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Abstract

Background: Glossina pallidipes is a haematophagous insect that serves as a cyclic transmitter of trypanosomes causing
African Trypanosomiasis (AT). To fully assess the role of G. pallidipes in the epidemiology of AT, especially the human form
of the disease (HAT), it is essential to know the microbial diversity inhabiting the gut of natural fly populations. This study
aimed to examine the diversity of G. pallidipes fly gut bacteria by culture-dependent approaches.

Results: 113 bacterial isolates were obtained from aerobic and anaerobic microorganisms originating from the gut of G.
pallidipes. 16S rDNA of each isolate was PCR amplified and sequenced. The overall majority of identified bacteria
belonged in descending order to the Firmicutes (86.6%), Actinobacteria (7.6%), Proteobacteria (5.5%)and Bacteroidetes (0.
3%). Diversity of Firmicutes was found higher when enrichments and isolation were performed under anaerobic
conditions than aerobic ones. Experiments conducted in the absence of oxygen (anaerobiosis) led to the isolation of
bacteria pertaining to four phyla (83% Firmicutes, 15% Actinobacteria, 1% Proteobacteria and 0.5% Bacteroidetes, whereas
those conducted in the presence of oxygen (aerobiosis) led to the isolation of bacteria affiliated to two phyla only (90%
Firmicutes and 10% Proteobacteria). Phylogenetic analyses placed these isolates into 11 genera namely Bacillus,
Acinetobacter, Mesorhizobium, Paracoccus, Microbacterium, Micrococcus, Arthrobacter, Corynobacterium, Curtobacterium,
Vagococcus and Dietzia spp.which are known to be either facultative anaerobes, aerobes, or even microaerobes.

Conclusion: This study shows that G. pallidipes fly gut is an environmental reservoir for a vast number of bacterial species,
which are likely to be important for ecological microbial well being of the fly and possibly on differing vectorial
competence and refractoriness against AT epidemiology.

Keywords: Facultative anaerobes, Aerobes, Microaerobes, Bacterial diversity, Gut, Sleeping sickness, Glossina pallidipes,
Tanzania

Background
Human African Trypanosomiasis (HAT) is transmitted
by tsetse flies which belong to the genus Glossina. To be
transmitted, the parasite (trypanosome) must first be
established in the fly midgut, after an infective blood
meal, and then mature in the salivary glands or mouth-
parts, depending on the trypanosome species [1, 2]. The

success of the establishment and the maturation of try-
panosomes play a key role in the disease transmission
cycle. However the capacity of the fly to be infected and
transmit trypanosomes, depends on several factors such
as the tsetse fly species, the genetic variability within a
given species, and the presence of the symbiotic micro-
organisms in the fly. The factors are important and in-
fluence the vector competence of tsetse flies [3].
It has been documented by Soumana et al. [4], Lindh

& Lehane, [5] that tsetse midguts contain various micro-
organisms which include pathogens and others which
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may be useful to the fly. They include symbionts (e.g.
Sodalis, Wigglesworthia and Wolbachia spp) as well as
the salivary gland hyperplasia virus [6] and the parasitic
nematodes (e.g. Hexamermis glossinae) [7]. Tsetse flies
are highly depended on their microbial flora for provid-
ing nutrients that are not supplied by their restricted
diet of vertebrate blood. In recent years, there has been
an increased research interest on midgut microbial flora
and their likely role to be played in the refractoriness of
tsetse flies and in the epidemiology of African Trypano-
somiasis. It was shown that the midgut of tsetse flies
contained a diversity of microorganisms depending both
on the tsetse species or sub species and the geographic
origin of the flies [8, 9]. Further research on bacteria
inhabiting four fly species namely Glossina palpalis pal-
palis, G. pallicera, G. nigrofusca and G. caliginea showed
the occurrence of bacteria belonging to Proteobacteria,
Firmicutes, and Bacteroidetes phyla [10]. Phylogenetic
analyses basing on 16S rNA gene sequences revealed
that they belongedto the genera Acinetobacter, Entero-
bacter, Enterococcus, Providencia, Sphingobacterium,
Chryseobacterim, Lactococcus, Staphylococcus, and
Pseudomonas [10]. Other studies on tsetse collected
from East Africa (Kenya) showed the dominance of
bacteria within the Firmicutes and especially those
belonging to the genus Bacillus. Others were members
of the Actinobacteria, Beta – and Gammaproteobacteria
[5, 10]. Here we report on the culturable diversity of
bacteria from the gut of Glossina pallidipes species col-
lected from the non HAT (non sleeping sickness) area
along the coastal area of Tanzania, Tanga region.

