
Review Life & Medical Sciences

Recent advances in biosynthesis of bioactive compounds
in traditional Chinese medicinal plants

Lei Yang • Changqing Yang • Chenyi Li •

Qing Zhao • Ling Liu • Xin Fang • Xiao-Ya Chen

Received: 24 August 2015 / Accepted: 15 October 2015 / Published online: 2 November 2015

� Science China Press and Springer-Verlag Berlin Heidelberg 2015. This article is published with open access at Springerlink.com

Abstract Plants synthesize and accumulate large amount

of specialized (or secondary) metabolites also known as

natural products, which provide a rich source for modern

pharmacy. In China, plants have been used in traditional

medicine for thousands of years. Recent development of

molecular biology, genomics and functional genomics as

well as high-throughput analytical chemical technologies

has greatly promoted the research on medicinal plants. In

this article, we review recent advances in the elucidation of

biosynthesis of specialized metabolites in medicinal plants,

including phenylpropanoids, terpenoids and alkaloids. Th-

ese natural products may share a common upstream path-

way to form a limited numbers of common precursors, but

are characteristic in distinct modifications leading to highly

variable structures. Although this review is focused on

traditional Chinese medicine, other plants with a great

medicinal interest or potential are also discussed. Under-

standing of their biosynthesis processes is critical for pro-

ducing these highly value molecules at large scale and low

cost in microbes and will benefit to not only human health

but also plant resource conservation.
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1 Introduction

China is rich in plant resources. Of the *300,000 species

of higher plants on the earth, around 10 % can be found in

China. As in many other countries, people in China have

used plants for treatment of diseases for thousands of years.

Compendium of Materia Medica has been held in high

esteem since it was first published in 1593, and this ancient

encyclopedia of traditional Chinese medicine (TCM)

described more than 1,000 species of plants. Plants produce

a wealth of specialized (or secondary) metabolites also

known as natural products, which are small molecular

weight compounds with enormous structural diversity and

show various biological activities. It is estimated that there

are approximately 200,000 secondary metabolites in plant

kingdom [1], which, based on biosynthetic origins, can be

classified into three major categories: phenylpropanoids,

terpenoids and alkaloids, plus a few other less abundant

groups. The usage records of China’s ancient medical

books, such as Sheng Nong’s Herbal Classic, Huang Di’s

Canon of Medicine and Compendium of Materia Medica,

already recognized that plant extracts contain active prin-

ciples in treating illness and classified them into assump-

tive, intuitive or largely philosophic categories, such as

cold, neutral or hot, toxic or nourishing. Over the past

century, hunting the active ingredients has led to important

findings, such as artemisinin for malaria, huperzine A for

Alzheimer’s disease, ephedrine for cold and camptothecin
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for cancer, which were isolated from Artemisia annua,

Huperzia serrata, Ephedra sinica, Camptotheca acumi-

nate, respectively [2]. Very recently, tetrandrine, an alka-

loid isolated from the TCM plant Stephania tetrandra

previously used for reducing blood pressure, were reported

to have the therapeutic efficacy against Ebola [3], and

celastrol, a triterpene extracted from Tripterygium Wil-

fordi, has the potential as an anti-obesity agent [4]. These

findings strongly support that TCMs are the reliable source

for new therapies in treatment of lethally epidemic disease

and long unsolved disease.

However, multi-classes of natural products are generated

by each plant species. In addition, geographic distributions,

growth conditions and harvesting seasons could significantly

affect chemical compositions of the plant. Whereas one

component may act as the active ingredient, the effects of a

mixture of many ingredients are often uncertain and this has

caused increasing concerns [5]; thus, the traditional practice

of herbology has to face the challenges from modern medi-

cine and the manufactures’ requirement.

While plant natural products continue to be a prime source

for drug discovery and development, supply of these com-

pounds is often curtailed due to limitation of natural

resources and/or low contents in plant. The biotechnological

platforms, such as metabolic engineering of effective plant

and microbial production, are urgently needed to ensure that

the supply of bioactive natural products is sustainable and

environmentally friendly, rather than at the expense of

resource exhaustion [6–9]. A prerequisite to these solutions

is the understanding of the biosynthetic pathways of these

specialized metabolites, in particular the cloning and iden-

tification of enzymes and the regulatory factors.

In the past two decades, the rapid development in

genomics and high-throughput technologies of chemical

analysis, in combination with molecular biology tools, has

accelerated the research of medicinal plants. In this review,

we summarize the recent advances in the elucidation of

biosynthetic pathways of secondary metabolites in, not

exclusively, TCM plants. Although alkaloids are probably

the most important resource for drug discovery and

biosynthesis of these amino acid-derived compounds has

been investigated intensively, there are, surprisingly to

some extent, relatively few studies of alkaloids from TCM

plant; thus, this review is emphasized on phenylpropanoids

and terpenoids. In addition to enzymes, transcription fac-

tors characterized from medicinal plants are also discussed.

2 Phenylpropanoids

Phenylpropanoids, commonly found in plants, are derived

from the six-carbon aromatic phenyl group and the three-

carbon propene tail [10], and form a large group of special-

ized metabolites including monolignols, lignans, flavonoids,

phenolic acids and stilbenes [11]. They serve as basic com-

ponents of a number of structural polymers, as well as floral

pigments, scent compounds or signaling molecules to

mediate bio-interactions, phytoalexins against herbivores

and pathogens, and protective components against ultravi-

olet light radiation and other abiotic stresses [12]. In many

TCM plants, such as the plants of Lamiaceae, Fabaceae

(Leguminasae) and Asteraceae, phenylpropanoids are also

the bioactive principles (Table 1), which have been shown to

act as anti-oxidants, free radical scavengers, anti-inflam-

matories and anticancer compounds [13].

