Inferior frontal gyrus,
pars triangularis right

31 Inferior temporal
gyrus, temporooccipital

part right

53 Paracingulate gyrus
right

75 Occipital fusiform
gyrus left

97 Putamen
left

119
Cerebellum

8 left

10 Inferior frontal gyrus,
pars triangularis left

32 Inferior temporal
gyrus, temporooccipital

part left

54 Paracingulate gyrus
left

76 Frontal operculum
cortex right

98 Pallidum
right

120
Cerebellum
8 right

11 Inferior frontal gyrus,
pars opercularis right

33 Postcentral gyrus right
55 Cingulate gyrus,
anterior division

77 Frontal operculum
cortex left

99 Pallidum
left

121
Cerebellum

9 left

12 Inferior frontal gyrus,
pars opercularis left

34 Postcentral gyrus left
56 Cingulate gyrus,
posterior division

78 Central opercular
cortex right

100
Hippocampus

right

122
Cerebellum
9 right

13 Precentral gyrus right
35 Superior parietal lobule

right
57 Precuneous cortex

79 Central opercular
cortex left

101
Hippocampus

left

123
Cerebellum

10 left

14 Precentral gyrus left
36 Superior parietal lobule

left
58 Cuneal cortex right

80 Parietal operculum
cortex right

102 Amygdala
right

124
Cerebellum
10 right

15 Temporal pole right
37 Supramarginal gyrus,
anterior division right

59 Cuneal cortex left
81 Parietal operculum

cortex left
103 Amygdala

left
125 Vermis

1, 2

16 Temporal pole left
38 Supramarginal gyrus,
anterior division left

60 Frontal orbital cortex
right

82 Planum polare right
104

Accumbens
right

126 Vermis
3

17 Superior temporal
gyrus, anterior division
right

39 Supramarginal gyrus,
posterior division right

61 Frontal orbital cortex
left

83 Planum polare left
105

Accumbens
left

127 Vermis
4, 5

18 Superior temporal
gyrus, anterior division
left

40 Supramarginal gyrus,
posterior division left

62 Parahippocampal
gyrus, anterior division

right
84 Heschl’s gyrus right 106 Brain-stem

128 Vermis
6

41 Angular gyrus right 85 Heschl’s gyrus left
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comparison, the edges of rs-FC network were estimated
using three methods, including Pearson correlation, DTW,
and GIG-ICA (https://www.nitrc.org/projects/gig-ica/).
Static FC strength was estimated over entire rs-fMRI scan
in terms of Pearson correlation coefficient and DTW simi-
larity [27]. After FC matrix was obtained from covariance
matrix with a window width of 20 TRs [33], the first (dom-
inant) component extracted by GIG-ICA from the
concatenated dynamic FC matrices would be used for topo-
logical analysis. As group information captured by standard
ICA on the group level is used as guidance to compute indi-
vidual subject specific independent components (ICs), GIG-
ICA is able to obtain subject-specific ICs with better spatial
correspondence, higher spatial, and temporal accuracy [28,
34].

2.3. Topological Metrics of rs-FC Networks. For topological
analysis, we focused on global efficiency, characteristic path
length, and clustering coefficient, which were calculated
based on the estimated FC adjacency matrices using BCT
toolbox [35]. Our goal is to use these metrics to investigate
the FC disruption caused by AD progression. The metrics
are summarized as follows.

Global efficiency is inversely proportional to the average
shortest path length. This metric measures how globally effi-
cient a network is in the sense of connecting distant nodes
together [35, 36].

E = 1
N
〠
i

1
N − 1

1
∑j≠idij

, ð1Þ

where dij is the shortest path length between node i and
node j. N is the number of nodes in a network.

Characteristic path length indicates a lower capacity to
integrate information using shortest path routing, revealing
the integration of a network structure [35].

L =
1
N
〠
i

∑i≠jdij
N − 1

: ð2Þ

The clustering coefficient indicates the extent of local
interconnectivity or cliquishness in a network. It is defined

as the ratio of the number of triangles a given node belongs
to over the total number of triangles it could belong to [37].

C =
1
N
〠
i

2ti
ki ki − 1ð Þ , ð3Þ

where ti is the number of triangles around node and ki is the
node degree.