Methods
Description of the tsetse species, Glossina pallidipes
Glossina pallidipes is one of the tsetse species which
transmits African Trypanosomiasis. In Tanzania, G. pal-
lidipes is widely distributed, hence of economic import-
ance in the epidemiology of African Trypanosomiasis.
The disease is a stumbling block for diversification of
agricultural activities as well as socio economic well be-
ing of rural areas. G. pallidipes occurs in all belts of the
country covering those areas that are human African try-
panosomisasis active foci, silent foci as well as in the
areas where the disease has never been recorded.

Trapping of tsetse species
Tsetse flies were trapped using 6 biconical traps [11] bai-
ted with acetone, during the month of October 2014
when it is normally hot and humid with short rains in
the area; Temperatures and the relative humidity of 25 –
29 °C and 76–84% respectively. Collected flies were sam-
pled from a non HAT area (site) Mgambo, Kabuku ward
in Handeni (Tanga region) district and were transported
to the laboratory for sorting them into species and only

non teneral were selected using the tsetse identification
manual [12] into species.
Glossina pallidipes was the only species trapped hence

dissection for midgut collection was restricted from this
tsetse specie.

Microbial isolation, PCR amplification and sequencing
78 live G. pallidipes were dissected and midguts re-
moved. Dissection was carried out after flies had been
surface sterilized (once with 5% sodium hypochlorite
and twice with 70% ethanol). Random selection was
made to include both males and female non teneral
tsetse flies. The midgut of each fly was sterilely dissected
under a hood and ground with sterilized pestle. 40 mid-
guts were cultured under aerobic condition and 38
midguts were cultured under anaerobic conditions using
roll tubes and culture media as already reported by Gei-
ger et al. [8, 10]. The gas phase of roll tubes contained
air for aerobic conditions, while that of roll tubes pre-
pared under anaerobic condition contained CO2. Experi-
ments were stopped after 4 days incubation at 26 °C
(room temperature). When positive growth was obtained
in liquid culture media after three to seven days as
observed by the increase of optical density, they were
serially diluted in the same culture conditions with the
aim to obtain axenic cultures. Culturing was one gut per
tube. For this purpose, the last positive serial dilutions
were streaked (from each gut) onto solid medium using
Petri dishes, for aerobes (Luria Berthani /agar medium)
and for anaerobes (Mitsuhashi-Maramorosch medium/
blood/bovine foetal serum /agar). After obtaining indi-
vidual colonies, the process of purification was under-
taken as previously described [10]. In some cultures,
more than one colony were picked per fly gut, but pick-
ing of individual colonies was based on morphology and
care was made to ensure that all colonies from all fly
midguts were included for further analysis. A total of
113 bacteria colonies were picked for further analysis
and care was made to ensure bacteria colonies picked
were recorded in order to trace the fly number and thus
fly midgut; and whether the initial culture was by aer-
obic or anaerobic condition. The 16S rRNA gene of each
of the 113 isolates was amplified using a PCR reaction as
described by Geiger et al., [10]. The PCR products for all
bacteria colonies were sent to Bioneer (South Korea) for
sequencing using three primers F1(5′-CTC-CTA-CGG--
GAG-GCA-GCA-G-3′), Fd1 (5′-AGA GTT TGA TCC
TGG CTC AG-3′) and Rd1 (5′-AAG GAG GTG ATC
CAG CC-3′). The amplification was done using F1 and
Rd1 which produces a fragment of about 1400 bp. The
primers F1, Fd1 and Rd1 were again used for sequencing
a fragment of about 600-800 bp each.
Obtained sequences were blast searched on NCBI da-

tabases and phylogenetic trees [13] and assembled using
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the PHYML program [14]. The blast search results and the
phylogenetic trees allowed the identification of bacteria re-
ported in the study. The datasets used and/or analysed dur-
ing the current study are available from the publically
available repository i.e. “https://dataverse.harvard.edu/“.

