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ABSTRACT

Objectives: Scoring laboratory polysomnography (PSG) data remains a manual task of visually annotating 3 pri-

mary categories: sleep stages, sleep disordered breathing, and limb movements. Attempts to automate this

process have been hampered by the complexity of PSG signals and physiological heterogeneity between

patients. Deep neural networks, which have recently achieved expert-level performance for other complex med-

ical tasks, are ideally suited to PSG scoring, given sufficient training data.

Methods: We used a combination of deep recurrent and convolutional neural networks (RCNN) for supervised

learning of clinical labels designating sleep stages, sleep apnea events, and limb movements. The data for test-

ing and training were derived from 10 000 clinical PSGs and 5804 research PSGs.

Results: When trained on the clinical dataset, the RCNN reproduces PSG diagnostic scoring for sleep staging, sleep

apnea, and limb movements with accuracies of 87.6%, 88.2% and 84.7% on held-out test data, a level of performance

comparable to human experts. The RCNN model performs equally well when tested on the independent research

PSG database. Only small reductions in accuracy were noted when training on limited channels to mimic at-home

monitoring devices: frontal leads only for sleep staging, and thoracic belt signals only for the apnea-hypopnea index.

Conclusions: By creating accurate deep learning models for sleep scoring, our work opens the path toward

broader and more timely access to sleep diagnostics. Accurate scoring automation can improve the utility and

efficiency of in-lab and at-home approaches to sleep diagnostics, potentially extending the reach of sleep exper-

tise beyond specialty clinics.
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INTRODUCTION

Common sleep disorders such as sleep apnea, insomnia, and restless

legs syndrome impact tens of millions of adults and are significant

risk factors for cardiometabolic and neurodegenerative diseases, im-

paired performance, and decreased quality of life.1–7 The population

health impact is enormous, including medical and psychiatric mor-

bidity, motor vehicle accidents, decreased work productivity and

quality of life, and increased mortality.7,8 Timely and accurate

diagnosis of sleep disorders is critical to pursue appropriate treat-

ment and improve health outcomes,9 yet most sleep disorders re-

main undiagnosed.10,11 Recent advances in portable monitoring

technology have increased access to sleep diagnostics, yet both

at-home and the gold-standard in-lab polysomnography (PSG) still

require manual scoring.

Previous attempts to automate diagnosis of sleep disorders have

generally relied on fewer than 100 PSGs from relatively homoge-

neous groups of healthy individuals.12 Models trained on such
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datasets are not likely to generalize well, because PSG signals vary

widely due to differences in demographics, medication effects, sleep

conditions, and medical conditions. We address this variability using

a data-driven approach based on 79 456 hours of clinical data from

10 000 nights of PSG recording. This real-world data, recorded over

8 years in a clinical sleep laboratory, makes our PSG analysis system

robust to physiologic variability between patients. Most prior

approaches involve preprocessing and extraction of carefully engi-

neered features before classification.12 Our system is trained end-to-

end, directly from labeled signals.

Deep neural networks, fueled by increases in computing power

and availability of large labeled datasets, have recently matched the

performance of medical experts in complex medical pattern recogni-

tion tasks such as visual diagnosis of dermatologic lesions13 and dia-

betic retinopathy.14 In this paper, we outline the development of a

Recurrent Convolutional Neural Network (RCNN) that matches

the performance of sleep experts in annotating overnight PSGs. No

prior study has simultaneously addressed all 3 key types of PSG in-

formation extracted by expert scorers: sleep stages, respiratory

events, and limb movements. Our system uses a unified deep net-

work architecture (RCNN) to accomplish all 3 tasks. Prior work,

for comparison, uses mainly small datasets, and mainly of healthy

adults.15–30

METHODS

Description of deep neural network development
Deep learning algorithms such as multi-layer perceptrons, convolu-