2.4. Statistical Analysis. Once the graph measures were
extracted, we statistically evaluated groupwise difference.
After whole-brain static and dynamic FC networks of each
subject was built, groupwise differences of topologic metrics
were assessed using one-way analysis of covariance
(ANCOVA) tests with age and gender as covariates [22,
38]. As an extension of analysis of variance (ANOVA),
ANCOVA provides a way of statistically controlling the
effect of covariables. In this study, p value less than 0.05
(uncorrected) was considered statistically significant.

3. Results

3.1. rs-FC Adjacent Matrices. Figure 2 shows examples of
whole-brain FC estimation from HC, MCI, and AD subjects.
In this work, rs-FC adjacent matrices were estimated using
Pearson correlation, DTW, and GIG-ICA. Figures 2(d)–
2(g) denote group-level FC states (GSs), and Figure 2(c) is
the dominant GSs which contribute the most information
across the entire time-varying connectivity patterns.
Figure 2(a) was computed with Pearson correlation, and
Figure 2(b) was obtained with DTW.

3.2. Topological Measures. As shown in Figure 3, no signifi-
cant differences were found in FC networks constructed with
DTW, in terms of the both network-level metrics. In FC net-
works built with Pearson correlation, only MCI and AD
groups were significantly identified according to the metric
of characteristic path length. In GIG-ICA dominant compo-
nent networks, significant differences between HC, AD, and
MCI groups were found in terms of global efficiency. Over-
all, significant groupwise differences could hardly be
detected in terms of characteristic path length. The mean

Table 2: Continued.

Index/name Index/name Index/name Index/name Index/name Index/name

19 Superior temporal
gyrus, posterior division
right

63 Parahippocampal
gyrus, anterior division

left

107
Cerebellum
crus1 left

129 Vermis
7

20 Superior temporal
gyrus, posterior division
left

42 Angular gyrus left
64 Parahippocampal

gyrus, posterior division
right

86 Planum temporale
right

108
Cerebellum
crus1 right

133 Vermis
8

21 Middle temporal
gyrus, anterior division
right

43 Lateral occipital cortex,
superior division right

65 Parahippocampal
gyrus, posterior division

left
87 Planum temporale left

109
Cerebellum
crus2 left

131 Vermis
9

22 Middle temporal
gyrus, anterior division
left

44 Lateral occipital cortex,
superior division left

66 Lingual gyrus right
88 Supracalcarine cortex

right

110
Cerebellum
crus2 right

132 Vermis
10
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Figure 2: rs-FC adjacent matrices. (a) FC matrices computed with Pearson correlation, and (b) was obtained with DTW. (c) Dominant
component of GIG-ICA decomposition. From top to bottom, the first, second, and third rows denote examples from subjects in HC,
MCI, and AD groups, respectively.
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Figure 3: Violin plots of ANCOVA analyses on network-level topological metrics, including global efficiency and characteristic path length.
No significant differences were found in rs-FC networks constructed with DTW, in terms of the both metrics. As for Pearson correlation,
only MCI and AD groups were significantly identified according to the metric of characteristic path length. In FC networks constructed with
GIG-ICA, significant differences between HC, AD, and MCI groups were found in terms of global efficiency.
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Table 3: Network-level topological metrics (mean ± standard) derived from rs-FC networks, including global efficiency and characteristic
path length.

Pearson correlation DTW GIG-ICA dominant SS
HC MCI AD HC MCI AD HC MCI AD

Global efficiency 0:23 ± 0:02 0:24 ± 0:02 0:23 ± 0:03 0:34 ± 0:03 0:35 ± 0:05 0:33 ± 0:05 0:29 ± 0:03 0:23 ± 0:03 0:28 ± 0:03
Characteristic path
length

0:34 ± 0:04 0:33 ± 0:04 0:37 ± 0:04 0:77 ± 0:02 0:76 ± 0:05 0:77 ± 0:02 0:33 ± 0:05 0:34 ± 0:04 0:33 ± 0:04
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Figure 4: Continued.
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and standard deviation values of the network-level topolog-
ical metrics are reported in Table 3.

