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Abstract

The respiratory tract has a resident microbiome with low biomass and limited diversity. This

results in difficulties with sample preparation for sequencing due to uneven bacteria-to-host

DNA ratio, especially for small tissue samples such as mouse lungs. We compared effec-

tiveness of current procedures used for DNA extraction in microbiome studies. Bronchoal-

veolar lavage fluid (BALF) and lung tissue samples were collected to test different forms of

sample pre-treatment and extraction methods to increase bacterial DNA yield and optimize

library preparation. DNA extraction using a pre-treatment method of mechanical lysis (lung

tissue) and one-step centrifugation (BALF) increased DNA yield and bacterial content of

samples. In contrast, a significant increase of environmental contamination was detected

after phenol chloroform isoamyl alcohol (PCI) extraction and nested PCR. While PCI has

been a standard procedure used in microbiome studies, our data suggests that it is not effi-

cient for DNA extraction of frozen low biomass samples. Finally, a DNA Enrichment kit was

tested and found to improve the 16S copy number of lung tissue with a minor shift in micro-

bial composition. Overall, we present a standardized method to provide high yielding DNA

and improve sequencing coverage of low microbial biomass frozen samples with minimal

contamination.

1. Introduction

The lower respiratory tract (LRT) was once thought to be a sterile environment [1–3]. Initial

studies used culture-based methods, microscopy, and biochemical assays to isolate and identify

microorganisms from the lung environment. However, the microbes isolated were mostly

associated with pathogenic infections (e.g., S. pneumoniae, H. influenzae, P. aeruginosa, and S.

aureus among others) or contamination during sample collection [1–3]. Recent developments

in culture-independent methods rely on 16S ribosomal RNA (16S rRNA) and next-generation
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sequencing (NGS) aimed towards identification of viable but non-culturable bacteria [4]. The

Human Microbiome Project (HMP) mainly used 16S rRNA based sequencing to study the

oral, nasal, vaginal, gut, and skin microbial flora and improved the understanding of host-

microbe interactions [5, 6]. While a better understanding of human microbial communities of

multiple host sites is currently available, the microbial composition of lung flora and how the

environment alters such is still to be elucidated.

Pioneering studies of the human lung microbiome used diverse methods for sample collec-

tion and processing (S1 Table). Due to tissue accessibility and ethical concerns, most human

studies assessed the microbiome of the upper respiratory tract (URT) by collecting swab sam-

ples from the nasopharynx or pharynx [7, 8]. Although they are topologically distinct environ-

ments, recent studies have shown that URT is a close representation of the LRT housing

similar microbiota but in distinct logarithmic quantities [9, 10]. It has been shown that the

human lung has a resident microbiome of bacteria, fungi and viruses derived from nasopha-

ryngeal commensals [11]. Importantly, compared to other niches (e.g., gut), the lung micro-

biome is limited in diversity and has a low microbial biomass (estimated 2.2 x 103 bacterial

genomes per cm2 of lung tissue), leading to difficulties in its study [11, 12]. Most human stud-

ies also present additional variables such as pre-existing health conditions (e.g. obesity, smok-

ing, antibiotics, asthma or cancer), the difference in age groups and geographical locations

which can influence the baseline microbiome of an individual [13, 14]. Of note, the host envi-

ronment (rural vs. urban) and lifestyle (diet, smoking, etc.) highly influences the lung micro-

biome [8]. These intriguing effects of lung microbiome interactions with environment

produce a lot of interest and are being actively studied. However, lack of consistent sample iso-

lation and preparation procedures hampers our ability to compare studies [15, 16]. Animal

models serve as strong tools to dissect microbiome changes specific to environmental expo-

sures and the interaction between host and microbes in a controlled manner.

In addition to limited microbial diversity, low microbial biomass may reduce the detection

of bacteria in mouse lung samples using 16S amplicon-based sequencing [17]. Most published

studies using mouse models have shown some variability in lung microbiome profiles due to

the use of different methods for sample processing, gene amplification and bioinformatic anal-

ysis [18–21]. Therefore, variability of normal lung microbiome of barrier laboratory mice

includes not only the effects of strain, housing conditions and vendor [22, 23], but full contri-

bution of sample pre-treatment is poorly studied [24]. It has been suggested that Phenol Chlo-

roform Isoamyl alcohol (PCI) method is suitable for the low-biomass lung tissue investigation

[25], while others have pointed out it leads to artefactual results in low-biomass specimens and

is the most labor-intensive [26]. These two reports published last year emphasize the lack of

cohesion in the matter. Here we tested different forms of processing for low-microbial-bio-

mass frozen lung samples and bronchoalveolar lavage fluid (BALF) aiming to increase DNA

yield and improve library preparation towards an optimized standardized method for

sequencing of lung microbiomes.

