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Detecting operons in bacterial 
genomes via visual representation 
learning
Rida Assaf1*, Fangfang Xia3,4 & Rick Stevens2,3

Contiguous genes in prokaryotes are often arranged into operons. Detecting operons plays a 
critical role in inferring gene functionality and regulatory networks. Human experts annotate 
operons by visually inspecting gene neighborhoods across pileups of related genomes. These visual 
representations capture the inter-genic distance, strand direction, gene size, functional relatedness, 
and gene neighborhood conservation, which are the most prominent operon features mentioned in 
the literature. By studying these features, an expert can then decide whether a genomic region is 
part of an operon. We propose a deep learning based method named Operon Hunter that uses visual 
representations of genomic fragments to make operon predictions. Using transfer learning and data 
augmentation techniques facilitates leveraging the powerful neural networks trained on image 
datasets by re-training them on a more limited dataset of extensively validated operons. Our method 
outperforms the previously reported state-of-the-art tools, especially when it comes to predicting 
full operons and their boundaries accurately. Furthermore, our approach makes it possible to visually 
identify the features influencing the network’s decisions to be subsequently cross-checked by human 
experts.

Genes in prokaryotic genomes assemble in clusters, forming transcription units called operons. These genes share 
a common promoter and terminator1, and are usually metabolically or functionally related. Predicting operons 
helps understand high level organization of genes and regulatory networks2–8, annotate gene functions9, develop 
drug candidates10, and inhibit antibiotic resistance11. While operons are prevalent in bacterial genomes, their 
detection is challenged by a multitude of factors that contribute to their organization.

Human experts annotate operons by visually inspecting stretches of genes in a comparative genomics browser 
(see an example in Fig. 1). Such visual representations enable synthesis of two sources of information. First, gene-
level features such as size, strand direction, function label, and inter-genic distance can be checked for consist-
ency by scanning contiguous regions within the same genome. Second, close relatives of the query genome can 
be retrieved, aligned, and anchored against the focus gene, which allows human experts to see whether there is 
evolutionary evidence of regional conservation. This second dimension of criteria is critical to the operon call, 
but is often difficult to quantify, requiring human judgment on selecting phylogenetic distance and weighing 
the similarity of genomic neighborhoods.

Several tools have been proposed to detect operons computationally, yet they mostly focus on gene-level fea-
tures. Even when phylogenetic information is added, it’s preprocessed and presented in a tabular form, preventing 
flexible learning. We are inspired by how human experts work and the recent advance in deep learning to explore 
a novel approach based on visual learning. We hypothesize that, when presented with all evidence in a similarly 
visual representation of genomic images that humans rely on, neural networks can learn to capture the complex 
operon determinants within and across genomes. To this end, we present a method, named Operon Hunter, that 
predicts operons from visual representations of genomic fragments. Our method uses a pre-trained network 
via transfer learning to leverage the power of deep neural networks trained on image datasets. The network is 
re-trained on a limited dataset of extensively validated and experimentally verified operons. We compare our 
method with the state-of-the-art operon predictors. Our results show that Operon Hunter outperforms them in 
identifying full operons as well as delineating operon boundaries. Furthermore, our visual approach generates 
insights into regions of importance that can be cross-checked by human experts.
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Related work.  Different methods focus on different operon features to make their predictions. Some meth-
ods use Hidden Markov Models (HMMs) to find shared promoters and terminators12–14. Other methods rely on 
gene conservation information15, while others leverage functional relatedness between the genes2,16. The most 
prominent features used in operon prediction are transcription direction and inter-genic distances, as reported 
in the literature2,4,17–27. Gene conservation is another important feature, since adjacent genes that are co-tran-
scribed are likely to be conserved across multiple genomes6,28. Different machine learning (ML) methods are used 
to predict operons, such as neural networks17,18, support vector machines19, and decision tree-based classifiers20. 
Other tools utilize Bayesian probabilities21–23, genetic algorithms24, and graph-theoretic techniques16,22.