tional neural networks (CNN), and recurrent neural networks

(RNN) have been successfully applied to many domains to solve

challenging tasks. The most basic computation unit in neural net-

works is a perceptron which performs linear combinations of input

features followed by a nonlinear transformation. The standard deep

neural networks (DNN) consist of multiple layers of perceptrons,

which all fully connected across consecutive layers. To avoid dense

connections in DNN, CNNs introduces local connections and pa-

rameter sharing through convolution operations, which demon-

strated numerous successes in computer vision application such as

object recognition. RNNs are another extension of DNN that are

suitable for modeling sequential data such as natural language text

and time series. A detailed overview of various deep learning models

for analyzing medical data can be found at Xiao et al.31 Here, we

briefly describe the rationale of designing and developing deep neu-

ral networks for analysis of clinical sleep data. We initially used clas-

sical machine learning algorithms such as logistic regression and

random forest directly on expert defined features. However, the

resulting performance is not very high as shown in Supplementary

Table S2. Also, it often takes a lot of time and effort to carefully de-

velop expert defined features, since it requires domain expertise. On

the other hand, deep neural networks, such as a convolutional neu-

ral network, can extract better features and then pass those learned

features in a recurrent neural network to detect sleep stages over

time.

Dataset
The datasets used in this paper are from 2 sources: The Massachu-

setts General Hospital (MGH) sleep laboratory and the Sleep Heart

Health Study (SHHS), summarized in Supplementary Table S1. Per-

missions for the SHHS were obtained via the online portal: www.

sleepdata.org. The MGH Institutional Review Board approved

retrospective analysis of clinically acquired PSG data without requir-

ing additional consent. These 2 datasets consist of in-lab (MGH)

and at-home (SHHS) PSG recordings which include combinations of

electroencephalogram (EEG), respiratory signals, and electromyo-

gram signals (EMG). The MGH dataset was scored as part of rou-

tine clinical practice by certified sleep technicians using the

American Academy of Sleep Medicine (AASM) guidelines. The

SHHS dataset was scored using the Rechtschaffen and Kales (R&K)

guidelines. R&K scores are converted to AASM scores by combining

stages NREM 3 and 4, designated in AASM as the single stages N3.

The MGH dataset consists of a mixture of diagnostic, split night,

and titration protocols. The SHHS PSGs are all diagnostic. EEG

data is used for sleep staging, respiratory channels are used for ap-

nea detection, and, for the MGH set, and the bilateral leg EMG

channels are used for limb movement detection. The MGH dataset

and SHHS dataset have 2 EEG channels in common (central). All 4

respiratory channels are present in both datasets. Pressure trans-

ducer airflow (PTAF) and EMG channels are available in the MGH

dataset only.

Classification targets
Different target labels are modeled for the 3 scoring tasks.

1. For sleep staging, EEG signals are scored in non-overlapping 30-

second epochs according to AASM standards as one of 5 stages:

wake (W), rapid eye movement (REM) – R, non-REM stage 1

(N1), non- REM stage 2 (N2), and non-REM stage 3 (N3).

Thus, sleep staging is formulated as a 5-class classification

problem.

2. For respiratory event detection, we consider the following clas-

ses: obstructive apnea, central apnea, mixed apnea, and hypo-

pnea (defined using the 4% desaturation rule). We combine

these different respiratory event class labels into a single class

(apnea event), and; thus, we perform a binary classification, ie

presence or absence of apnea respiratory event, to mimic the

clinical use of the composite apnea-hypopnea index (AHI).

Event detections are performed in consecutive, non-overlapping

1-second intervals. Event detections in consecutive time win-

dows are merged into a single “apnea event” in order to calcu-

late the AHI, defined as the total number of apneas during sleep,

divided by the number of hours of sleep (ie in sleep stage N1,

N2, N3, or R). Calculation of AHI depends on the results of au-

tomated sleep staging, needed to calculate the total sleep time

(the sum of N1-N3 and R).