2. Methods

2.1 Mice and sample collection

Six to nine -week-old female BALB/c mice were purchased from Jackson Laboratory (Bar Har-

bor, ME) or Charles River Laboratory (Wilmington, MA). Experiment was conducted in

accordance with the Institutional Animal Care and Use Committee approved by the Brown

University (Rhode Island Hospital IACUC #504718). Mice were housed in barrier conditions.

Harvesting of lung tissue and/or bronchoalveolar lavage was performed under sterile condi-

tions as described in [27, 28]. Briefly, mice were euthanized by intraperitoneal injection of
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Fatal-Plus, chest wall was rinsed with alcohol, the trachea was accessed via a cutaneous cut,

soft tissues were separated blunt and a sterile angiocath catheter made of fluorinated ethylene

propylene was inserted into trachea. Lavage was performed with sterile phosphate buffered

saline (PBS) without Ca or Mg (Lonza), five repeat instillations of 0.5 mL. After lavage the

chest wall was opened and the lungs were excised, washed in PBS and frozen.

2.2 Decontamination of workstation for sample processing and DNA

extraction

Isolation of low microbial biomass from murine samples was done in a Class II Biosafety cabi-

net treated with Eliminase (DeconLabs, Cat# 1101) and 70% ethanol then exposed to UV light

for 20–30 minutes to ensure sterile conditions. Additional suggestions for controlling contam-

ination during sample processing:

2.2.1 Frequently change gloves. During the procedure it is recommended to change

gloves frequently. Change gloves after disinfecting the workstation and when solution spills on

to gloves.

2.2.2 Include controls during sample extraction. Include a water extraction (negative

control) for each batch of samples processed to trace contamination back to the source when

processing through the bioinformatic pipeline (Method 2.7). Extraction negative and cell

mock community extraction (positive control) should be included in amplification and

sequencing of all samples. ZymoBIOMIC Standards (Cat# D6300 and Cat# D6310) were used

as extraction positive controls.

2.2.3 Keep tube caps closed when not in use. Maintain all sample tubes closed at all

times. Only open one tube at a time to discard or dispense the solution. Maintain distance

between tubes while processing on the rack.

2.3 Phenol chloroform isoamyl alcohol DNA extraction

To pellet cells present in BALF samples, 1000 μL of the total sample volume was centrifuged

(8,000xg for 15 minutes at 4˚C), then resuspended in 500 μL of lysis buffer (20 mM Tris-Cl, pH

8.0, 2 mM EDTA, 1.2% Triton X-100). Separately, lung samples (left lobe) were submerged in

500 μL of lysis buffer. All samples, both tissue and BALF, were then incubated at 75˚C for 10 min-

utes. After cooling at room temperature, samples were transferred into a Matrix B Lysing tube

and further lysed in a BioSpec Mini-Beadbeater for 45 seconds. The obtained lysate was then

treated with 60 μL of lysozyme (Sigma Aldrich, Cat# L6876-10G) and 5 μL of Linker RNase A

(ThermoFisher, Cat# 12091039) and incubated at 37˚C for 60 minutes. Subsequently, 100 μL 10%

Sodium Dodecyl Sulfate (SDS) and 42 μL Proteinase K (QIAGEN, Cat# 19131) were added and

incubated overnight at 55˚C. After completing lysis protocol, we proceeded to isolate the DNA.

Samples were treated twice with equal volumes of phenol chloroform isoamyl alcohol and cleaned

through ethanol precipitation [29]. DNA was eluted in 50 μL of Tris-EDTA (TE) buffer and DNA

concentration was measured using a Qubit 1X dsDNA HS Assay (ThermoFisher, Cat# Q33231).

2.4 Increasing extraction efficiency through sample pre-treatments

To extract DNA from 500–1500 μL of BALF and lung tissue (left lobe) samples were processed

using the DNeasy PowerSoil Pro Kit (QIAGEN, Cat# 47016). To examine extraction efficiency,

the step 2 of the of PowerSoil protocol was modified (Fig 1). Briefly:

2.4.1 Mechanical cell lysis. First, 800 μL of CD1 lysis buffer provided by the kit was added

to the collected BALF and lung tissue in PowerBead Pro tubes. Then, as described in the

DNeasy PowerSoil Pro Kit protocol, disruption of the cell membrane was done by physical

lysis via a Vortex-Genie 2 with a 24 sample adaptor at maximum speed for 15 minutes. In
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addition to that mentioned in the protocol, we treated the samples either by using a BioSpec

Mini-Beadbeater at maximum speed for 45 seconds or using the QIAGEN PowerLyzer at 3000

rpm for 30 seconds.