We focus our attention on two machine learning based tools. The first tool29 developed by Zaidi and Zhang 
is reported to have the highest accuracy among operon prediction methods. It is based on an artificial neural 
network that uses inter-genic distance and protein functional relationships4. To infer functional relatedness, this 
method uses the scores reported in the STRING Database30. The STRING database captures functional related-
ness through scores generated using information about gene neighborhood, fusion, co-occurrence, co-expression, 
protein-protein interactions, in addition to information extracted by automatic literature mining. The predictions 
made by this method were compiled into what is called the Prokaryotic Operon Database (ProOpDB)5, and 
released later as a web service called Operon Mapper31. For simplicity, we will refer to this method as ProOpDB, 
given that it was our resource for the predictions over the model organisms we used for the cross-tool compari-
son. The second tool is called the Database of Prokaryotic Operons (Door)3 and was ranked as the second best 
operon predictor after ProOpDB by the same study29. It was also ranked as the best operon predictor among 14 
tools by another independent study32. Door’s algorithm uses a combination of a non-linear (decision-tree based) 
classifier and a linear (logistic function-based classifier) depending on the number of experimentally validated 
operons available for the genomes used in the training process. Among the features Door uses to perform its pre-
dictions for adjacent gene pairs are: the distance between the two genes, the presence of a specific DNA motif in 
the genomic region separating them, the ratio of the genes’ lengths, the genes’ functional similarity (determined 
using Gene Ontology (GO)), and the level of conservation of the genes’ neighborhood.

Results
Most operon prediction tools make their predictions on isolate gene-pairs. Contiguous gene pairs predicted 
to be as part of an operon are then aggregated to form full operon predictions2. We refer to gene pairs that are 
part of an operon as operonic, and gene pairs where one is a boundary of an operon, or that include a verified 
operon consisting of a single gene, to be non-operonic. Our validation dataset consists of two well-studied 
genomes with experimentally validated operons: E. coli and B. subtilis. These genomes are extensively used to 
verify the majority of the published tools’ results. We compare the performance of the tools first when consider-
ing gene-pair predictions, and then considering full-operon predictions. While Operon Hunter demonstrates 
an advantage in both, the advantage is more pronounced when assessing the ability to predict full operons and 
their boundaries accurately.

Figure 1.   Snapshot of the Compare Region Viewer service provided by PATRIC (https://​www.​patri​cbrc.​org). 
The image shows a genomic region of the query genome (first row) aligned against a set of other genomes, 
anchored at the focus gene (represented as a red arrow). The service starts with finding other genes that are of 
the same family as the focus gene, and then aligns their flanking regions accordingly.

https://www.patricbrc.org
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Gene‑pair prediction.  We report the sensitivity (true positive rate), precision, and specificity (true negative 
rate) for the models’ performance over gene pair predictions in Table 1. These statistical measures were calcu-
lated according to the following definitions:

where TP is the number of operonic pairs predicted correctly (true positives), FP is the number of non-operonic 
pairs incorrectly predicted as operonic (false positives), FN is the number of operonic pairs incorrectly pre-
dicted as non-operonic (false negatives), and TN is the number of non-operonic pairs predicted correctly (true 
negatives).

ProOpDB scores the highest sensitivity but the lowest precision. The opposite is true for Door, which achieves 
the lowest sensitivity but the highest precision. Operon Hunter’s performance is more stable across the two 
metrics. To capture the predictive power of the model on both classes in a single metric, we report the F1 score, 
accuracy, and the Mathews Correlation Coefficient (MCC) in Table 2, calculated using the following definitions:

Operon Hunter scores the highest on all metrics measured, followed by ProOpDB then Door. We also show 
the Receiver Operating Characteristic (ROC) curve and the Precision-Recall curve with the corresponding Area 
Under the Curve (AUC) in Fig. 2. Evaluated on the entire testing dataset, Operon Hunter scores a ROC AUC 
and a Precision-Recall AUC of 0.97.