The majority of phenylpropanoids are derived from

phenylalanine. The first three steps are catalyzed by

phenylalanine ammonia lyase (PAL), cinnamate

Table 1 List of examples of TCM plants rich in phenylpropanoids

Plant species Chinese name in Pin-yin Family Representative compounds

Salvia miltiorrhiza Danshen Lamiaceae Salvianolic acid A, B and C

Scutellaria baicalensis Huangqin Lamiaceae Baicalin, wogonin, scutellarin

Glycyrrhiza uralensis Gancao Leguminosae Liquiritin, isoliquiritin, 7,40-dihydroxyflavone

Astragalus membranaceus Huangqi Leguminosae Calycosin-7-glucoside, ononin

Sophora flavescens Kushen Leguminosae Sophoraflavecromane A, B, C

Sophora tonkinensis Shandougen Leguminosae Sophoranone, sophoradin

Pueraria lobata Ge Leguminosae Puerarin, daidzin, genistein

Lonicera japonica Jinyinhua Caprifoliaceae Chlorogenic acid, luteolin

Dendranthema morifolium Juhua Asteraceae Chlorogenic acid, acacetin-7-O-b-D-glucoside,
apigenin-7-O-b-D-glucoside, and
luteolin-7-O-b-D-glucoside

Ginkgo biloba Yinxing Ginkgoaceae Ginkgetin, isoginkgetin

Epimedium brevicornu Yinyanghuo Berberidaceae Icariine, icarisid

Isatis indigotica Songlan Brassicaceae Lariciresinol
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4-hydroxylase (C4H) and p-coumaroyl coenzyme A ligase

(4CL), which are commonly referred as ‘‘general phenyl-

propanoid pathway’’ [14, 15]. The product of 4CL is used

as precursor for the biosynthesis of various phenyl-

propanoids in plants (Fig. 1). Parts of phenylpropanoids are

synthesized from L-tyrosine, and the transformation is more

restricted, being mainly limited to members of several

families. For instance, 3,4-dihydroxyphenyllactic acid, one

precursor of rosmarinic acid, is synthesized from tyrosine-

derived pathway in some species of Lamiaceae, such as

Salvia miltiorrhiza [16, 17].

2.1 Flavonoids

Flavonoids constitute a highly diverse class of secondary

metabolites composed of more than 9,000 structures [18].

They are commonly found in land plants, including all

vascular plants and some mosses [19]. Based on the agly-

cone core, they are generally further grouped into fla-

vanones, flavones, flavonols, isoflavonoids, anthocyanins

and proanthocyanidins. All flavonoids are basically

derivatives of 1,3-diphenylpropan-1-one (C6–C3–C6),

which is derived from the condensation of three malonyl-

CoA molecules with one p-coumaroyl-CoA to form a

chalcone intermediate [20]. Chalcone isomerase converts

chalcone into flavanones, and respective enzymes trans-

form flavanones to various flavones, isoflavones, dihydor-

flavonols, flavonols and anthoanidins. Every class of

flavanones possesses the compounds with pharmaceutical

activity and is widely used in folk medicines [21].

2.1.1 Flavanones and flavones

Two completely different flavone synthase (FNS) proteins

have been found to catalyze the biosynthesis of flavones in

plants. The first member of the FNS I type was identified

from parsley (Petroselinum crispum) cell suspension cul-

tures and classified as 2-oxoglutarate-dependent dioxyge-

nase [22]. The FNS I cDNA was then cloned and

functionally expressed in yeast [23], and it shares a high

sequence identity to the flavanone 3-b-hydroxylase (FHT).

Interestingly, characterized FNS I enzymes appear to be

mainly in the family of Apiaceae [18, 24]. Molecular and

phylogenetic analysis revealed a gene duplication of FHT,

and a subsequent neofunctionalization occurred early in the

development of the Apiaceae subfamilies [25]. Formation

of most flavones in a wide range of plant species is cat-

alyzed by FNS II, cytochrome P450 proteins of CYP93B

subfamily. The FNS II activity was first demonstrated in

extract of Antirrhinum majus flowers [26], and the cDNAs

were then isolated from other plants, including Perilla

frutescens (CYP93B6) [27] and Gentiana triflora [28].

Glycyrrhiza uralensis is one of the most popular TCM

plants and also widely used in food flavoring. Although the

sweeting agent of this plant is glycyrrhizin, a triterpenoid

saponin [29], flavanones and flavones are also important

components in its root, which include liquiritigenin,

isoliquiritigenin and 7,40-dihydroxyflavone [30]. A P450

enzyme from Glycyrrhiza echinata, CYP93B1, was

Fig. 1 (Color online) Biosynthesis of phenylpropanoids in TCM

plants. a Biosynthesis of flavonoids and isopentenyl flavonoids;

b formation of phenolic acids from the L-phenylalanine- and the L-

tyrosine-derived pathways in Salvia miltiorrhiza, a medicinal plant of

Lamiaceae. Phenylpropanoids are mainly synthesized from pheny-

lalanine via the ‘‘general phenylpropanoid pathway’’, catalyzed by

phenylalanine ammonialyase (PAL), cinnamate 4-hydroxylase (C4H)

and p-coumaroyl coenzyme A ligase (4CL). The product of

p-coumaroyl-CoA is used for the biosynthesis of flavonoids, isopen-

tenyl flavonoids and phenolic acids. CHS, chalcone synthase; CHI,

chalcone isomerase; FNS, flavone synthase; IFS, isoflavone synthase;

FPT, flavonoid prenyltransferase; TAT, tyrosine aminotransferase;

HPPR, 4-hydroxyphenylpyruvate reductase; RAS, rosmarinic acid

synthase; P450, cytochrome P450 monooxygenase. Dotted lines

represent multiple enzymatic catalyzed steps
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identified as flavanone 2-hydroxylase (F2H), a member of

FNS II [31]. The products, 2-hydroxyflavanones, were

transformed into flavones in vitro in acid treatment, sug-

gesting that an additional enzyme, probably a dehydratase,

was involved in catalyzing the formation of flavones. A

full-length cDNA of cytochrome P450 CYP93C2 was iso-

lated from the elicited G. echinata cells, which was shown

to encode 2-hydroxyisoflavanone synthase [32].