2.4.2 Enzymatic cell lysis. Further disruption of the cell membrane was done through

enzymatic cell lysis using Proteinase K. Here, lung tissue samples were lysed in the provided

Fig 1. Workflow for processing BALF and lung samples for microbiome data. Initially we compared two DNA

extraction methods (experimental kit-based and PCI) and three forms of sample pre-treatment method. A small subset

of samples was used to compare the efficiency of Microbial Enrichment kit. The V4 16S region was selected for

preparing two nested (25x25 and 35x25 PCR cycles) and one non-nested (35 PCR cycles) libraries preparation methods.

https://doi.org/10.1371/journal.pone.0265891.g001
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PowerBead Pro tubes with 200 μL of TE buffer and 100 μL 10% SDS using the BioSpec Mini-

Beadbeater at max speed for 45 seconds. Then, 40 μL of proteinase K was added and incubated

overnight at 55˚C.

2.4.3 Cell concentration. An additional set of BALF samples were processed to concen-

trate biological material and/or to reduce host cell presence. To do the latter we used either

one or two-step centrifugation processes:

2.4.3.1 One-spin. One-step centrifugation: samples were centrifuged once at 5,000xg for 5

minutes at 4˚C to pellet all the cells (mammalian and bacterial).

2.4.3.2 Two-spin. Two-step centrifugation, (i) samples were centrifuged first at 300xg for 10

minutes at 4˚C to pellet host cells, (ii) then supernatant was transferred into a new 1.5mL

Eppendorf and centrifuged at 5,000xg for 5 minutes at 4˚C to collect remaining bacterial cells.

The supernatant was collected and stored at -80˚C for future use. The final pellets were

resuspended in 800 μL of CD1 buffer and transferred to the provided PowerBead Pro tubes.

The samples were then mechanically lysed using BioSpec Mini-Beadbeater at max speed for 45

seconds as described in 2.4.1.

For all lysed samples (see above), steps 3–17 of the PowerSoil protocol were carried out

without further modifications except for the final step when DNA was eluted in 50 μL of C6

buffer (10 mM Tris) instead of 100 μL. DNA concentration was measured through Qubit 1X

dsDNA HS Assay and Nanodrop ND-1000 Spectrophotometer.

2.5 Microbiome DNA enrichment kit

Purified gDNA extracted using the PowerSoil Kit (Methods 2.4.1 and 2.4.3.1) was split into

two aliquots for the purpose of comparing the efficiency before and after treatment with the

NEBNext Microbiome DNA Enrichment Kit (Cat# E2612S). This kit aims to increase bacterial

DNA by selectively targeting and reducing host methylated DNA [30]. NEBNext Microbiome

DNA Enrichment Kit was carried out according to manufacturer protocol. Briefly, 25 μL of

BALF and 3–5 μL of lung gDNA was used during the procedure. Due to the high DNA con-

centration of lung tissue, aliquoted lung gDNA sample was diluted 1:10 in qPCR grade water,

then 1 μL was used to match the DNA to bead ratio optimized in the manufacturer’s protocol.

Target DNA was purified through ethanol precipitation and eluted in 25 μL of 1X TE buffer as

the final step of the manufacturer’s protocol.

2.6 V4 16S amplification and sequencing

Purified gDNA from PCI method, PowerSoil Pro and Microbiome Enrichment Kits was

used to amplify the hypervariable V4 region of the 16S rRNA gene comparing nested and

non-nested PCR library preparation methods. Taxonomic profiling of the mice lung

microbiome was based on the V4 16S rRNA hypervariable region because of its taxonomic

resolution and accurate assignment [31–33]. The primers used were 515-533F forward

(GTGCCAGCMGCCGCGGTAA) and 806-787R reverse (GGACTACHVGGGTWTCTAAT) [53].

The nested libraries were first prepared by amplifying the target region using non-bar-

coded primers at 25 or 35 cycles, then the second round of amplification used the barcoded

primers at 25 cycles. The nested and non-nested libraries used the Illumina MiSeq adapter-

and barcode-ligated dual-index primers [31]. PCR was performed using ThermoFisher

Platinum Taq DNA Polymerase (Life Technologies, Cat# 10966–026); 94˚C for 5 minutes,

94˚C for 30 seconds, 55˚C for 30 seconds, 72˚C for 30 seconds for 25–35 cycles, 72˚C for 7

minutes. Libraries were purified using SPRIselect beads (Beckman, Cat# B23318) for size

selection of 300 bp fragments then quantified using ThermoFisher SYBRGold (Cat#

S11494) in a TECAN microplate reader. Afterwards libraries were normalized, pooled (3.5
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pM), and sequenced on Illumina MiSeq system using a V2 500 (2x250 bp) cycles chemistry

kit supplemented with 20% PhiX.