Operon prediction.  Predicting full operons is a more challenging task that requires the accurate identi-
fication of the operon endpoints. We reserve the definition of operons as clusters including at least two genes. 
Matching earlier reports concerning different methods29, the accuracies of all 3 tools drop when validated on 
full operon predictions rather than separate predictions made for every gene pair. We present the percentage of 
operons predicted fully by each of the tools in Table 3. Full matches are operons reported in the literature that are 

(1)Sensitivity =
TP

TP + FN

(2)Precision =
TP

TP + FP

(3)Specificity =
TN

TN + FP

(4)Accuracy =
TP + TN

TP + TN + FP + FN

(5)MCC =
TPxTN − FPxFN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(6)F1 = 2×
Sensitivity × Precision

Sensitivity + Precision

Table 1.   Sensitivity, precision, and specificity. Sensitivity (true positive rate) is the percentage of operonic 
gene pairs that were detected by the different tools, precision is the percentage of operonic gene pairs predicted 
by the different tools which are actually true positives, and specificity (true negative rate) is the percentage of 
Non-operonic gene pairs that were detected by the different tools. For sensitivity and specificity, results are first 
shown per genome, and then as an aggregate over the entire testing dataset.

Sensitivity E. coli 
361 pairs (%)

Sensitivity B. subtilis 
369 pairs (%)

Sensitivity aggregate 
730 pairs (%)

Precision aggregate 
730 pairs (%)

Specificity E. coli 
461 pairs (%)

Specificity B. subtilis 
302 pairs (%)

Specificity 
aggregate 763 
pairs (%)

Operon Hunter 88 97 92 92 95 88 92

ProOpDB 93 93 93 89 90 88 89

Door 81 86 84 94 94 97 95

Table 2.   Accuracy, MCC (Mathews Correlation Coefficient), and F1-score achieved by the different tools over 
the entire testing dataset.

Tool Operon Hunter ProOpDB Door

Accuracy 92% 91% 89%

MCC 0.84 0.82 0.79

F1-score 0.921 0.908 0.886
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accurately predicted with the same gene boundaries as the published endpoints. We only consider operons that 
consist of more than one gene, and were reported in ODB in addition to RegulonDB or DBTBS. This amounted 
to 254 full operons. Predictions that only partially match a verified operon are not shown. To make full operon 
predictions, the model starts by generating a prediction for every consecutive gene pair in a genome. In a second 
pass, pairs predicted as operonic are then merged into full operons. Operon Hunter accurately identifies 85% 
of the operons fully, which is the most across the 3 tools. Both ProOpDB and Door show a drop in accuracy, to 
62% and 61% respectively.

Cross validating visual and operon features.  An advantage of visual models is that they can generate 
insights into decision making by highlighting regions of importance. Such interpretable representations reveal 
inner workings of the model and can be checked by experts to see if they ground their intuition. To investigate 
the model’s performance, we used the Grad-Cam33 method to overlay heat-maps over the input images, high-
lighting the areas of attention that most affect the network’s decisions. Figure 3 shows some of the network’s 
confident predictions.

It appears that when predicting a gene pair as non-operonic, the model bases its decision on the entirety of the 
input image, whereas it focuses on the immediate vicinity of the gene pairs predicted as operonic. Upon closer 
inspection, we speculate that the following are the most important features influencing the model’s decision:

•	 Figure 3(a): The strand directionality of the gene pair.
•	 Figure 3(b): The mis-alignment between the genomes.
•	 Figure 3(c): The low alpha channel of the image, which is a representation of the low STRING score between 

the query gene pair.
•	 Figure 3(d): The non-conservation of the query gene pair neighborhood.