The flavones baicalin and wogonoside, as well as their

aglycones baicalein and wogonin, represent the dominant

flavonoids in Scutellaria baicalensis, a perennial species of

Lamiaceae and an important herb in Chinese traditional

and clinical-orientated medicine. The flavones, such as

baicalin and wogonin, are distinct for lacking a 40-OH
group but having a 6-OH group on their A-ring [33]. Genes

encoding the upstream enzymes of the pathway, including

PAL, C4H, 4CL, chalcone synthase (CHS) and chalcone

isomerase (CHI), have been isolated [34, 35]. However, the

enzymes committed to the formation of the S. baicalensis-

type flavones remain unknown. It is also possible that

specific enzyme isoforms are involved in the formation of

cinnamoyl-CoA [36]. It has been reported that accumula-

tion of these flavones was enhanced by jasmonate (JA)

treatment, and a R2R3-MYB transcription factor,

SbMYB8, was found involved in the regulation [37, 38].

2.1.2 Isoflavones

The isoflavones are well studied for their substantial health

promoting benefits. They are found mainly in leguminous

plants and are the major bioactive ingredients in soybean,

Astragalus, Pueraria lobata [39]. Isoflavones are converted

from flavanones by the isoflavone synthase (IFS). By using

EST-based approach combined with enzymatic assays,

P450s of CYP93C subfamily from soybean were shown to

have such activities [40, 41].Members of this subfamilywith

IFS activity were also reported in other leguminous plants,

such as Lotus japonicus [42] and Trifolium pratense [43].

Astragalus membranaceus, a species of Fabaceae, has

been used in TCM for thousands of years. Astragaus is

considered an adaptogen because it is believed to help

protect the body against stresses, including those of phys-

ical, mental or emotional [44, 45]. In China, Astragalus has

been used to help patients with severe forms of heart dis-

ease in relieving symptoms, lowering cholesterol levels and

improving heart function. Constituents of the Astragalus

roots (radix astragali) include polysaccharides, triter-

penoids (astragalosides) and isoflavones [46, 47]. Iso-

flavones such as calycosin-7-glucoside and ononin are

considered the important active components in this medi-

cine. Hairy root system of Astragalus was developed a long

time ago to produce these ingredients [48, 49]. Research at

molecular level in this plant is limited, but will help reveal

the biosynthetic pathway in this leguminous medicinal

plant [50].

Pueraria lobata, also a species of Fabaceae, is com-

monly known as ‘‘kudzu’’. Puerariae radix, the dried root

of the kudzu, has been used in China as herbal medicine for

the prevention of cardiovascular disease and rehabilitation

of stroke patients [51]. The major secondary metabolites

accumulated in kudzu roots are isoflavones, including

daidzein, genistein, formononetin and their glucosides

Puerarin [52], among which the 8-C-glucoside of daidzein

is considered the major active compound [53]. The co-

occurrence of both O- and C-linked glycosides in root is of

particular interests and worthy of further investigation.

Using a functional genomics approach, He et al. identified

enzymes associated with the isoflavone biosynthesis in

kudzu roots, including 15 UDP-dependent glycosyltrans-

ferases (UGTs), among which one, GT04F14, exhibited the

in vitro activity of glycosylation of a wide range of sub-

strates, including coumarins, flavones, flavonols, and iso-

flavones. The isoflavones are converted region-specifically

to their 7-O-glucosides, whereas C-glycosylation might

take place at the 2,7,40-trihydroxyisoflavanone precursor of
daidzein, rather than directly on daidzein. Conceivably the

intermediate 8-C-b-glucopyranosyl-2,7,40-trihydroxy-
isoflavanone is converted to puerarin under in vivo con-

ditions by the action of 2-hydroxyisoflavanone dehydratase

(HID). A candidate gene encoding HID was identified from

the EST library of kudzu root [54]. In addition, a partially

purified preparation from kudzu root was shown to have

the C-glucosyltransferase activity that converted isoliquir-

itigenin (20,40,4-trihydroxychalcone) and UDP-Glc to

puerarin [55].

2.1.3 Isopentenyl flavonoids

Prenylation, the addition of prenyl groups, contributes to

the diversification of flavonoids, and the occurrence of

more than 1,000 prenylated flavonoids in plants has been

recorded [56]. This prenylation represents the coupling

process of the aromatic moiety from shikimate pathway

and the prenyl (isoprenoid) chain from the isoprenoid

pathways. Many prenylated flavonoids were identified as

active components in medicinal plants and thus are of

particular interests as lead compounds for drugs and

functional food ingredients [57].