2.7 Bioinformatic pipeline

We filtered poor quality reads (>Q30), trimmed primers and removed reads of <220 bp

prior to analysis. Assigned taxonomy using in-house pipeline supported by Mothur [34]

and Uparse [35]. Operational taxonomic units (OTUs) were based on SILVA 16S rRNA

database version 123 at 97% sequence similarity [36]. We also used R statistical environ-

ment to generate plots using PhyloSeq package [37] and ggplot 2 packages to assess the

microbial composition [38].

3. Results

BALF and lung samples underwent differential extractions, pre-treatments, and library prepa-

ration prior to 16S sequencing (Fig 1, workflow). A total of 50 samples were processed using

two forms of DNA isolation methods: an experimental DNA isolation method (Method 2.4)

that has a relatively short workflow, or the traditional and more laborious phenol chloroform

isoamyl (PCI) DNA extraction method (Method 2.3). To increase DNA yield from these sam-

ples, we examined different experimental pre-treatment methods by modifying steps from an

extraction kit protocol to test the lysis efficacy of various bead beating equipment (Method ver-

sion 2.4.1). We also tested additional disruption of the cell membrane by enzymatic lysis

(Method version 2.4.2) and concentrating the cells prior to mechanical lysis (Method version

2.4.3). Moreover, in separate experiments we tested the NEBNext Microbiome DNA Enrich-

ment Kit aiming to improve bacterial-to-host DNA ratio and enhance primer specificity dur-

ing library preparation (Method 2.5). For samples with low microbial biomass, we amplified

the V4 16S region under nested and non-nested PCR conditions (Method 2.6). Finally, all sam-

ples underwent 16S sequencing and the microbiome was profiled using an in-house bioinfor-

matics pipeline and R environment (Method 2.7).

3.1 Nested-PCR promotes DNA contamination from environmental

organisms

Negative controls (see Method 2.2.2) were included in batch extractions. This is done as

part of our bioinformatic pipeline, where negative controls are examined first to identify

and remove contamination. The latter assures the observation of the true microbial commu-

nity in a sample and aims to exclude microbial contamination. We tested 3 PCR conditions

for all the samples: PCR-1 (one round of 35 cycles), PCR-2 (round 1 of 35 cycles, round 2 of

25 cycles), PCR-3 (round 1 of 25 cycles, round 2 of 25 cycles). Negative control samples

showed a significant (p < 0.01) increase of reads upon nested (PCR-2) when compared to

the non-nested PCR (PCR-1) (S1A Fig). To further analyze the biomass of 16S RNA copy

number, we plotted the read count for each genus after nested or non-nested PCR condi-

tions. The data showed that while an increase in reads was obtained, there was a higher

amount of DNA contamination potentially from the kit’s reagents (e.g. Pseudomonas and

Shewanella sp.) or trace amount of cross contamination from loci other than lungs (e.g. Lac-
tobacillus sp. and Enterobacteriaceae) (S1B Fig) [39, 40]. We suggest this should be taken

into consideration when working with samples that are naturally low-biomass and are easily

susceptible to contamination. Hence, we only used the non-nested approach to evaluate

pre-treatments and extraction methods, which we detail next.
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3.2 Evaluating the effects of physical or chemical treatments to improve

DNA content in frozen low microbial biomass samples

Pre-treatment methods that yield a higher DNA and bacterial content improves the chances

for better representation of the lung microbial community [41]. We tested the effectiveness of

two different mechanical and chemical DNA extraction methods.

3.2.1 BALF samples. BALF samples had the lowest DNA concentration (Fig 2A) and read

count (Fig 2B) compared to lung tissue samples (Fig 3A and 3B). The total DNA content (total

DNA extracted by the volume of the sample processed) was the lowest for PCI extracted sam-

ples and higher for two-step centrifugation followed by bead-based mechanical cell lysis (Fig

2C). Similar outcomes were observed for estimated bacterial content per volume (μL) of sam-

ples processed using different forms of pre-treatments and methods (Fig 2D). Pre-treatment

by one-step centrifugation resulted in the highest DNA concentration (average of 3.7 ng/μL)

and bacterial content (average of 3825 reads) of the BALF samples. Overall, PCI was the least

effective method for extracting DNA from BALF samples, the mean bacterial DNA content

was estimated at 301 reads associated to contamination potentially from the reagents (S2 Fig).