Results
A total of 91 isolates cultivated under anaerobic culture
conditions were obtained from 38 midguts and gener-
ated 88 sequences (3 isolates generated no sequences
from this culture); while only 25 sequences were ob-
tained after growth under aerobic conditions from 40
midguts. The largest groups of bacteria isolated from G.
pallidipes from this coastal area belonged to the Firmi-
cutes which accounted for 87% of total bacteria; followed
by Actinobacteria 7.7%; Proteobacteria (5.5%) and Bac-
teroidetes 0.3% (Table 1).
A more diverse bacterial population was obtained

under anaerobic conditions as compared to aerobic ones
(Tables 1 and 2). Members of four bacterial phyla were
isolated from enrichments performed under anaerobiosis
(83% for Firmicutes, 15% Actinobacteria, 1% Proteobac-
teria and 0.5% Bacteroidetes) where as members of only
two phyla were isolated under aerobiosis (90% Firmi-
cutes and 10% Proteobacteria). Firmicutes and Proteo-
bacteria were recorded in both culture conditions. It is
noteworthy that Actinobacteria and Bacteroidetes iso-
lated were only retrieved under anaerobiosis (Table 1).

Diversity of bacteria in individual fly gut
When assessing the bacterial diversity per individual fly gut,
our results showed that it was common to find more than
one bacterial phylum inhabiting the same fly gut. Colony
bacteria were numbered according to fly gut number and
the sequences generated were according to the bacteria
numbers which directly related to the fly number. For in-
stance, Actinobacteria and Firmicutes were commonly
found in the same gut (fly gut numbers 1, 2, 5, 14, 15, 17,
18, 19, 22, 23, 24 and 25). Firmicutes and Proteobacteria
was jointly recorded in fly gut number 2 and 10. Only one
fly gut number 2 had three different bacteria phylum and
that is Firmicutes, Proteobacteria and Bacteroidetes (Fig. 1).
15 flies (20%) had a single occurrence of a bacterial phylum

(See numbers 3, 4, 6, 7, 8, 9, 11, 12, 13, 15, 16, 20, 21, 25,
26, 27 in Fig. 1) pertaining to the Firmicutes which isolation
resulted from experiments conducted under anaerobic con-
ditions. The single dominant phylum isolated from fly guts
in the presence of oxygen was Firmicutes from 9 flies out of
10 and only one with Proteobacteria.

Impact of aeration on bacteria
Both aerobic and anaerobic techniques were used to en-
sure maximum harvesting of all bacteria found in the fly
guts. However, the results showed that a wider diversity
of bacteria was isolated under anaerobic conditions than
under aerobic condition (Table 2). Under anaerobic con-
ditions bacterial isolates were distributed within four
phyla including Firmicutes, Proteobacteria, Actinobac-
teria and Bacteroidetes; whereas in the presence of
oxygen, pure cultures pertained to only two phyla (Fir-
micutes, Proteobacteria). These results demonstrated
that isolation under anaerobic conditions was more effi-
cient probably mimicking the physico-chemical condi-
tions existing in the fly gut as the latter is sealed from
easy access to oxygen. Firmicutes and Proteobacteria
bacteria were found using both isolation methods, thus
suggesting that most of them should be considered as
facultative anaerobes, while members of the Bacteroi-
detes and Actinobacteria bacterias, appear to be anaer-
obes. Despite the fact that the majority members of
Actinobacteria are known to be aerobic, few of them,
such as Actinomyces israelii, can grow under anaerobic
conditions [15].