Species Sophora, family Fabaceae, are widely dis-

tributed in Asia. Sophora flavescens has a long history of

use in China, and the root, known as Ku Shen, is a typical

TCM. It is used to dispel heat, dry dampness and eliminate

intestinal parasites. It is thus administered in formulas for

the treatment of dysentery and jaundice (damp-heat syn-

dromes), edema and dysuria (dampness syndromes), and

eczema and pruritis (damp-heat-wind syndromes). The S.
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flavescens prenyltransferase SfN8DT-1 is the first enzyme

identified to be responsible for the prenylation of narin-

genin at the 8-position, with dimethylallyl diphosphate

(DMAPP) as substrate [58]. Later, two new flavonoid

prenyltransferases (FPTs) were isolated from S. flavescens

at the molecular level: one is the isoflavone-specific

prenyltransferase (SfG6DT) for the prenylation of the

genistein at the 6-position and the other a chalcone-specific

prenyltransferase designated as isoliquiritigenin dimethy-

lallyltransferase (SfiLDT) [29].

Herba epimedii is prepared from the aerial parts of

Epimedium brevicornum or Epimedium sagittatum, species

of Berberidaceae. Herba epimedii contains various bioac-

tive components and has been utilized extensively in China

as the tonic and anti-rheumatic herb for thousands of years,

and in the treatments of diseases such as impotence, fre-

quency/urgency of urination, coronary heart disease,

chronic bronchitis and neurasthenia [59, 60]. The isopen-

tenyl flavonoids icariine and icarisid are the major active

compounds [61]; however, their biosynthesis remains

poorly understood [62]. Recently, Huang et al. isolated 12

structural genes and two putative transcription factors

(TFs) in the flavonoid pathway. Transcriptional analysis

revealed that two R2R3-MYB TFs (EsMYBA1 and

EsMYBF1), together with a bHLH TF (EsGL3) and WD40

protein (EsTTG1), are probably involved in coordinated

regulation of biosynthesis of the anthocyanins and the

flavonol-derived bioactive components [63].

2.2 Phenolic acids

Salvia miltiorrhiza is a perennial herb in the mint family

(Lamiaceae). Its dried root or rhizome is called Danshen in

TCM and was recorded in first pharmaceutical monograph

Shennong’s Classic of Materia Medica (A.D. 102-200). S.

miltiorrhiza has been cultivated throughout Eastern Asia

and used to prevent and cure cardiovascular, cerebrovas-

cular, hyperlipidemia and acute ischemic stroke diseases

[64]. Both the hydrophilic and lipophilic components in S.

miltiorrhiza are considered active ingredients. The hydro-

philic compounds are mainly phenolic acids including

rosmarinic acid, salvianolic acid B, lithospermic acid and

dihydroxyphenyllactic acid or Danshensu, and they may

also function as antioxidative, anti-bacterial and anti-viral

reagents [65, 66].

The biosynthetic pathway for phenolic acids in S. mil-

tiorrhiza is distinct and has attracted many interests.

Labeling experiments using [ring-(13)C]-phenylalanine

suggested two intermediates derived from the phenylala-

nine-derived general phenylpropanoid pathway and the

tyrosine-derived pathway, respectively (Fig. 1): 4-cou-

maroyl-CoA and 3,4-dihydroxyphenyllactic acid (DHPL),

which are coupled by a acyl-CoA-dependent

acyltransferase BAHD family enzyme rosmarinic acid

synthase (SmRAS) to form 4-coumaroyl-30,40-dihydrox-
yphenyllactic acid (4C-DHPL). The 3-hydroxyl group is

introduced later in the pathway by a P450 monooxygenase

(SmCYP98A14) to form rosmarinic acid (RA) [16]. This

type of P450 was first reported in Coleus blumei (Lami-

aceae), and it catalyzes the 3-hydroxylation of 4-coumar-

oyl-30,40-dihydroxyphenyllactate and the 30-hydroxylation
of caffeoyl-40- hydroxyphenyllactate, in both cases forming

rosmarinic acid [67]. Recent genome assembly to search

the putative enzymes involved in biosynthesis of phenolics

in S. miltiorrhiza revealed twenty-nine candidates, among

which 15 were predicted in the phenylpropanoid pathway,

seven in the tyrosine-derived pathway and six encoding

putative hydroxycinnamoyltransferases [17].

3 Terpenoids

Terpenoids are formed from sequential assembly of five-

carbon building blocks (C5H8) called isoprene units.

Accordingly, single or assemblies of two, three and four

units constitute hemiterpenes, monoterpenes, sesquiterpe-

nes and diterpenes, respectively. After the formation of the

basic carbon skeletons, subsequent modifications, such as

oxidation, reduction, isomerization and conjugation, lead to

enormous numbers of structures, which represent the most

abundant class of plant specialized metabolites, with more

than 36,000 individual compounds [68].

In plant cells, the common precursors of terpenoids,

isopentenyl diphosphate (IPP) and dimethylallyl diphos-

phate (DMAPP) are synthesized via two independent

pathways: the cytosolic mevalonic acid (MVA) pathway

that starts with the condensation of acetyl-CoA, and the

plastid-localized methylerythritol phosphate (MEP) path-

way that uses pyruvate and glyceraldehydes 3-phosphate as

substrates (Fig. 2). The IPP and DMAPP are condensed

into geranyl diphosphate (GPP, C10), farnesyl diphosphate

(FPP, C15) and geranylgeranyl diphosphate (GGPP, C20) by

the respective prenyltransferases and then converted to

terpenes by terpene synthases (TPSs), which catalyze the

critical step that determines the structures of terpen

skeletons [69].