In contrast, the pre-treatment of BALF samples with one-step centrifugation followed by

bead-based mechanical lysis (Method 2.4.3.1) increased the DNA concentration (Fig 2A) and

significantly increased 16S read count when compared to other extraction methods (Fig 2B).

Fig 2. DNA content and estimated biomass of BALF samples. A) DNA concentration (ng/μL) of BALF samples, B) total read count is estimated based on the 16S rRNA

gene copy number after quality filtering of the data, C) estimated DNA content dividing total DNA extracted by volume of the sample processed, and D) estimated

bacterial DNA content dividing read count by volume of the sample processed. Significance (p-value) between groups is indicated by stars (� <0.05 and �� < 0.01). Based

on overall data, most effective pre-treatment method for BALF samples was a one Method centrifugation followed by mechanical cell lysis. Two Method centrifugation

was less effective.

https://doi.org/10.1371/journal.pone.0265891.g002
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Thus, one-step centrifugation followed by bead-based mechanical lysis of BALF samples was

the more efficient and high yielding DNA extraction method and thus produced a higher 16S

copy number library.

3.2.2. Lung tissue samples. Lung tissue samples naturally had higher total DNA concen-

tration because of the high amount of host DNA (Fig 3A). Furthermore, host DNA did not

inhibit the specificity of the V4 16S primers (Fig 3B). The mean DNA concentration of the

lung tissue sample per pre-treatment method was as follows: Vortex (609 ng/μL)>Mini-Bead-

beater (520 ng/μL) > PowerLyzer (475 ng/μL) > Proteinase K (371 ng/μL) > PCI (15 ng/μL).

While the mean 16S read count was as follows: PCI (14,176 reads) > PowerLyzer (10,781

reads) > Vortex (8,899 reads) > Mini-Beadbeater (1,193 reads) > Proteinase K (960 reads).

Mechanical cell lysis of lung tissue using the Mini-Beadbeater resulted in improved total DNA

content per weight (mg) (Fig 3C). However, PowerLyzer and Vortex-Genie 2 produced a

higher estimated bacterial content per weight (mg) than the Mini-Beadbeater (Fig 3D), sug-

gesting they are more efficient in extracting high yielding DNA and 16S copy number for lung

tissue samples. PCI method resulted in a low DNA concentration of lung tissue samples (Fig

3A) and bacterial reads obtained from PCI were substantially associated with contamination

potentially from the reagents used during extraction [28] (S2 Fig). We further validated the

effectiveness of the commercial kit method on the positive controls (ZymoBIOMICS Mock

Community), which effectively lysed representative bacterial species resulting in similar

Fig 3. DNA content and estimated biomass of lung tissue samples. A) DNA concentration (ng/μL) of lung tissue samples, B) total read count is estimated based on the

16S rRNA gene copy number after quality filtering of the data, C) estimated DNA content dividing total DNA extracted by weight of the sample processed, and D)

estimated bacterial DNA content dividing read count by weight of the sample processed. Significance (p-value) between groups is indicated by stars (� <0.05, �� < 0.01,
��� < 0.001, and ���� < 0.0001). Overall, most mechanically lysed tissue samples resulted in high DNA yield with exception of the PCI treated samples.

https://doi.org/10.1371/journal.pone.0265891.g003
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compositions as the one suggested by the ZymoBIOMICS 16S rRNA gene abundance (S3 Fig).

Overall, the most effective extraction method for frozen lung tissue samples was mechanical

cell lysis using bead-based equipment (i.e., PowerLyzer or Vortex-Genie 2).

3.3 Evaluating bacterial diversity of distinct sample types

At phylum level, we observed that BALF and lung tissue samples had similar microbial pro-

files, even if each was processed using different forms of pre-treatment methods. Bacteroidetes,

Firmicutes and Proteobacteria were abundant among all samples (Fig 4A). We used two types

of lung tissue samples, unlavaged and lavaged. In addition, we compared these lung samples

with BALF. According to alpha diversity measures, species richness is more abundant in the

BALF than in the lavaged lung samples (p < 0.05) (Fig 4B). Surprisingly, lavaged lungs had

only slightly lower diversity than unlavaged lung samples (Fig 4B). Overall, beta diversity plots

Fig 4. Diversity analysis of BALF and lung tissue samples. A) Bacterial composition of lung and BALF samples. Overall,

samples had a higher abundance of Proteobacteria and Firmicutes bacteria. B) Alpha diversity measures shows that BALF

samples have a higher species richness compared to both lavaged and unlavaged lung samples. Observed significant (p< 0.05)

difference in species richness between BALF and lavaged lung samples. C) Beta diversity plot shows admixture of sample types.