All these features were previously mentioned as among the most prominent in operon identification. Operonic 
gene pairs show more overall conformity across the input image, with flanking regions being mostly aligned/
conserved, and query gene pairs having little or no inter-genic distance, and usually similar directions, as shown 
in Fig. 3(e). Even when the neighborhood of the query gene pair is not conserved, as shown in Fig. 3(f), the 
network seems to base its decision on the similar strand direction and lack of an inter-genic distance between 
the gene pair. Thus, it seems that when predicting gene pairs as operonic, the network focuses on the immediate 
vicinity of the pair, disregarding other areas of the image. However, the network seems to pick up on anomalies 
around the gene pair, taking the entirety of the image into consideration when predicting non-operonic images.

Figure 2.   The Receiving Operating Characteristic (ROC) curve (a) and Precision-Recall curve (b) 
corresponding to Operon Hunter evaluated over the entire testing dataset. The Area Under the Curve (AUC) for 
both is 0.97.

Table 3.   Comparison of the results between OperonHunter, ProOpDB, and Door when considering full 
operon predictions. Exact Operon Matches are the percentage of operons predicted where the endpoints 
exactly match those of the experimentally verified operons. The percentages are reported over 254 full operons 
that consist of more than one gene and are reported in RegulonDB/DBTBS and ODB.

Operon Hunter ProOpDB Door

Exact Operon matches 85% 62% 61%
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Figure 3.   HeatMaps generated using the Grad-Cam method and overlayed over input images, highlighting 
the network’s areas of attention that had most influence over the network’s decision. Each sub-figure shows 
the network’s correctly predicted label, with what we believe to be the most prominent feature leading to the 
network’s decision.
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Methods
Datasets.  We used the ”Known Operons” section of the Operon DataBase (ODB)34 to construct the train-
ing dataset. The Known Operons section contains a list of operons that are experimentally verified, which we 
used to label the generated images. Out of the entire dataset, the six genomes (Table 4) with the most number 
of labeled operons were selected. These genomes have significantly more operons than the other genomes listed 
in this section of the database. For each of the selected genomes, our program produces an image for every 
consecutive pair of genes that are part of a validated operon. To generate the images, each of these genomes is 
aligned with the set of reference+representative genomes found on PATRIC35. For every aligned gene, an image 
is generated to capture the surrounding 5 kilo base pairs (Kbp) flanking region. The resulting dataset consisted 
of 4,306 images of operonic gene pairs. To generate the dataset representing the non-operonic gene pairs, we 
used the standard approach reported by ProOpDB5 as follows: Genes that are at the boundaries of known oper-
ons are labeleled along with the respective upstream or downstream gene that is not part of that operon as a 
non-operonic gene pair. We skipped single-gene operons from the training dataset. A balanced dataset was then 
curated from the total set of images created.

Feature encoding via visual representation.  We replicated the Compare Region Viewer service offered 
by PATRIC (The Pathosystems Resource Integration Center), which is a bacterial Bioinformatics resource center 
that we are part of (https://​www.​patri​cbrc.​org), by implementing an offline version forked from the production 
UI. An offline version is necessary for computational efficiency and for consistency in the face of any future UI 
changes. Figure 4 shows an example of the generated images.

Each row of arrows in the generated image represents a region in a genome, with the query genome being 
the top row. Each arrow represents a single gene, scaled to reflect its size relative to its region, in addition to the 
gene’s strand directionality. The distances between the genes are also scaled on each row relative to the gene’s 
region. Each image consists of three regions. The central region makes up two thirds of the image, and repre-
sents the query gene pair. Genes that fall before the query gene pair are represented to the left of the central 
region, and those that fall after the query gene pair are represented to the right of the central region. Dividing 
the image implicitly into three regions highlights the area of most interest by zooming in on the query gene pair, 
while preserving the relevant conservation information of the flanking genomic fragments on the sides. Colors 
represent gene functionality. The blue and red arrows are reserved to represent the query gene pair and the rest 
of the genes that belong to the same families. In general, genes share the same color if they belong to the same 
family, or are colored black after a certain color distribution threshold. The families used in the coloring process 
are PATRIC’s Global Pattyfams that are generated by mapping signature k-mers to protein functionality, using 
non-redundant protein databases built per genus before being transferred across genera36. Finally, the image’s 
alpha channel is set to be equal to the STRING score of the query gene pair. If no score exists, the default alpha 
channel is set to a minimum of 0.1. The generated images capture most of the prominent features mentioned 
earlier, such as gene conservation, functionality, strand direction, size, and inter-genic distance.