Generally, the cytosolic MVA pathway provides the

precursor of FPP for the biosynthesis of sesquiterpenes and

triterpenes, whereas the plastid MEP pathway is responsi-

ble for the biosynthesis of GPP and GGPP for mono-, di-,

and tetra-terpenes [70]. Although cross-talk between these

two spatially separated IPP pathways is prevalent, partic-

ularly in a direction from plastid to cytosol, our under-

standing of the molecular mechanism behind remains

primitive.
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3.1 Sesquiterpenoids

Monoterpenoids (C10) and sesquiterpenoids (C15) are

widely distributed in plants, and they are the common

constituents of volatile compounds in flowers, fruits, stems

and leaves, playing important roles in plant–environment

interactions, many of them also possess great commercial

value and some are used in pharmaceuticals.

3.1.1 Artemisinin

One of the most famous plant-sourced medicines is arte-

misinin, an endoperoxide sesquiterpene lactone isolated

from Artemisia annua L., an annual herb of Asteraceae.

Due to its effectiveness against drug-resistant cerebral

malaria, it is the essential component of the combinational

therapies recommended by the World Health Organization

[8]. It has saved millions of lives globally, especially in

developing countries. The 2011 Lasker DeBakey Clinical

Research Award and the 2015 Nobel Prize in Physiology or

Medicine honor the Chinese scientist Youyou Tu who

made the important contribution to the discovery of arte-

misinin [71–73].

As a sesquiterpenoid, artemisinin is believed to be

synthesized from the cytosolic MVA pathway. However, a

recent report suggested that the MEP pathway may also

contribute to its biosynthesis. GPP, which is synthesized in

plastids, can be transported to cytoplasm, forming FPP with

the addition of another IPP unit [74]. The FPP is converted

to the artemisinin skeleton by amorpha-4,11-diene synthase

(ADS), a sesquiterpene synthase [75], and then oxidated by

the cytochrome P450 CYP71AV1. When expressed in

Saccharomyces cerevisiae, CYP71AV1 catalyzed the

continuous oxidation of amorpha-4,11-diene into artemi-

sinic alcohol and artemisinic aldehyde [76], with signifi-

cantly increased production of artemisinic acid and

artemisinic aldehyde when co-expressed with a cyto-

chrome b5 (CYB5) in yeast [8]. The artemisinic aldehyde

D11(13) reductase (Dbr2), a double-bond reductase, cat-

alyzes the formation of dihydroartemisinic aldehyde [77],

which is further converted into dihydroartemisinic acid by

aldehyde dehydrogenase 1 (ALDH1) [78]. Moreover, an

additional alcohol dehydrogenase (ADH1) was also found

to be involved in the oxidation of amorpha-4,11-diene to

artemisinic acid, with specificity toward artemisinic alco-

hol in A. annua plants [8].

Several transcription factors have been shown to par-

ticipate in the regulation of artemisinin biosynthesis [79].

Two jasmonate responsive AP2/ERF proteins, AaERF1

and AaERF2, were found to up-regulate the transcription of

ADS and CYP71AV1 genes, by binding to the

CRTDREHVCBF2 (CBF2) and RAV1AAT (RAA) motifs

present in their promoters [80]. A WRKY family tran-

scription factor, AaWRKY1, was demonstrated to be cap-

able of binding to the W-box in the ADS promoter and

involved in the regulation of artemisinin biosynthesis [81].

A deep sequencing on the transcriptome of A. annua to

identify genes and markers for fast-track breeding was per-

formed, and a detailed genetic map with nine linkage groups

was built. Replicated field trials resulted in a quantitative

trait loci (QTL)map that accounts for a significant amount of

the variation in key traits controlling artemisinin yield, and

positive QTLs in parents of new high-yielding hybrids were

enriched, which made it available to convert A. annua into a

robust crop [82]. Ma et al. [83] recently reported an inte-

grated approach combining metabolomics, transcriptomics

and gene function analyses to characterize gene-to-terpene

and terpene pathway scenarios in a self-pollinating variety of

A. annua. Forty-seven genes that mapped to the terpenes

biosynthesis pathway were identified by sequence mining,

and suchmetabolites-transcriptome network associated with

different tissues is fundamental to metabolic engineering to

artemisinin.

Fig. 2 (Color online) Biosynthesis of terpenoids in TCM plants.

Terpenoids are synthesized via the cytosol MVA pathway and plastid

MEP pathway. Generally, isopentenyl diphosphate (IPP) and

dimethylallyl diphosphate (DMAPP) synthesized from the MVA

pathway are converted to farnesyl diphosphate (FPP) for the

biosynthesis of sesquiterpenoids and triterpenoids, whereas those

derived from the MEP pathway contribute to the formation of geranyl

diphosphate (GPP) and geranylgeranyl diphosphate (GGPP) for

biosynthesis of monoterpenoids, diterpenoids and tetraterpenoids.

HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA; MEP, 2-C-methyl-D-

erythritol 4-phosphate; GGPP, geranylgeranyl diphosphate; HMGR,

3-hydroxy-3-methylglutaryl-CoA reductase; DXS, 1-deoxy-D-xylu-

lose-5-phosphate synthase; DXR, 1-deoxy-D-xylulose-5-phosphate

reductoisomerase; GPPS, geranyl diphosphate synthase; GPP, geranyl

diphosphate; FPPS, farnesyl diphosphate synthase; GGPPS, geranyl-

geranyl diphosphate synthase; TPS, terpene synthase; SS, squalene

synthase; SE, squalone epoxidase; OSC, oxidosqualene cyclase.