D) Statistical summary of ADONIS test shows the variance and significance when comparing mice age and extraction pre-

treatment methods.

https://doi.org/10.1371/journal.pone.0265891.g004
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demonstrated similar microbial composition in the three sample types (Fig 4C). Permutation

test suggests that sample pre-treatment significantly (p-value 0.002) influenced the microbial

communities (Fig 4D). Samples were sequenced on the same MiSeq lane, thus reducing bias

introduced by the difference in sequencing depth. Overall, BALF samples showed the most

efficient way to test the pulmonary microbiome.

3.4 Microbiome DNA enrichment kit improves recovery of microbial DNA

from frozen lung tissue samples

To improve 16S library prep of low microbial biomass samples, NEBNext Microbiome DNA

Enrichment Kit was used to increase the bacterial to host DNA ratio. This kit depletes host

DNA by targeting and reducing methylated host DNA from the sample [42]. Select samples

were divided into two DNA aliquots to compare the effect of the NEBNext kit. No significant

change of the 16S copy number was observed in the enriched BALF samples (Fig 5A). How-

ever, significant (p< 0.05) improvement was observed for the microbiome enriched lung tis-

sue samples (Fig 5B). When comparing microbial composition, differences in bacterial profiles

were observed at genus level between non-treated and NEBNext treated samples. These differ-

ences in genus level profiles were more prominent in the lung tissue than in the BALF, primar-

ily when using diluted DNA (Fig 5C and 5D). The NEBNext treated BALF samples closely

resembled the microbial composition of the untreated BALF samples at the genus level (Fig

5D). Bacteria identified in NEBNext treated tissue resembled the profile observed in BALF at

phylum level (Figs 4A and S4C). Taken together, our data shows that the NEBNext increases

Fig 5. Comparing the efficiency before and after treatment with the NEBNext microbiome DNA Enrichment Kit. A) No significant improvements observed when

comparing microbiome enriched (ME) and non-treated (NT) BALF samples total read count. B) However, significant improvements observed when comparing DME

(1:10 diluted sample then treated with ME kit), ME, and NT lung samples total read count. Significance (p-value) between groups is indicated by stars (� <0.05 and �� <

0.01). Both C) BALF and D) lung samples showed difference in community composition (genus level) between NT and ME samples, particularly diluted lung samples

treated with microbiome enrichment kit.

https://doi.org/10.1371/journal.pone.0265891.g005
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bacterial DNA yields of lung tissue samples. However, slight differences in recovered microbial

profiles were observed between NEBNext treated and non-treated samples.

4. Discussion

The purpose of this study was to develop an optimal method of sample homogenization, DNA

extraction and library preparation for low microbial biomass samples. Culture-based methods

estimate that murine lungs harbor about 103–105 colony forming units (CFU) per gram of

lung tissue [43]. Having a low microbial density and at the same time a complex tissue struc-

ture, lung sample pre-treatment methods are necessary to effectively lyse all cell types and

increase the DNA yield. The estimated DNA and bacterial content is used to determine effec-

tive pre-treatment methods for the samples. Here we aimed to define the most efficient

method to ensure isolation of high yield DNA from low microbial biomass samples to effec-

tively study the pulmonary microbiome.

We first tested two DNA extraction methods, an experimental DNA isolation method with

a short workflow and the traditional PCI. Currently, PCI is the most common and cost-effi-

cient method for DNA isolation used in microbiome studies. The method claims to deliver

high yielding and quality DNA [25]. Here we tested PCI isolation method to examine the latter

claim and compare to an extraction kit to establish a standard protocol for DNA extraction of

low microbial biomass samples. Overall, PCI isolation method produced a lower DNA yield

resulting in a poor representation of the pulmonary microbial communities after 16S sequenc-

ing. Of note, in the PCI method a high level of bacterial DNA was isolated from the contami-

nated reagents causing to suppress the 16S signal of the lung microbial community. Similar

observations have been shown in studies targeting the placental or sputum microbiome, where

reagent contamination had an effect on the microbial profiles [26, 44]. PCI method was also

found not ideal for DNA isolation of low biomass samples due to multiple treatments and

washing steps which resulted in DNA loss [45]. In addition, trace amounts of phenol may be

carried over and potentially interfere with the downstream processing of the sample [46, 47].

In sum, PCI isolation method is not optimal for processing low biomass samples such as those

targeting lung microbiome analysis.