Transfer learning.  The relatively small size of the dataset combined with the depth of the network pose the 
risk of over-fitting. One way to get around this issue is by using a technique referred to as transfer learning37. In 
transfer learning, a model does not have to be trained from scratch. Instead, a model that has been previously 
trained on a related task is retrained on the new task. The newly retrained model should then be able to transfer 
its existing knowledge and apply it to the new task. This approach makes it possible to be able to reuse models 
that have been trained on large datasets, by adding the necessary adjustments to make them available to work 
with more limited datasets. This adds a further advantage to representing the data visually. To train and test 
our model, we used the FastAI38 platform. The best performance was observed using the ResNet18 model. All 
available models were previously trained on Imagenet, which is a database that contains more than a million 
images belonging to more than a thousands categories39. Thus, a model that was previously trained on Ima-
geNet is already good at feature extraction and visual recognition. To make the model compatible with the new 
task, the top layer of the network is retrained on the operon dataset, while the rest of the network is usually left 
intact. This is more powerful than starting with a deep network with random weights. Another technique that 
is commonly used against over-fitting is data augmentation, whereby the training dataset is enriched with new 
examples by applying certain transforms on the existing images. These transforms include flips (horizontal and 

Table 4.   Breakdown of the training dataset: The genome names and the corresponding number of gene pairs 
used. Operon pairs were harvested from the Known Operons section of ODB.

Genome name Operon pairs Non-Operon pairs

Escherichia coli 1443 1322

Listeria monocytogenes 806 780

Legionella pneumophila 611 791

Corynebacterium glutamicum 525 396

Photobacterium profundum 447 544

Bacillus subtilis 474 457

Total 4306 4290

https://www.patricbrc.org
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vertical), zooming effects, warping, rotation, and lighting changes. Using FastAI’s toolkit, we augmented our 
training dataset by allowing only one transform, the horizontal flip, to be applied. Given the deliberate feature 
engineering processes taken to create the input images, we believe that horizontal flips could safely be applied 
without altering the true nature of the images. This would keep the key information intact and in place (e.g. by 
keeping the query genome as the top row).

Model validation.  We resort to two extensively studied genomes with experimentally verified operons: E. 
coli and B. subtilis. These genomes are the standard for verifying operon prediction results in the literature. We 
limit our validation by using only the experimentally validated operons found in these genomes. We compare 
the predictions made by Operon Hunter to those made by ProOpDB and Door, the tools with state of the art 
accuracies as reported by independent studies3,5,29. To build the testing dataset (Table 5), we used the operons 
published in RegulonDB40 and DBTBS41. RegulonDB is a database containing verified operons found in E. coli, 
and DBTBS is a database that contains verified operons found in B. subtilis. We cross check the operons found 
in these databases, with the ones published in the Known Operons section of ODB. We selected the operons that 
are reported in both: The database corresponding to its organism (RegulonDB for E. coli, DBTBS for B. subtilis), 
and ODB. The resulting dataset consists of 730 operonic gene pairs. We used the same approach mentioned ear-
lier to construct a non-operonic dataset. Namely, the boundaries of the operons were selected along with their 
neighboring genes as non-operonic pairs. To construct the non-operonic datasets, it was enough for an operon 
to be published in any of the mentioned databases to be considered, resulting in a slightly larger non-operon 
dataset. Using operons that were experimentally verified and published in multiple independent databases adds 
confidence to the assigned label.