Dotted lines represent multiple enzymatic catalyzed steps
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3.1.2 Patchoulol

Patchouli (Pogostemon cablin), a perennial herbaceous

species of Lamiaceae, is not only a fragrant plant produc-

ing patchouli oil for cosmetics industry, but also a

medicinal plant for the treatment of medical ailments, such

as removing dampness, relieving summer heat and exterior

syndrome, and serving as an anti-emetic and appetite

stimulant [84]. The patchouli oil is composed of

sesquiterpenoids dominated by (-)-patchoulol. The

sesquiterpene synthase, patchoulol synthase, was firstly

purified from patchouli leaves by chromatofocusing, anion

exchange, gel permeation and hydroxylapatite chromatog-

raphy [85]. Then, its cDNA was cloned and the recombi-

nant patchoulol synthase was shown to produce patchoulol

as the major product, plus at least 13 additional

sesquiterpenes [86].

Patchouli oil in leaves accumulates with plant age: The

content is low at juvenile stage and increases during plant

growth and reaches a high level in mature plant. The

microRNA156 (miR156)-targeted SQUAMOSA promoter

binding protein-like (SPL) factors, which function as the

major plant age cue in regulating developmental phase

transition and flowering, play a key role in the age-de-

pendent progressive up-regulation of the patchoulol syn-

thase gene expression, and the patchouli oil biosynthesis.

Interestingly, expression of a miR156-resistant form of

SPL not only accelerated plant maturation but also pro-

moted patchouli oil production [87].

3.2 Diterpenoids

Certain groups of diterpenoids (C20), such as gibberellins,

are regulators (phytohormones) of plant growth and

development. Many other specialized diterpenoids, like

tanshinone from Salvia miltiorrhiza and taxol from Taxus,

are highly valuable in medicine. A few more examples

include: stevioside, extracted from Stevia rebaudiana of

Asteraceae, is a natural sweetest [88–90]; adenanthin, from

the leaves of Rabdosia adenantha, induces differentiation

of acute promyelocytic leukemia (APL) cells [91]; ori-

donin, from Lamiaceae plants Isodon rubescens and Isodon

amethystoides, is a potential compound for molecular tar-

get-based therapy of leukemia [92]; and triptolide, a highly

oxygenated diterpene isolated from Tripterygium wilfordii,

was shown to have anti-leukemic activity [93].

3.2.1 Tanshinone

Besides the phenolic acids discussed above, tanshinones

are another class of active diterpenoid compounds of S.

miltiorrhiza, which include tanshinone I, tanshinone IIA,

cryptotanshinone and dihydrotanshinone I. They are all

abietane-type derivatives, among which tanshinone IIA is

considered to be an important bioactive component in

protecting cardiovascular system [94, 95], and tanshinone I

was reported to be an apoptosis inducer and display anti-

cancer activities [95].

As diterpenoid compounds, tanshinones are expected to

be traced to the plastid MEP pathway, and their biosyn-

thesis starts from the conversion of geranylgeranyl

diphosphate (GGPP) to ent-copalyl diphosphate (CPP) and

then to miltiradiene. The subsequent extensively structural

tailing converts miltiradiene to cryptotanshinone, tanshi-

none I, tanshinone IIA or tanshinone IIB [96].

Based on sequence homology, enzymes shared by other

diterpenoid biosynthesis have been characterized [96, 97].

To date, two enzymes specifically committed to the tan-

shinone biosynthetic pathway have been identified: the

kaurene synthase-like (SmKSL), a diterpene synthase that

utilizes CPP as substrate to produce miltiradiene [96], and

a P450 monooxygenase CYP76AH1 which transforms

miltiradiene to ferruginol [98], both representing the mile-

stone achievement in the research of TCM plant. Recently,

functional divergence of SmCPSs and SmKSLs was

reported, which specified the roles of individual CPSs in

tanshinone production in different tissues, including

SmCPS1 in roots and SmCPS2 in aerial part, and SmCPS4

and SmKSL2 were found to oxidize ent-13-epi-manoyl in

floral sepals, and the conserved SmCPS5 involved in the

plant growth hormone gibberellin biosynthesis. This study

is a typical example of how the evolutionary diversification

of diterpenoids in plants in molecular level [99].

With the rapid development of sequencing technologies,

several transcriptome datasets and the draft genome of S.

miltiorrhiza have been reported. For examples, the cDNA

library of whole plant contained 10,228 ESTs [100], the

transcriptome of nearly entire growing cycle generated by

Illumina revealed 56,774 unigenes [101], and the searching

of the draft genome resulted in 40 putative genes encoding

enzymes involved in the biosynthesis of universal isoprene

precursors of IPP and DMAPP [102]. Genes encoding

cytochrome P450 monooxygenases, dehydrogenases and

reductases, as well as several groups of transcription fac-

tors were predicted to be involved in tanshinone biosyn-

thesis by comparative analysis of transcriptomes generated

from different tissues [103]. Recently, next-generation

sequencing (NGS) and single-molecule real-time (SMRT)

sequencing were combined to generate a more com-

plete/full-length set of S. miltiorrhiza transcriptome, which

provides a valuable resource for further investigation of

tanshinone biosynthesis [104].

Organ- or tissue-specific patterns are common feature

observed in biosynthesis and accumulation of specialized

metabolites, as well as the expression patterns of corre-

sponding genes [105–107]. Tanshinones are actively
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synthesized and stored in roots, whereas only a low or trace

amount was detected in aerial organs like leaves [108].

Moreover, both the accumulation and the expression of the

related genes of tanshinones in hairy root cultures can be

induced by biotic elicitors, such as the carbohydrate frac-

tion of yeast extract, and phytohormones of salicylic acid

and jasmonate [97, 109–114]. Further investigation can be

directed to the characterization of the signaling compo-

nents and transcription factors that regulate the diterpenoid

biosynthesis in S. miltiorrhiza.