Compared to the PCI method, the experimental method using a combination of bead-

based lysis and an extraction kit, resulted in minimal sample loss and contamination. In con-

trast to other commercial extraction kits, QIAGEN PowerSoil Pro was used since it can be

applied to a broad range of sample types (in addition to soil or stool samples) and customizable

protocol. Our experimental approach that further customized and improved the kit’s ability to

extract high quality DNA. Other extraction kits, like the Molzym Ultra-Deep Microbiome

Prep, QIAamp DNA Microbiome and Zymo HostZERO microbial DNA kits (among others),

have been used as an alternative to process samples containing a low amount of microbial bio-

mass with variable results [42, 48]. These kits selectively lyse host cells and enzymatically

(mostly using Dnase) deplete host DNA assuring high yielding bacterial DNA [42, 49]. How-

ever, the efficiency of such kits may be tied to the use of fresh samples. Freeze-thawing cycles

compromise the integrity of bacterial cell membrane [50] and thus expose bacterial DNA can

be degraded along with the host DNA in the enzymatic depletion step. The samples used in the

presented study were previously frozen and the bacterial cell wall integrity has been compro-

mised through freeze-thaw cycles, by using the pre-treatments and kit extraction method we

were able to effectively isolate high yield DNA in a manner independent of membrane integ-

rity. Thus, our experimental approach provides an ideal methodology for groups assessing

microbial communities in samples that have undergone freezing and long-term storage. Taken

together, the experimental DNA isolation method was found to provide a fast and reliable
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workflow that allows for streamlined sample processing, isolate high yielding DNA and is ideal

for low biomass frozen samples.

Having a low microbial density, sample pre-treatment methods are necessary to increase

DNA yield of mice lung samples. According to the overall yield (DNA concentration and read

count), lung tissue samples were efficiently processed by mechanical lysis by using either

PowerLyzer or Vortex-Genie 2 equipment. Overall, the PowerLyzer or Vortex-Genie 2 are

equally effective at lysing tissue cells because of the unique motion and horizontal tube posi-

tioning of the equipment. DNA isolation from BALF samples was successful using one-step

centrifugation followed by mechanical lysis of the cells. Previously published data had shown a

two-step centrifugation process to initially collect heavy mammalian cells at a low speed, fol-

lowed by a second centrifugation step at a higher speed to only collect bacterial cells had an

impact on microbiome profiles of BALF [18]. In contrast, in our hands, one-step centrifuga-

tion of BALF was more efficient in increasing DNA yield, since both host cell-attached and

free-living microbe DNA was isolated. Of note, many bacterial species (e.g. Salmonella, Yersi-
nia, Pseudomonas, Klebsiella, and Haemophilus sp.) have been shown to strongly adhere to

host cells [50]. Moreover, discarding host cells prior to isolating DNA for a microbiome study

deprives of any information regarding intracellular microbes (e.g. Chlamydia and Mycoplasma
sp.), which can be essential in lung research [51]. Furthermore, pelleting the cells does not

affect the reaction volume or the downstream chemistry of the kit. We suggest a one-step cen-

trifugation protocol as a more representative of the overall pulmonary microbial community.

For library preparation, we experimented with nested PCR at different cycle numbers and

observed higher level of contamination. Similar to our findings, Drengenes et al. showed that dur-

ing library preparation for human pulmonary samples, nested PCR increased contamination

causing a decrease in 16S signal [52]. In our study, contamination was more evident in the nega-

tive controls, nested PCR more than doubled the amplification of DNA contamination compared

to the non-nested negative controls. In fact, other studies (metagenomics and 16S-based analysis)

have stressed the importance and use of negative and other extraction controls to distinguish the

source of contamination in low microbial biomass samples [44, 53, 54]. Besides nested PCR,

other library preparation methods are recommended to increase 16S coverage of low microbial

biomass samples with minimal amplification of environmental contaminants. For instance,

slightly increasing PCR cycle number (from 35 to 40 cycles) or doubling library preparation of a

sample can improve the 16S copy number [18, 54]. Whichever method is decided, the use of posi-

tive and negative controls during DNA extraction and library preparation is key for tracking con-

tamination to the source, which can be later removed using diverse bioinformatic tools.