3. For limb movement detection, EMG signals are marked for pres-

ence or absence of limb movement events. The majority (>90%)

are periodic, and, because from a signal standpoint isolated limb

movements have similar properties, we combine them into a sin-

gle label. Limb movement detection is, therefore, formulated as

a binary classification problem when we detect the presence or

absence of limb movement events. Limb movement detections

are performed in consecutive, non-overlapping 1-second inter-

vals. Like AHI detection, limb movements detected in consecu-

tive seconds are merged into a single event. Limb movement

burden is quantified by the limb movement index (LMI), the

number of limb movements per hour of sleep. Calculation of

LMI for AHI depends on the results of automated sleep staging.

Data preparation
EEG data in PSG consists of signals from 6 channels, ie F3, F4, C3,

C4, O1 and O2, each referenced to the contralateral mastoid.
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In Supplementary Figure S1, we show a schematic of the locations

of the electrodes. While the MGH dataset has 6 electrodes, the

SHHS dataset has only 2 EEG electrodes (C3, C4). Both MGH and

SHHS datasets contain the following respiratory signals: chest belt,

abdomen belt, SaO2 (oximetry), and airflow. The pressure trans-

ducer airflow (PTAF) present in the diagnosis phase of MGH set is

not used in the final model, since including it yields no significant

performance improvement (data not shown). The left and right ante-

rior tibialis (LAT and RAT) EMG channels for limb movement de-

tection are present in MGH dataset only. The sampling frequency of

the data is 200Hz.

We use both raw waveform and spectrogram representations of

the data as inputs for our models. For the spectrogram representa-

tion of EEG and EMG data, we segment each 30-second epoch into

29 subepochs of 2 seconds duration with 1-second overlap. For each

2-second subepoch, we use Thomson’s multitaper method to esti-

mate the power spectral density (PSD), with the following parame-

ters: window length, T¼2s, time-bandwidth product, TW ¼ 3,

number of tapers K¼5.32–34 For respiratory signals, the parameters

are T¼30s, TW¼1.5, K¼2.

We split our datasets into train and test sets using 90/10 percent-

age splits of the original cohorts. Model performance is evaluated

on the test sets. There is no overlap between test and training sets.

As the MGH dataset has 10 000 PSGs, the train set consists of 9000

cases, and the test set consists of 1000 cases. The SHHS dataset has

5804 PSGs, so the train set has 5224 and the test set has 580 cases.

Sample selection
The sleep staging task has five different target classes: N1, N2, N3,

R and W. These classes have approximately 19 million, 75 million,

22 million, 21 million, and 18 million 30 second epochs from the

MGH dataset for N1-N3, R and W, respectively. Similarly, the

SHHS dataset consists of approximately 11 million, 46 million, 9

million, 8 million, and 11 million, 30 second epochs for N1-N3, R

and W, respectively. For sleep apnea detection, the MGH dataset

contains approximately 2 million respiratory events. Similarly, the

SHHS dataset has about 650 000 apnea events. For limb movement

detection, the MGH data has approximately 2.7 million limb move-

ment events.

Training algorithms
We combine two different primary types of neural networks in all

experiments. We use a convolutional neural network (CNN) and re-

current neural network (RNN). We refer to the combination of these

models as RCNN. The combination of CNN with RNN enables us

to extract features from raw data using the CNN and to model long-

range temporal dependencies present in the data with the RNN. The

CNN module contains 2 filter sizes (100 and 200 dimensions) to

capture patterns across different time scales, which we empirically

find to have better performance than just a single filter size.

The details of the RCNN architecture used in our experiments

are presented in Supplementary Figure S1. For sleep staging, the in-

put for the CNN is the spectrogram representation of the EEG sig-

nal. Similarly, for AHI detection, we provide 60 second blocks of

respiratory signal data or spectrogram representation of these chan-

nels. For the limb movement detection task, we provide 60 second

blocks of EMG (LAT, RAT) raw waveform or spectrogram

representation to the CNN.

Our models are trained using backpropagation. We use cross-

entropy as the loss function to train the models. The categorical

cross-entropy loss is given by

Hy0 yð Þ ¼ �
X

i

y0 i logðyiÞ

where y is the predicted probability distribution and y’ is the true

distribution.