3.2.2 Taxol (paclitaxel)

Taxol (paclitaxel) is a diterpenoid isolated from the bark of

Taxus trees. The anti-mitotic and cytotoxic properties of

taxol are derived from its activity in disrupting normal

tubulin dynamics, leading to dysfunction of microtubules

[115]. Fourteen enzymes involved in taxol biosynthesis have

been identified, they are geranylgeranyl diphosphate syn-

thase [116], taxadiene synthase [117], taxadien-5a-ol-O-

acetyl transferase [118], taxane 2a-O-benzoyltransferase

[119], baccatin III: 3-animo-3phenylpropanoyltransferase

[120], 10-deacetylbacctin III-10-O-acetyltransferase [121],

30-N-debenzoyl-20-deoxytaxol N-benzoyltransferase [122],

taxane 5-alpha hydroxylase [123], taxane 10-alpha hydrox-

ylase [124], taxane 13-alpha hydroxylase [125], taxane

2-alpha hydroxylase [126], taxane 7-alpha hydroxylase

[127], taxane 14-alpha hydroxylase [128] and phenylalanine

aminomutase [129].

In addition to elucidation of the biosynthetic enzymes,

progresses have been made in identification of transcription

factors involved in taxol biosynthesis, which include mem-

bers of the AP2 and WRKY families [130]. A recent report

showed that the bHLH transcription factors of TcJAMYC1,

TcJAMYC2 and TcJAMYC4 act as negative regulators of

taxol biosynthesis in T. cuspidata cultured cells [131].

Due to the extremely low content of taxol (at ppm level)

in plant, it requires massive harvesting to obtain sufficient

amounts of the drug; thus, productions by total synthesis,

semi-synthesis, tissue or cell cultures, endophytic fungal

fermentation and more recently metabolic engineering and

synthetic biology have attracted great interests [132]. Pre-

cursors of taxol biosynthesis have been produced in

Escherichia coli [7] and Saccharomyces cerevisiae [123,

133], and the integration of parts (modules) of the whole

pathway in separate organisms cultured together led to the

combination of production of taxadiene in E. coli and

oxygenation of taxadiene by S. cerevisiae [9].

3.3 Triterpenoids

Triterpenoids are cyclization product of squalene which is

condensed by two molecules of FPP. In general,

triterpenoids are formed from MVA pathway in cytoplasm,

as sesquiterpenoids.

3.3.1 Ginsenosides

Ginseng, the root of Panax ginseng, is one of the oldest tra-

ditional medicines and is widely regarded as a tonic in East

Asia [88–90]. The principle bioactive constituents of Ginseng

are ginsenosides, a group of tetra- or pentacyclic triterpene

glycosides belonging to saponins [134]. The clinical and

pharmacological activities of ginsenosides include anti-dia-

betic, anticancer, anti-amestic hypoglycemic, radioprotec-

tive, immunomodulatory, neuroprotective and anti-stress

[135–139]. More than 40 ginsenosides have been isolated

from the white and the red ginseng, and they show different

biological activities based on their structural differences

[140]. Generally, the major pharmacologically active gin-

senosides belong to tetracyclic dammarane- and pentacyclic

oleanane-type triterpene saponins [141].

The common precursor of ginsenosides is squalene,

which is formed by condensation of two FPPs with squa-

lene synthase (SS) [135, 142, 143]. In Ginseng, squalene is

converted into dammarenediol-II by squalone epoxidase

(SE). The cyclization of 2,3-oxidosqualene can result in

two different type of triterpenoids: dammarane and olea-

nane type. Ginsenosides belonging to dammarane-type

triterpenoids are biosynthesized from 2,3-oxidosqualene by

dammarenediol synthase (DS) to form dammarenediol-II

[144], whereas the biosynthesis of oleanane-type ginseno-

sides is started by b-amyrin synthase (PNY1) that trans-

forms 2,3-oxidosqualene into b-amyrin [145, 146]. SS is

considered a rate-limiting enzyme in the pathway and

catalyzes the initial biosynthetic step for both steroids and

triterpenoids [147]. PgPDR, a member of ABC trans-

porters, was found to be involved in the ginsenosides

accumulation upon MeJA induction [148].

3.3.2 Cucurbitacins

Cucurbitacins, conferring a bitter taste in cucurbits such as

cucumber, melon, watermelon, squash, and pumpkin,

belong to a class of highly oxidized tetracyclic triter-

penoids mainly found in the plant of Cucurbitaceae family,

in which Gynostemma pentaphyllum, Hemsleya chinesis,

Siraitia grosvenorii and Bolbostemma paniculatum are

well-known TCM plants. Recent studies suggest that

cucurbitacins repress cancer cell progression [149] and

inhibit neuroblastoma cell proliferation through up-regu-

lation of PETN (phosphatase and tensin homolog) [150].

By genome-wide association study based on the genome

variation map of 115 diverse cucumber lines, the gene of

Csa6G088690 (Bi) encoding oxidosqualene cyclase is

found to be correlated to the cucurbitacin C (CuC)
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biosynthesis. Co-expression and co-regulation studies

revealed a 9-gene module responsible for CucC biosyn-

thesis, of which, four enzymes, including Bi, two P450s

and one ACT, were characterized. Moreover, two bHLH

transcription factors, Bl (bitter leaf) and Bt (bitter fruit),

were found to directly regulate the expression of 9-gene

module in cucumber leaf and fruit, respectively. During the

cucumber domestication, mutations occurred within Bt

promoter region which decreased its expression in the fruit

tissue which may have been selected and fixed and resulted

in nonbitter fruit we eat nowadays [151].