Discussion
The predicted role of isolated bacteria in relation to
tsetse refractoriness
In this study, we demonstrate through
culture-dependent studies that tsetse midguts are inhab-
ited by a wide diversity of bacteria. While in some guts
only one bacterial phylum is represented, other guts
contained bacteria pertainig to different phyla. Using
anaerobic conditions, we succeeded in isolating mi-
croorganisms within the Firmicutes, the Proteobac-
teria, the Actinobacteria and the Bacteroidetes. In
contrasts, under aerobic conditions of growth only
members affiliated to the Firmicutes and the Proteo-
bacteria were retrieved. All these isolates belonged to
different genera which are reported in Table 2. Al-
though the metabolical and ecological roles of some
isolated bacteria have been reported before, there are
no known roles. While all strains isolated have been
reported in Fig. 2, the 11 major known species were
placed as shown in various phylogenetic trees (Add-
itional files 1, 2, 3, 4, 5,6, 7, 8 and 9). The predictive
roles of these isolates are discussed below.

Table 1 Prevalence of occurrence of different bacteria phylum
per isolation conditions

Phylum Prevalence of occurrences (%) Overall
prevalence
(%)

Anaerobic Aerobic

Firmicutes 83 90 87

Proteobacteria 1 10 5.5

Actinobacteria 15 0 7.5

Bacteroidets 1 0 0.5
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Bacteria belonging to the FIRMICUTES (Staphylococcus
spp., Bacillus spp., Vagococcus spp.)
The most prevalent bacteria belonging to the Firmicutes
comprised Staphylococcus, Bacillus and Vagococcus spe-
cies. These are found worldwide and reside normally on
the skin and mucous membranes of humans and other
organisms.

The genus Staphylococcus
In this study the majority of the Staphylococcus spp. were
closely phylogenetically related (similarities of between 97
and 99%) to the following: S. arlettae; S. aureus; S. capitis;
S. caprae; S. carnosus; S. cohnii; S. condimenti; S. devriesei;
S. epidermidis; S. equorum; S. gallinarum; S. haemolyticus;

S. hominis; S. kloosii; S. lugdunensis; S. lutrae;; S. pasteuri;
S. petrasii; S. piscifermentans; S. devriesei; S. saprophyticus;
S. succinus; S. warneri; S. xylosus with similarities of
between 97 and 99%. Staphylococcus species are faculta-
tive anaerobes. They have previously been isolated in the
gut of Glossina palpalis palpalis [10], G.f. fuscipes [5], and
in malaria mosquitoes [16, 17]. Staphylococcus spp. are
generally pathogenic bacteria causing various diseases in
human by producing various factors that are defensive
against the host immune system, adhesive to host tissues,
and toxins that destroy host tissues [18]. In insects, bac-
teria belonging to this genus are prevalent in Lepidoptera
of the families Sphingidae and Noctuidae, where they
could contribute to digestion and development of the

Table 2 Taxonomic positioning of bacteria at the phylum and genus level isolated under aerobic and anaerobic conditions

Phylum Genera Counts of bacteria spp. isolated under anaerobic conditions
(n = 88)

Counts of bacteria isolated under aerobic conditions
(n = 25)

Firmicutes Bacillus 3 0

Vagococcus 0 1

Enterococcus 0 1

Staphylococcus 26 8

Proteobacteria Acinetobacter 1 0

Mesorhizobium 0 1

Paracoccus 1 0

Psychrobacter 1 1

Actinobacteria Microbacterium 4 0

Micrococcus 3 0

Arthrobacter 4 0

Corynebacterium 1 0

Curtobacterium 1 0

Dietzia 1 0

Bacteroidetes Flavobacterium 1 0

Fig. 1 Prevalence of bacterial types obtained per phyla per fly midgut under anaerobic conditions
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velvet bean caterpillar [19]. Some of Staphylococcus spp.
have proteolytic activity which is suggestive of their poten-
tial role of minimizing the harmful consequences of prote-
ase inhibitors from some of this insect host plants, such as
soybean [19]. Staphylococcus spp. are also widely present
in other Lepidoptera, (Hyles euphorbiae [20], in mosqui-
toes [21]; wood-feeding termite (Reticulitermes flavipes
[22]; in G. p. palpalis [9]. Previous results demonstrated
that a core microbial community exists in the gut in other
pest insects (Spodoptera littoralis and Helicover paarmi-
gera), which may contribute to the insect physiology.
On the other hand, however, insect physiology and
food can significantly influence some bacterial species
in the gut. In addition, Staphylococcus spp. from the
gut might also serve as a reservoir of microorganisms
for ever-changing environments [20]. Some Staphylo-
coccus spp.have been isolated from the gut of house
flies (Musca domestica) [23].