We adopt batch normalization (BN) after each convolution and

before activation.35 We initialize the weights as in36 and train all

neural networks from scratch. We use stochastic gradient descent

(SGD) with a mini-batch size of 100. The learning rate starts from

0.1 and is divided by 10 when the error plateaus. We use a weight

decay of 0.0001 and a momentum of 0.9. We perform 50 iterations

of random search over a set of parameter choices for hyper-

parameter tuning. All models are implemented using PyTorch

(http://pytorch.org/). All experiments are conducted on a server with

Intel Xeon E5-2640, 256GB RAM, four NVidia Titan X GPU, and

CUDA 8.0.

Scoring algorithms
Given an input sample, the trained model outputs a probability dis-

tribution over the possible target classes. In the sleep stage detection

model, the model provides the probability distribution over the 5

AASM sleep stages. Similarly, in the AHI and LMI detection tasks,

the model provides a probability that the sample is an apnea or a

limb movement event. We use a sliding window to combine adjacent

one-second output decisions to define individual apnea or limb-

movement events. By merging adjacent one second outputs, we com-

bine them into a single detected apnea or limb movement event.

This allows us to compare annotations from the RCNN directly

with those from experts, since experts label entire events (eg by

marking the beginning and ending of an apnea) rather than indepen-

dently labeling 2 second intervals. Expressing detections as single

merged events also allows us to calculate the clinically relevant

measures of apnea and limb movement abnormality, AHI (apnea

hypopnea index) and LMI (limb movement index), which are the

number of apneas or limb movements, respectively, per hour of

sleep.

Evaluation
To measure performance on sleep stage classification, we use the

overall classification accuracy, and classification accuracy broken

down by stage, shown as a confusion matrix. Element (i, j) of each

confusion matrix represents the empirical probability of predicting

class j given that the ground truth (expert label) is class i.

To measure performance on apnea classification, we use the cor-

relation value (r2) between the algorithm-predicted AHI and the

AHI computed from expert-scored PSGs, where AHI ¼ (Apnea þ
Hypopnea events)/hours of sleep. To measure performance in the

limb movement detection task, we calculate the correlation value

(r2) between the algorithm-predicted LMI and the LMI based on ex-

pert scoring of PSGs, where LMI ¼ (number of leg movement

events)/hours of sleep.

Cross dataset experiments
We evaluate our models for sleep stage detection and apnea detec-

tion in both the MGH and the SHHS datasets in the supplemental

material (Supplementary Tables S2–S4). In Supplementary Table S2

we present the accuracy of models trained using MGH data and
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tested on SHHS, trained using SHHS and tested using MGH, and

trained using the combination of MGH and SHHS and tested on

MGH or on SHHS. We also show the test performance of the MGH

model using only frontal channels to simulate sleep monitoring us-

ing home monitoring devices. Supplementary Table S3 shows the

AHI estimation in different test-train and limited-channel contexts.

Unlike multi-channel PSG data, home monitoring sensors often

come from a single channel such as abdomen or chest belt. To simu-

late home monitoring, we assess how well models trained on a single

channel (either abdomen or chest belt) perform in comparison to

models given access to multi-channel PSG data. Finally, Supplemen-

tary Table S4 shows model performance for limb movement detec-

tion on MGH data.

RESULTS

Our data consisted of 10 000 clinical PSGs performed at the Massa-

chusetts General Hospital Sleep Laboratory (MGH data), split into

9000 training and validation PSGs and 1000 PSGs held out for

testing.

We utilized a convolutional neural network (CNN) to model the

local spatiotemporal characteristics of 30-second PSGs, combined

with a recurrent neural network (RNN) to model long-range tempo-

ral dependencies. Figure 1 shows the RCNN system architecture.