3.3.3 Glycyrrhizin

The roots and stolons of Glycyrrhiza plants (G.uralensis and

G. glabra) contain a large amount of oleanane-type triter-

penoid glycyrrhizin. It is not only used worldwide as a

natural sweetener and flavoring additive due to its sweet

taste, but also exhibit a wide range of pharmacological

activities, including anti-inflammatory [152], immunomod-

ulatory [153], anti-ulcer [154], anti-allergy [155], and anti-

viral activity [156–158].

From G. glabra, genes that encode enzymes responsible

for triterpene skeleton formation, including the squalene

synthase (SS) and b-amyrin synthase (bAS), were isolated

[159, 160]. Later biosynthesis steps of glycyrrhizin involve

a series of oxidative reactions at positions C-11 and C-30

and glucuronylation of the C-3 hydroxyl group. Enzymes

that catalyze the oxidation steps have been found to be

cytochrome P450 monooxygenases. One of them,

CYP88D6, was characterized to catalyze the sequential

two-step oxidation of b-amyrin at C-11 to produce 11-oxo-

b-amyrin by both in vitro assay with recombinant protein

and co-expression with b-amyrin synthase in yeast [161].

Another P450, CYP72A154, was identified to be respon-

sible for three sequential oxidations at C-30 to transform

11-oxo-b-amyrin to glycyrrhetinic acid, a glycyrrhizin

aglycone [162]. Both CYP88D6 and CYP72A154 tran-

scripts were detected in the roots and stolons, but not in the

leaves or stems, which is consistent with the accumulation

pattern of glycyrrhizin in planta [161, 162].

4 Alkaloids

Alkaloids are a group of nitrogen-containing compounds

with basic properties, most of which are derivatives of

amino acids [163–166]. Biosynthesis of alkaloids usually

starts from modification of amino acids, mostly decar-

boxylation or deamination, and undergoes further steps like

methylation, hydroxylation and oxidation, and/or coupled

with other compounds. There are over 12,000 alkaloids that

have been identified from plants. Although widely dis-

tributed in plants, they are particularly enriched in certain

families, such as Solanaceae, Manispermaceae, Papaver-

aceae, Berberidaceae and Fabaceae (Table 2).

It is noteworthy that the most of alkaloids display

bioactivities to certain degrees, often derived from their

nitrogen-containing properties. Not surprisingly, alkaloids

constitute the major portion of drugs both in history and

nowadays. The discovery and isolation of morphine from

the opium poppy (Papaver somniferum) by Friedrich Ser-

türner in 1806 is a milestone in the history of pharmacy.

Investigations of biosynthesis of natural alkaloids such as

morphinan, vindoline and noscapine have been intensive

and led to the complete elucidation of the pathway [167–

170], and increasing alkaloid biosynthesis in plant through

co-expression of enzymes genes was also reported [114].

Unfortunately, although alkaloids with TCM background

like camptothecin, higenamine, huperzine A and tetran-

drine have been used in pharmacy, reports of their

biosynthesis are relatively rare. We list in Table 3 several

Table 2 List of examples of TCM plants rich in terpenoids

Plant species Chinese name in Pin-yin Family Representative compounds

Pogostemon cablin Guanghuoxiang Lamiaceae Patchoulol

Artemisia annua Huanghuahao or Qinghao Asteraceae Artemisinine

Salvia miltiorrhiza Danshen Lamiaceae Tanshinone

Taxus chinensis Hongdoushan Taxaceae Paclitaxel

Andrographis paniculata Chuanxinlian Acanthaceae Andrographolide

Isodon rubescens Donglingcao Lamiaceae Oridonin, ponicidin

Isodon amethystoides Xiangchacai Lamiaceae Oridonin, ponicidin

Tripterygium wilfordii Leigongteng Celastraceae Triptolide

Panax ginseng Ginsen or Renshen Araliaceae Ginsenosides

Panax notoginseng Sanqi Araliaceae Notoginsenosides

Radix liquiritiae Gancao Fabaceae Glycyrrhizin

Dioscorea polystachya Shuyu Dioscoreaceae Dioscin
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typical alkaloids in TCM plants, and the relevant refer-

ences. Various aspects on the alkaloid biosynthesis, regu-

lation and metabolites trafficking can be found in review

articles [178–183]. Without doubt more efforts are needed

to study alkaloids in TCM plants to further explore their

biological activities and facilitate their usage.

5 Perspective

Unlike model plant or staple crops, medicinal plants often

lack a well-studied genetic background and a high-quality

genome sequence. Due to the recently developed high-

throughput sequencing technologies, it is possible to gen-

erate transcriptomic data of medicinal plants in a short time

at an affordable cost. Comparative analysis of chemical

constituents, transcriptomes and correlation of spatial and

temporal patterns of gene expressions with those of

metabolite accumulation have led to the identification of

candidate genes of the biosynthesis pathway [184]. GWS

combined with metabolomics analysis (mGWAS) provides

a powerful platform which screens a large number of

accessions simultaneously to understand genetic contribu-

tions to the metabolic diversity [185, 186].

Throughout the history, herbal plants are an integral part

of our lives. In addition to curing illness, they are grown in

elegant gardens, provide natural fragrance, delicate acces-

sories and stimulate appetite. The biosynthesis of

metabolites in medicinal plants is complex and specialized

and involves many sequence-similar but functionally

diverged enzymes. With the fast development of new

technologies of analytical chemistry, bioinformatics and

synthetic biology, more and more achievements will be

made in this genomic or post-genomic era and bring us

better life.
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