Figure 4.   Example of an image generated by our offline version of the Compare Region Viewer service to be fed 
as input to the neural network. Each arrow represents a single gene. Each row captures the area of interest in a 
genome. The query genome is the top row. The rest of the rows are genomes selected by evolutionary distance. 
The query gene pair are colored blue and red. Genes share the same color if they belong to the same family and 
that family. The query gene pair are centered in the middle, occupying 2/3 of the image’s width. The rest of the 
flanking region is represented correspondingly to the left/right of the center region. The alpha channel of the 
image is the STRING score of the query gene pair.

Table 5.   Breakdown of the testing dataset: The genome names and the corresponding number of gene pairs 
used. Operon pairs were scoured from RegulonDB (for E. coli) and DBTBS (for B. subtilis) and matched with 
the Known Operons section of ODB.

Genome Operon pairs Non-Operon pairs

Escherichia coli str. K-12 substr. MG1655 361 461

Bacillus subtilis subsp. subtilis str. 168 369 302

Total 730 763
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Some tools train on the same organisms they report their predictions on. In our experiments, we exclude 
the testing dataset from the training dataset, by following a leave-one-out approach on the genome level. Thus, 
none of the genomes used in the training process belong to the same organism as the genome used for testing 
our method’s performance. For example, when evaluating the model’s predictions on the E. coli dataset, it is 
trained on all the images representing all the genomes except E. coli, and then tested on the images representing 
the E. coli genome. This approach leads to an 87-13 train-test split for the E. coli genome, and a 92-8 train-test 
split for the B. subtilis genome.

Discussion
We have presented a novel approach to operon prediction by training a deep learning model on images of com-
parative genomic regions. This approach has achieved better results than the currently available state-of-the-art 
operon prediction tools. In particular, it has demonstrated a clear advantage in predicting accurate operon 
boundaries (i.e. predicting operons fully).

The first advantage of our model is in its effective synthesis of gene-level and phylogeny-level evidences. 
Traditional models come with preprocessed features and may be rigid in picking parameters on neighborhood 
size, genomic distance, or similarity metrics for comparing regions across genomes. The PATRIC compare region 
viewer is perfected by human experts, and strikes a balance in diversity and granularity in the way it brings rep-
resentative genome relatives to an annotator’s attention. Critically, these images give machine learning models 
a two-dimensional view of all relevant information without limiting them to a pre-determined way of encoding 
features. High-capacity neural network models are thus allowed a more flexible space to learn and pick up inter-
active features. For example, the images offer a natural way to compare genes (horizontally) and clusters across 
genomes (vertically) with 2D convolution. The fact that genomes are sorted by evolutionary distance allows the 
neural network to exploit locality and place more emphasis on close genomes via incremental pooling.

The second advantage of our model comes from leveraging neural networks pre-trained with image recogni-
tion capabilities. Many deep learning model architectures were first developed in vision tasks and perfected over 
years of iterations. In our previous work42, we demonstrated a method that uses images representing genomic 
data to identify genomic islands. Google researchers have used spectrogram (instead of text) in direct speech 
translation43 and DNA sequence pile-up graphs (instead of alignment data) in genetic variant calling44. In both 
cases, the image-based models outperformed their respective previous state-of-the-art method based on tradi-
tional domain features. Further, the low-level visual feature patterns learned in pre-trained image models have 
been demonstrated to transfer to distant learning tasks on non-image data in several preliminary studies ranging 
from environmental sound classification to cancer gene expression typing45.