Our dataset was composed of PSGs labeled by certified sleep tech-

nologists, following the American Academy of Sleep Medicine

(AASM) standards.37 The RCNN was trained to use 6 EEG channels

to assign to each 30-second PSG to one of 5 sleep stages: awake

(W), rapid eye movement (REM) sleep (R), and non-REM stages 1-3

(N1-N3). In addition, the RCNN was trained to use 5 respiratory

channels to detect apnea events, quantified as the apnea-hypopnea

index (AHI; events/hour of sleep), and limb movement events using

the leg EMG channels, quantified as the limb movement index

(LMI; events/hour of sleep).

For sleep staging, the RCNN achieved an overall accuracy of

87.5% [84.2, 90.9], which compares favorably to human expert

performance38,39 (Figure 2a). Also RCNN significantly

outperformed classical machine learning methods such as logistic re-

gression (accuracy 69.34%) and random forest (accuracy 74.52%)

as shown in Supplementary Table S2. Besides lower performance in

terms of accuracy, classical machine learning methods require

expert-defined features, which are not always available such as for

AHI and LMI prediction. AHI inferred by the RCNN strongly corre-

lated with expert scoring (r2¼ 0.85) (Figure 2b). Converting AHI

values into standard clinical categories of mild, moderate and severe

disease, the RCNN achieved an overall diagnostic accuracy of

88.2% [84.7, 91.4] (Table 1). Importantly, when the apnea severity

inferred by the RCNN disagreed with experts, misclassification was

mainly to an adjacent severity category (Figure 2c). We used the

desaturation criteria (rather than arousal criteria) for calculating

AHI events, as inter-rater reliability is higher for desaturation crite-

ria.40 The predicted LMI correlated strongly with expert scoring (r2

¼0.79; Figure 2d). This level of performance is comparable with ex-

pert performance, though annotation performance of limb move-

ments is less well studied, particularly in subjects with concurrent

sleep apnea.41

To further validate the RCNN’s generalization capability, we

evaluated the performance of sleep staging and sleep apnea detection

on an independent set of publicly available PSGs (SHHS data;

n¼5804; www.sleepdata.org). The SHHS utilizes limited-channel

EEG data (2 central channels), and respiratory effort, airflow and

oximetry channels, but does not include limb electromyogram sig-

nals (EMG). First, we tested the MGH-trained RCNN on 1000 ran-

domly selected PSGs from SHHS. To enable testing on SHHS, we

first retrained the sleep staging RCNN on the MGH training data

while allowing access to only 2 central EEG channels to mimic the

SHHS EEG configuration. For sleep staging the MGH-trained

RCNN, when tested on the SHHS testing PSGs, achieved an accu-

racy of 77.7% [74.3, 79.7]. Next, we applied the MGH-trained AHI

prediction model to the SHHS test set, which also demonstrated a

strong correlation with expert labels (r2 ¼0.77) [0.72, 0.79]. By

comparison, on the MGH test data, the limited-channel RCNN clas-

sified sleep stages with 81.9% [78.2, 84.9] overall accuracy, and

AHI with r2 ¼ 0.85 [0.83, 0.87].

(a) (b) (c) (d)

Figure 1. Deep RCNN layout for automated polysomnography analysis. a. Data are recorded during sleep by sensors that measure brain activity (electroencepha-

lography, EEG), eye movements (electrooculogram, and EOG), oronasal airflow, heart rhythm (electrocardiography, ECG), blood oxygenation (pulse oximetry),

respiration (chest and abdominal belts), and limb movements (limb electromyography (EMG), placed over the anterior tibialis muscles. b. Examples of some of

the signals and event labels provided by experts. Top: hypnogram showing sleep stages, and the corresponding spectrogram for one of the 6 EEG channels. Mid-

dle: Apnea events (black bars) and corresponding spectrogram for the chest best signal. Bottom: limb movement events (black bars) and corresponding spectro-

gram for one of the limb EMG signals. c. Close ups, showing details of the selected signals and labeled events. d. Architecture of the RCNN model. Signals

consecutive epochs (xi) are sequentially fed into a convolutional neural network module (CNN). The CNN output is fed into a bidirectional recurrent neural net-

work, which a sequence of inferred labels: sleep stages, apnea detections, and PLM detections. Details of the CNN architecture are provided in the supplemental