The genus Bacillus
The second group consisted of Bacillus species. These
are rod-shaped Gram-positive bacteria, which can be ei-
ther be obligate aerobes, or facultative anaerobes (Table
1); they are important pathogens, causing anthrax and
food poisoning. Both Bacillus and Staphylococcus spp.
have been demonstrated to affect the survival of their
insect hosts and or insect vector competence as
reviewed extensively by Geiger et al., [10]. Bacillus spp.
have been isolated in the red fire ant [24]; in mosquitoes
[17], G. f. fuscipes [5], and in house flies [25]. These bac-
teria within the Firmicutes phylum are also responsible
for virulence factors [26].

The genera Vagococcus and Enterococcus
Other species within the Firmicutes were the Vagococcus
and Enterococcus spp. and Vagococcus spp. that have
been isolated from midgut of Culex quinquefasciatus
mosquito and house flies [23] and green bottle flies [27].
The occurrence of Enterococcus spp. was noted in two
midguts only and occurred in association with Vagococ-
cus spp. These bacteria have been isolated from the gut

Fig. 2 Maximum-likelihood phylogenetic tree based on the
comparative analysis of 16S rRNA gene sequences showing the
relationships between Glossina isolated bacterial strains and the
respective other bacteria species: 16S rRNA-based tree reflecting the
phylogenetic relationships of staphylococci strains isolated by culture
of G. pallidipes midguts. The tree is based on a parsimony tree and a
data set containing all available almost complete 16S rRNA sequences
from isolated strains and selected reference of staphylococci as well as
Micrococcus agilis. The tree topology was corrected according to the
results of distance matrix as well as maximum-parsimony analyses (100
re-sampling). Visualisation of the tree was made with TreeDyn. The bar
indicates estimated sequence divergence
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of G. p. palpalis [4, 28]; red fire ant [24]; in Anopheles
stephensi [17].
The roles of Bacillus, Staphylococcus, Vagococcus and

Enterococcus spp. in tsetse flies (blood sucking insect)
are unknown and need to be further examined to pave
the way for developing novel pest control strategies.

Bacteria belonging to the PROTEOBACTERIA (Acinetobacter
spp.; Mesorhizobium spp.; Paracoccus spp.; Psychrobacter
spp.)
Some members of this phylum are known as
Gram-negative, aerobic and non-spore-forming bacteria
whereas others are anaerobes. They have been docu-
mented to display antiparasitic activity in the guts of in-
sects [29].

The genus Acinetobacter
These are potentially pathogenic opportunistic bacteria.
They have also been isolated from G. p. palpalis trapped
from Angola and Cameroon [8, 10]. In this study they
were isolated from G.pallidipes which is a savannah tse-
tse species. Acinetobacter spp. have also been reported
to inhabit guts of several insect species where they may
play various different roles including production of anti-
parasitic compounds and antiparasitic activity in the guts
of insects [29]. They are known to be responsible for (i)
complete development of Stomoxyx calcitrans fly larvae
[30], (ii) hemolysins, antibiotics, and hemagglutinin ac-
tivities as reviewed by Geiger et al., [8]. These bacteria
have also been reported to reside in the gut of G. p. pal-
palis and G. pallicera [10]. Acinetobacter spp. were also
isolated from the gut of Anopheles mosquitoes [17]. Low
populations of Acinetobacter spp. were also recorded in
G. pallidipes in Uganda [31].

The genus Mesorhizobium
Mesorhizobium spp. are Gram-negative soil bacteria
nitrogen-fixing species and mostly found on root nod-
ules. In this respect, its role in the gut of blood feeding
insect is not clear. However, besides root nodules, mem-
bers of this genus have been encountered at several oc-
casions in various ecosystems [32].

The genus Paracoccus
Paracoccus spp.are Gram-negative bacteria found in ei-
ther aerobic or anaerobic environments [33]. In this
study they were only isolated under anaerobic conditions
(Table 2). They are found in the environment as an in-
dustrial effluent [34]; as well as in Cayenne ticks [35];
however their role in the gut of blood feeding insect re-
mains to be elucidated.