Considering the excess amount of host nucleic acid after DNA extraction from lung tissue

and BALF, we expected loss of specificity and reduced annealing of the16S rRNA primers dur-

ing library preparation. We aimed to improve host-to-bacteria DNA ratio using an enrichment

kit to determine if the representation of the pulmonary microbial community in our frozen

samples could be further improved. A subset of the samples was processed using the NEBNext

Microbiome DNA Enrichment kit to deplete mammalian host derived DNA. Initially, we

attempted to measure the efficiency of the kit using a SYBR Green qPCR approach to assess

the host-bacteria DNA ratio by targeting host glyceraldehyde 3-phosphate dehydrogenase

(Gapdh) and 16S rRNA genes. The assay was unsuccessful due to the low sensitivity of 16S

SYBR Green qPCR assay (S5 Fig) which has a detection limit estimated at 100 bacterial cells

[55, 56]. The latter results suggest SYBR Green may not be sensitive enough to determine the

quality of the isolated DNA. In contrast, the MiSeq sequencing data provided information on

the 16S rRNA copy number between NEBNext treated and non-treated samples. Host deple-

tion was found more successful on the lung samples due to the high amount of tissue and

immune cell types [11, 12]. In BALF samples, the overall reduced presence of host cells did not
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alter recovered 16S copy numbers. Therefore, it is unnecessary to treat BALF samples or other

low host DNA samples (like other lavages or swabs) with the NEBNext kit, reducing cost of

sample processing [30–57]. When analyzing 16S data, we observed slight differences in com-

munity composition between NEBNext treated and non-treated lung tissue samples. Similar

to our findings, other studies have shown changes in microbial profiles when treating human

sino-nasal swab, saliva or blood samples with the enrichment kit [30–57]. The commercial kit,

marketed as targeting and reducing host DNA, could potentially be skewing the microbiome

data by removing methylated bacterial DNA in the process [58]. Additionally, further diluting

the sample, resuspended NEBNext treated bacterial DNA in a larger volume compared to

input volume of gDNA, could be further skewing the microbiome data. However, further

investigation is required for these claims. Importantly, microbial composition of BALF and

NEBNext treated lung tissue was similar, suggesting that BALF may be the most efficient way

to assess the pulmonary microbiome.

Overall, our work suggests that the optimal processing of murine lung tissue for micro-

biome analysis is by mechanically lysis the sample using bead-based equipment (PowerLyzer

or Vortex-Genie 2), extraction kit following manufacturer’s instructions post-lysis steps, and if

possible, treating the samples with NEBNext Microbiome DNA Enrichment Kit. For BALF

samples we observed increased DNA recovery by centrifugating the samples (once at 5,000xg)

followed by mechanical lysis and extraction kit following manufacturer’s instructions post-

lysis steps. For all sample types, the microbial profile was successfully represented with mini-

mal contamination using a library preparation method with 35 PCR cycles (non-nested PCR).

5. Conclusion

We have developed a customized protocol to efficiently extract and 16S-sequence mice BALF

and lung tissue samples to study the pulmonary microbiome. Alternately, the protocol can also

be applied to other tissue and lavage samples with low microbial density. The protocol can be

used to study the effects of the environment or disease state between host and microbes.
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Nested samples exponentially increased contamination in all negative control. Thus, nested
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higher abundance of Pseudomonas and Shewanella sp. overshadowing the lung microbiome

signal in most samples.
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and diluted sample then treated with ME kit (DME). A) Alpha diversity measures shows that

BALF samples, treated samples have a lower species diversity comparted to the non-treated

samples. B) Alpha diversity measures shows that lung tissue samples, slight increase species

richness was observed for treated lung samples. C) Bacterial composition of lung and BALF
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8. Hufnagl K, Pali-Schöll I, Roth-Walter F, Jensen-Jarolim E. Dysbiosis of the gut and lung microbiome

has a role in asthma. Sem. Immun 2020; 42, 75–93.

9. Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, et al. Topographical continuity of

bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med. 2011; 184

(8):957–6. https://doi.org/10.1164/rccm.201104-0655OC PMID: 21680950

10. Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Falkowski NR, Huffnagle GB, et al. Bacte-

rial topography of the healthy human lower respiratory tract. MBio. 2017; 8(1):e02287–16 https://doi.

org/10.1128/mBio.02287-16 PMID: 28196961

11. Huffnagle GB, Dickson RP, Lukacs NW. The Respiratory Tract Microbiome and Lung Inflammation: A

Two-Way Street. Mucosal Immunol. 2017; 10, 299–306. https://doi.org/10.1038/mi.2016.108 PMID:

27966551

12. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, et al. Disordered microbial communities in

asthmatic airways. PloS one. 2010; 5(1):e8578. https://doi.org/10.1371/journal.pone.0008578 PMID:

20052417

13. Durack J, Boushey HA, Lynch SV. Airway Microbiota and the Implications of Dysbiosis in Asthma. Curr

Allergy Asthma Rep. 2016, 16, 52. https://doi.org/10.1007/s11882-016-0631-8 PMID: 27393699
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