material.
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To compare generalization capabilities of RCNNs trained with

real-world clinical PSG data (MGH) vs standardized clinical trial

data (SHHS), we evaluated sleep staging and apnea detection in

cross-training experiments: train on MGH data, test on both MGH

and SHHS data; then train on SHHS data, and test on MGH and

SHHS data. In all experiments, the PSG sets used for training and

testing are kept constant. Results are shown in Table 1 (with addi-

tional experiments shown in Supplementary Tables S2–S4). In all

cases, models trained with MGH data performed well on test sets

from both MGH and SHHS, confirming the importance and

sufficiency of large heterogeneous datasets, even when they derive

from routine clinical practice settings, for robust model training.

We next investigated the features learned by the RCNN for scor-

ing sleep stages (Figure 3a), AHI (Figure 3b), and LMI (Figure 3c),

using t-SNE (t-distributed Stochastic Neighbor Embedding).42 Each

point represented a signal segment projected from the 124-dimen-

sional high-dimensional output of the RCNN’s last hidden layer

onto a plane. The RCNN has learned to form well-separated clusters

of points from signals belonging to the same annotation classes.

DISCUSSION

Our results demonstrate human-level performance of deep learning

algorithms trained on large PSG datasets to replicate the primary

categories of scoring: stages, sleep apnea, and limb movements. Our

large PSG sample size allows cross-validation steps during training

(to minimize the risk of model overfitting), and testing on an inde-

pendent, held-out set of 1000 PSGs to obtain unbiased estimates of

performance. The clinical heterogeneity and lack of special selection

or exclusion of cases supports the generalization of performance

when trained on the MGH set and tested on the independent re-

search cohort of the SHHS. External validation of this kind is crucial

to address a common criticism of scoring automation: will the algo-

rithm performance be robust when applied broadly?

Our results also address one form of conventional wisdom that

careful standardization of PSG recording conditions and homogene-

ity of patient characteristics are critical to obtaining generalizable

algorithms. Our results suggest that, given sufficiently large datasets,

training on real-world data can yield human level performance and

generalize to standardized data sets (such as SHHS). The capacity to

generalizability is a pre-requisite for algorithm deployment in real-

world settings, especially in medical diagnostics that routinely en-

counter heterogeneous pathophysiology. Further, the availability of

clinical datasets obtained in routine practice in principle far exceeds

that of research studies, and our results provide motivation to utilize

such “in-hand” data to develop predictive algorithms.

Feature selection is another key problem in the application of

supervised machine learning. Although it is natural to assume that

(a) (b) (c) (d)

Figure 2. Classification performance of the RCNN for polysomnography scoring. The labels inferred by the RCNN are tested against the annotations of medical

experts. a. Confusion matrix for sleep staging, showing RCNN agreement with expert scores. Sleep experts score each 30 second EEG epoch as 1 of 5 sleep

stages: awake (W), non-REM stage 1, 2, or 3 (N1, N2, and N3), or rapid eye movement sleep (R). The RCNN outputs a probability for each stage, and we compare

the highest probability class against the expert’s score for each epoch. The RCNN’s labels show >80% agreement for all classes except N1, comparable to levels

of agreement between human experts. b. Sleep apnea events are detected by the RCNN in 1 second epochs, and the AHI (apnea hypopnea index: number of

RCNN-detected apnea events per hour of sleep) is plotted against the AHI estimated from expert PSG scores. The correlation between expert and RCNN AHI

scores is shown. c. Confusion matrix for the classification of AHI severity (none, 5; mild, 5-15; moderate, 15-30; severe, >30 per hour), comparing AHI scores in-

ferred by the RCNN against expert scores. d. Limb movement index (LMI) are detected in consecutive one second intervals, and the total burden of lime move-

ments, summarized as the limb movement index (LMI, number of lime movements per hour of sleep). The LMI inferred by the RCNN is compared with scores

from sleep experts.