The genus Psychrobacter
Psychrobacter spp. are cocci shaped aerobic bacteria but
surprisingly we were able to find them also under anaer-
obic cultures thus suggesting that some members of this
genus may also display a metabolism in the absence of
oxygen to be discovered (Table 2). The closest phylogen-
etic relative of our isolate in this study was Psychrobacter
pulmonis which was isolated from the lungs of the lamb
[36]. Their exact role in blood sucking insects is
unknown.

Bacteria belonging to the phylum ACTINOBACTERIA
(Microbacterium spp., Micrococcus spp., Arthrobacter spp.,
Corynebacterium spp., Curtobacterium spp., Dietzia spp)
Actinobacteria is a phylum of Gram-positive bacteria
playing an important role to humans because agriculture
and forests depend on their contributions to soil sys-
tems. In soil, they behave much like fungi, helping to de-
compose the organic matter of dead organisms so that
the molecules can be taken up anew by plants. In this
study the members of this phylum that were isolated
were found using anaerobic culture conditions (Table 2).
Some of them have been isolated from the gut of mos-
quitoes, e.g. Anopheles gambiae [16].

The genus Microbacterium
These are Gram- positive bacteria; mostly aerobic; but
weak anaerobic growth may occur in a wide range of en-
vironments including milk, dairy products, fresh beef,
poultry raw sewage, soil, activated sludge, and human
clinical specimens. Others are opportunistic pathogens.
In this study, we were able to isolate bacteria from the
tsetse fly gut having 100% similarity with Microbacter-
ium testaceum and lower similarities with Microbacter-
ium xylanilyticum (97%) Microbacterium flavescens
(98%). These bacteria have also been documented to
occur in the gut of larvae Anopheles stephensi [17].

The genus Micrococcus
They are Gram-positive bacteria found in a wide range
of environments, some of the members are generally
regarded as harmless saprophytes (non pathogenic) that
inhabit or contaminate the skin, mucosa, and perhaps
also the oropharynx. However, they can be opportunistic
pathogens for the immunocompromised individuals. On
human skin, they convert sweat odorless compounds
into sweat compounds with an unpleasant odor. These
bacteria have also been documented to occur in the gut
of adult Anopheles stephensi [17].

The genus Arthrobacter
These are Gram-positive bacteria commonly found in
the soil. They are known to degrade agricultural pesti-
cides. Bacteria of the genus Arthrobacter are thought to
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play a significant role in many ecosystems and affect
human welfare; they have been isolated from the gut of
Sub-cortical Beetle (Agrilus planipennis) [37]. However,
the association of these bacteria with the gut of tsetse
flies has not been described so far.

The genus Corynebacterium
Corynebacterium spp. are Gram-positive and aerobic
rod-shaped; widely distributed in nature in the micro-
biota of animals (including the human microbiota) and
are mostly innocuous. They are found in the mucosa
and normal skin flora of humans and animals with some
species being known for their pathogenic effects in
humans and other animals [38]. These bacteria have also
been documented to occur in the gut of adult and larvae
of Anopheles gambiae [17]. Low populations of these bac-
teria were also recorded in G. pallidipes from Uganda
[31]. Their role in the gut of a blood sucking insect and
especially tsetse flies is unknown.

The genus Curtobacterium
These are Gram-positive microorganisms which have
been recovered from soils andcause bacterial wilt in
some plants, especially beans [39]. They have been
isolated in the gut of Sub cortical Beetle (Agrilus pla-
nipennis) [37].

The genus Dietzia
Dietzia spp. are aerobic, Gram-positive bacteria with
some of the members being found in various environ-
ments including soil, deep sea sediment, soda lakes, and
marine aquatic life and from the gut of pupae of the ob-
ligate parasitic fly, Wohlfahrtia magnifica [40]. The dip-
terous larvae of this insect are obligate parasites of living
warm-blooded vertebrates causing myiasis in most do-
mesticated animals and an infestation of live and/or
dead organs and tissues of vertebrates. The bacteria
from this group have been isolated from the gut of the
larvae of the Japanese Horned Beetle (T. dichotomus)
and some are potential carrier by zoonotic and arthro-
pod vectors [41]. They have been isolated from the gut
of Aedes albopictus hence implicated as a suitable candi-
date for paratransgenesis [42]. However, the role of in
blood sucking insects is still unknown hence further in-
vestigation is required.