Figure 4 shows ANCOVA results regarding the nodal
metric of clustering coefficient. The box plots of ANCOVA
are depicted in Figure 4, and the metric values
(mean ± standard) are reported in Tables 4–6. In the rs-FC
networks built using Pearson correlation, significant differ-
ences across HC, MCI, and AD groups were found for 6

brain parcels, including right angular gyrus (41), left angular
gyrus (42), left superior division of lateral occipital cortex
(44), right frontal operculum cortex (76), right central oper-
cular cortex (78), and left planum polare (83) (Tables 2 and
7). Only three brain parcels were significantly identified in
DTW-constructed networks, namely, left occipital pole
(91), right cerebellum crus2 (110), and right cerebellum 7
(118) (Tables 2 and 7). In GIG-ICA dominant component
networks, we found that total 52 brain parcels (Tables 2
and 7) exhibit significantly different clustering coefficient
across HC, MCI, and AD groups. Figure 5 shows the 3D dis-
tribution of these significantly identified brain parcels (red
dots).

4. Discussion

At present, there are a few computational models to estimate
FC strength between pairs of brain parcels, which were used
to investigate FC alterations in various neurological disorders.
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Figure 4: Box plots of ANCOVA analyses on clustering coefficient. Significant differences across HC, MCI, and AD stages were found in 6
brain parcels of rs-FC networks constructed with (a) Pearson correlation, in 3 brain parcels of rs-FC networks constructed with (b) DTW,
and in 52 brain parcels of (c) GIG-ICA dominant component networks. For simplification, only 6 nodes were displayed in (c).

Table 4: Clustering coefficient (mean ± standard) of the nodes that can significantly differentiate HC, MCI, and AD groups. The edge
weights were estimated with Pearson correlation.

N41 N42 N44 N76 N78 N83

HC 0:19 ± 0:03 0:20 ± 0:03 0:19 ± 0:03 0:19 ± 0:03 0:21 ± 0:04 0:20 ± 0:04

MCI 0:16 ± 0:02 0:17 ± 0:02 0:17 ± 0:03 0:17 ± 0:02 0:19 ± 0:03 0:19 ± 0:03

AD 0:17 ± 0:03 0:18 ± 0:03 0:16 ± 0:03 0:18 ± 0:02 0:18 ± 0:03 0:17 ± 0:02

Table 5: Clustering coefficient (mean ± standard) of the nodes that
can significantly differentiate HC, MCI, and AD groups. The edge
weights were estimated with DTW.

N91 N110 N118

HC 0:34 ± 0:05 0:33 ± 0:05 0:33 ± 0:04

MCI 0:33 ± 0:06 0:35 ± 0:05 0:36 ± 0:05

AD 0:29 ± 0:06 0:30 ± 0:07 0:31 ± 0:05
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In this study, we performed topological analyses on rs-FC net-
works of 18 HCs, 18MCIs, and 18 Ads, aiming to finding a FC
strength computational method sensitive to AD progression.
Groupwise differences in global and nodal metrics were exam-
ined using ANCOVA tests with gender and age as covariates.
Our results showed that almost no significant differences were
observed across HC, MCI, and AD groups in terms of global
metrics, and that much more affected brain regions by AD
were revealed according clustering coefficient extracted from
GIG-ICA dominant rs-FC networks. These findings provide
new insights into understanding of the macroscopic network
mechanisms underlying AD progression.

The human brain is a complex and interconnected net-
work characterized by an efficient small-world network with
high local clustering [39, 40]. Compared with healthy controls,
MCI and AD patients exhibit a disruption of the global inte-
gration of brain networks [5]. However, in this study, almost
no significant differences (p < 0:05, uncorrected) among HC,
MCI, and AD groups were observed in terms of network-
level metrics derived from rs-FC networks, including global
efficiency and characteristic path length (Figure 3 and
Table 3). In other words, global topologic metrics extracted

from rs-FC networks are not sensitive to AD progression.
Interestingly, in GIG-ICA dominant rs-FC networks, global
efficiency of MCI group significantly decreased compared
with HC and AD groups (p < 0:05, uncorrected). By compar-
ison, significant intergroup differences have been identified in
structural connectivity (SC) networks [3, 41, 42]. This may
due to different nature of FC and SC brain networks [43,
44]. FC reflects neuronal synchronization between brain
regions and is vulnerable to physiologic and psychologic con-
ditions. SC serves as the substrate for FC, with relative stability.