Table 1. Generalization experiments when applying models trained

on clinical data (MGH) to the MGH and SHHS test sets

Task Experiment setup Accuracy Kappa

Sleep staging Train and test on

MGH (6 channels)

87.5% 80.5

Train on MGH

and test on MGH

(2 channels)

81.9% 76.4

Train on MGH

and test on SHHS

(2 channels)

77.7% 73.2

Sleep apnea

detection

Accuracy r2 (AHI)

Train and

test on MGH

88.2% 0.85

Train on MGH

and test on SHHS

80.2% 0.77

Limb movement

detection

Accuracy r2 (LMI)

Train and test

on MGH data

84.7% 0.79

Note: Accuracy is measured as the percent agreement between labels in-

ferred by the algorithm and expert labels. For apnea and limb movement de-

tection, accuracy is measured both by the correlation (r2 ) with expert scores

of the algorithm’s estimate of the number of events per hour of sleep (apnea-

hypopnea index (AHI), or limb movement index (LMI)), and by the expert-al-

gorithm agreement of regarding categorization of the event burden as mild,

moderate or severe. Cohen’s Kappa is provided as a complementary measure

of accuracy which takes into account the probability of agreement occurring

by chance.
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features informed by experts with domain knowledge, sometimes de-

scribed as “feature engineering,” ought to be an important component

in developing machine learning algorithms, our results shows that

deep learning models can learn better features than human in this spe-

cific task. Specifically, we train our deep learning algorithms using ge-

neric features, as well as direct time series data, and obtain human-

level scoring accuracy. The advantages to this approach include the

minimization of bias, as well as reduced burden on human capital,

which can be spent more efficiently on preparation and interpretation.

In addition to automation of in-lab scoring, the accuracy of por-

table sleep recording systems stand to directly benefit from reliable

and robust algorithms. Because portable systems reach a far larger

audience, whether clinical or consumer is in nature, robust and scal-

able scoring is necessary, if only to accommodate the increased

scale. The minor reduction in accuracy when moving from 6- to 2-

channel EEG for staging, and from 5 respiratory channels to 1 for

sleep apnea, is still on par with the level of accuracy attained by

experts. These results suggest that accurate automated analysis of

sleep stages and apnea is attainable with limited-channel devices

such as those available for at-home use. Improvement of classifica-

tion with limited channels has important implications for clinical

diagnostics such as home sleep apnea testing kits,43 as well as con-

sumer facing devices,44 which the Food and Drug Administration is

showing increasing willingness to consider for some medical uses

(for example, arrhythmia detection).45

In summary, our deep network is accurate and scalable, and can

be deployed on multi-channel (eg in-lab PSG) or limited channel (eg

portable) acquisition systems. The potential for substantial clinical

impact includes broadening the reach of clinical sleep medicine, aug-

menting clinical decision-making for sleep specialists, and improving

the accuracy and reliability of at-home portable systems. Further

work should focus on integrating this new technology into specific

monitoring devices and optimizing performance in real-world clini-

cal settings. The ability to automate overnight PSG scoring with the

accuracy of a sleep specialist has the potential to expand access to

essential medical care.
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Figure 3. t-SNE visualization of the last hidden layer representations in the

CNN. Here we show the CNN’s internal representation of a) sleep stages, b)

apnea events, and c) limb movements. Points are obtained by applying t-

SNE, a method for visualizing high-dimensional data, to the last hidden layer

representation in the RCNN for each model. Colored points represent the dif-

ferent event types, showing how the algorithm learns to cluster the signals.

Waveforms near show typical examples from each cluster.
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ABBREVIATIONS

AASM: American Academy of Sleep Medicine

AHI: apnea-hypopnea index

CNN: convolutional neural network

EEG: electroencephalogram

EMG: electromyogram

EOG: electrooculogram

LMI: limb movement index

MGH: Massachusetts General Hospital

NREM: non-rapid eye movement

PSG: polysomnogram

R&K: Rechtschaffen and Kales

REM: rapid eye movement

RNN: recurrent neural network

SHHS: Sleep Heart Health Study
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