We experienced technical difficulties when trying to retrieve the operon predictions made by both tools we 
are comparing our performance against. Since the tools generate predictions for gene pairs, the shortest possible 
operon should thus consist of at least two genes. However, this conflicts with the reported predictions made by 
these tools, as they include operons consisting of only a single gene. We considered single-gene predictions to be 
part of a non-operonic gene pair. The tools report predictions for only a subset of the genes in a given genome, 
which leaves many genes without an assigned label. We decided to label the genes with missing predictions as 
non-operonic, since leaving them out of the performance measures would drastically diminish the tools’ scores. 
This way, the metrics involving true negatives reported for the tools are the highest they could attain, assuming 
they would predict all the non-operonic gene pairs correctly. In a good faith attempt to replicate the work done 
by ProOpDB, we fed a neural network with the same architecture mentioned in their paper the same features (i.e, 
the inter-genic distance and STRING score for consecutive pairs of genes). We used our training dataset, which 
we believe to be richer, considering that they were training on only one organism (E. coli or B. subtilis). We fine 
tuned different hyper parameters, like the learning rate and the number of epochs, and experimented with differ-
ent activation functions before settling on the one mentioned in their paper. Instead of generating STRING-like 
scores for the genes that miss that feature, we followed our previous approach of using a default value of 0.1. It 
is worth mentioning that the STRING database has been updated since the time of their first publication, and 
the current version has score assignments for most of the operonic gene pairs (> 99% of the pairs used in our 
training and testing datasets). Following this approach, we achieved a slightly lower true positive rate, with a 
slightly higher precision, leading to the same F1 score previously reported for their tool, and a slightly higher 
specificity, that is still the lowest across the three tools we used in our comparison.

We point out some of the challenges that undermine operon prediction in general. One limitation that faces 
predictors that rely on features such as gene conservation or functional assignment is the requirement to have 
such information about all the genes in a genome. So while such predictors might perform well on gene pairs 
that include the necessary features, their performance might drop considerably when making predictions over 
the entire genome2. Moreover, even though most methods validate their results by comparing their predictions 
over experimentally verified operons, the fact that the experimentally verified datasets are only available for a 
small subset of the sequenced genomes and that the datasets used vary between studies poses extra challenges 
making the comparison between the available tools non-straightforward. Brouwer et al tried to compare several 
methods using a uniform dataset and noticed a significant gap between the measures achieved and those reported 
in their original papers. The drop in performance was even higher when considering full operon predictions 
rather than separate gene pair predictions29,32. Finally, Some methods include the testing dataset as part of the 
training dataset, which leads to a reported accuracy that is significantly higher than what would be otherwise, 
given that the flow of information taking place in the training process would not be easily and readily transfer-
able to novel genomes used as a testing dataset4. Some methods report a decrease in accuracy when the training 
and testing datasets belong to different organisms. In fact, the accuracy reported by many of the available tools 
drop anywhere between 11 and 30% when the training data and the operon predictions correspond to different 
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organisms4,32. This lack of generalization places severe limitations on the methods’ applicability, especially when 
treating novel genomes. Even for known genomes, this poses the additional challenge of requiring more ground-
truth data for operons in other genomes that belong to the same organism. For example, as mentioned earlier, 
Door switches between a linear model and a more complex decision-tree based model depending on the avail-
ability of the experimentally verified operons in the organism of the query genome that can be used for training 
the model. Our approach alleviates these challenges and generalizes successfully across organisms. As Table 4 
shows, the genomes constituting our training dataset span different genera, but the performance of Operon 
Hunter when predicting operons in both E. coli and B. subtilis does not vary significantly. This is due to the fact 
that in the compare region viewer service that we use to construct the images, while the genomes aligned with 
the query genome are chosen based on evolutionary distance, they are eventually represented as images using a 
more generic method, that captures all underlying relevant operon features.

Much like feature engineering methods, casting tabular data to images encodes information in a way more 
amenable to learning without explicitly adding information. It can also be easily integrated with other data 
modalities in the latent vector representation to prevent information loss. We hypothesize this emerging trend 
of representing data with images will continue until model tuning and large-scale pre-training in scientific 
domains start to catch up with those in computer vision. Applications of this method are especially useful when 
the features are not easily quantifiable, as is the case in any application involving comparative genomics. Due to 
the generic nature of the visualizations and the available data augmentation techniques, we expect applications 
similar to our method to transform genomics problems where ground truth datasets are limited.

Data availability
The datasets generated and/or analyzed during the current study are available in the GitHub repository, https://​
github.​com/​ridas​saf/​Opero​nHunt​er.
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