As a measure of local interconnectivity, clustering coeffi-
cient was estimated to examine FC disruption caused by AD.
For rs-FC networks constructed with Pearson correlation
and DTW, significant difference across HC, MCI, and AD
groups were observed only in 6 (Table 4) and 3 (Table 5)
regions. However, statistically significant differences among
HC, MCI, and AD groups were observed in total 52 nodes
of GIG-ICA dominant rs-FC networks (Table 6), mainly dis-
tributed in temporal, cingulate, and angular areas. [45]
reported that AD patients exhibit the posterior medial tem-
poral neurodegeneration that was associated with episodic
memory disturbance. In line with the previous finding, our

Table 7: rs-FC network nodes which exhibit significant groupwise difference across HC, MCI, and AD groups.

Node index

Pearson
correlation

41, 42, 44, 76, 78, 83

DTW 91, 110, 118

GIG-ICA
6, 7, 8, 9, 10, 11, 12, 20, 21, 23, 24, 25, 26, 27, 35, 36, 37, 39, 42, 45, 47, 50, 51, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 70,

71, 72, 73, 74, 95, 96, 98, 99, 100, 104, 106, 110, 112, 113, 116, 118, 125
Pe
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Figure 5: Distribution of the brain parcels (red dots) that exhibit significant groupwise differences over HC, MCI, and AD stages, in terms of
nodal clustering coefficient. For the node indexes and names, refer to Tables 2 and 7.
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results also showed AD patients have low clustering coeffi-
cient in the temporal gyrus and cingulate region [46–48].
However, some brain parcels displayed higher clustering
coefficient over AD progression (Figure 4) such as right
anterior division of inferior temporal gyrus (27), right ante-
rior division of parahippocampal gyrus (62), right cerebel-
lum crus2 (110), and right cerebellum 7 (118). This
phenomenon can be interpreted as a compensatory mecha-
nism to maintain normal cognitive function under AD
pathology [12, 49, 50], which deserves further study. From
the ANCOVA results, compared with Pearson correlation
and DTW, we could conclude that GIG-ICA was more sen-
sitive to AD progression. This may be attributed to that
dynamic rs-FC and the derived FC topological metrics might
help reveal changes in macroscopic neural interaction pat-
terns underlying AD progression [23]. Pearson correlation
and DTW are here applied to measure static FC. Dynamic
FC reveals temporal patterns of FC and provides additional
information to static FC, confirming that it might be an effi-
cient way to facilitate our understanding of the underlying
neurophysiological mechanisms of AD.

Several limitations should be addressed in the future work.
First, an empirically validated fixed sliding window of 20 TRs
was selected in GIG-ICA. The selection of sliding window size
is still inconclusive and may impact the evaluation of rs-FC
connectivity strength. FC changes with separate windows of
various window lengths will be evaluated in the future study.
Second, the sample sizes included in the current study are rel-
atively small, and the replication study with more participants
needs to be performed in the future to verify our findings.
Third, the whole brain was divided coarsely into 132 regions
based on FSL Harvard-Oxford atlas and AAL template for
functional brain network construction. Different parcellation
strategies are required to validate our findings in future stud-
ies. Finally, the association between the disrupted brain func-
tional networks and the neurological conditions was not
explored. Future longitudinal studies are necessary to explore
potential altered dynamic FC as a clinical biomarker.

5. Conclusion

rs-FC has been often used to identify abnormal brain con-
nectivity patterns in AD cohorts and to understand mecha-
nisms of abnormal brain function, attempting to
comprehensively explore the potential utility of rs-FC as a
biomarker for AD progression. In summary, this study
revealed that more affected regions can be significantly iden-
tified in terms of nodal clustering coefficient extracted from
GIG-ICA dominant networks. As GIG-ICA dominant com-
ponent was extracted from the concatenated time-varying
rs-FC matrices, it may be concluded that dynamic FC anal-
ysis has the potential to provide more reliable and significant
scientific findings than static FC studies. Our results also
indicated the potential role of clustering coefficient in deter-
mination of early-stage AD patients, providing a clue to AD
diagnosis and monitoring in clinical applications. In the next
step, joint analysis between structural and functional net-
works could be a better way to reveal brain connectivity
alterations over AD progression.
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