BACTEROIDETES (Flavobacterium spp.)
The genus Flavobacterium
In this study, the Flavibacterium isolates were facultative
anaerobic bacteria and their prevalence was very low.
They are widely distributed in soils, sediments, and sea
water, as well as in the guts and on the skin of animals.
They represent the second most abundant microbiota in
the human gut [43]. Their role in the gut of bloodsucking

insects is not clear but it has been documented by Franca
et al, [44] as one of the bacterial types that were found
contaminating blood units. These bacteria have been re-
ported in the gut of G. p. palpalis [11] and in malaria
mosquitoes Anopheles gambie [16] which were collected
in Cameroon.

Conclusion
This study based on culure-dependent approaches re-
veals that the gut of tsetse fly possesses a rich bacterial
diversity encompassing a wide range of phyla within the
domain Bacteria. Yun et al [45] reported that the rela-
tive bacterial abundance in the gut varies according to
the environmental habitats of the insect and is also asso-
ciated with thein situ level of oxygen. Bacterial diversity
is known to be higher in omnivorous insects than steno-
phagous (carnivores and herbivores) ones. Hence the
bacterial diversity in insects may be related to the food
types consumed. Further research is thus recommended
in order to unravel their role in epidemiology of African
Trypanosomiasis and to develop potential new anti-vector
strategies to definitively eliminate this deadly disease,
which is the goal for the future years.
The majority of the bacteria isolated from G. pallidipes

midgut isolated either under aerobic or anaerobic condi-
tions have already been found to be associated to insects
in general and in tsetse flies in particular. In this respect,
we expect them to play a significant ecological role in
the digestive tract of the latter. However, such hypoth-
esis probably needs further investigation to be validated.
This role might be linked to defense mechanism against
harmful parasites contained in blood-meals or encoun-
tered on the skin surface of a host when piercing to ob-
tain a blood meal. Other predictive roles could be blood
degradation and assisting in digestive processes of blood
meal and other essential activities related to fly survival.
Further studies are necessary to know if any of the iso-

lates that we obtained may or not favor the establish-
ment of the parasites in the flies and hence could be
useful in the modulation of sleeping sickness disease and
also play a significant party in vector control.
In this study we have managed to cultivate bacteria

which point to the importance of metagenomic analysis
to analyze microbial diversity and dynamics by studying
the genomic content of the microbiota; coupled with
metataxonomic analysis of analyzing high-throughput
sequencing data, primarily from 16S rRNA gene sequen-
cing and DNAseq, to identify microorganisms and
viruses within a complex mixture [46]. In this respect,
there is clearly a need to characterize these microorgan-
isms and also others that we have isolated from the
tsetse fly’s gut to provide evidence of their metabolic fea-
tures and therefore understand the ecological role that
they may play in situ. We may expect also from such
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studies to have the opportunity to describe novel bac-
teria at the species or genus level.

Phylogenetic trees of isolated bacteria
Microbacterium spp. appear as strains 46, 47, 51 and 68;
Micrococcus spp. as strain 66; Paracoccus spp. as strain
27; Vagococcus spp. strains 108, 110; Acinetobacter
spp. as strain 5; Arthrobacter spp. as strains 61 and
84; Bacillus spp as strains 16 and 56; Curtobacterium
spp. as strain 1; Dietza spp. as strain 15 and Mesorhi-
zobium spp. as strain 100 (individual trees of isolated
species will appear as Additional files 1, 2, 3, 4, 5,6,
7, 8, 9 and 10). However, all these are included in the
phylogenetic tree Fig. 2.

Additional files

Additional file 1: Maximum-likelihood phylogenetic tree based on the
comparative analysis of 16S rRNA gene sequences. Phylogenetic position
of strains 46, 47, 51 and 68 within the genus Microbacterium spp.,
Arthrobacter globiformis (M23411) was used as the out-group. Bootstrap
values (1000 tree replications) higher than 60% are indicated at the nodes
of the tree. (PDF 44 kb)
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