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The process of recombination between variable (V), diversity (D), and joining (J) immunoglobulin (Ig) gene segments de-

termines an individual’s naive Ig repertoire and, consequently, (auto)antigen recognition. VDJ recombination follows prob-

abilistic rules that can be modeled statistically. So far, it remains unknown whether VDJ recombination rules differ between

individuals. If these rules differed, identical (auto)antigen-specific Ig sequences would be generated with individual-specific

probabilities, signifying that the available Ig sequence space is individual specific. We devised a sensitivity-tested distance

measure that enables inter-individual comparison of VDJ recombination models. We discovered, accounting for several

sources of noise as well as allelic variation in Ig sequencing data, that not only unrelated individuals but also human mono-

zygotic twins and even inbred mice possess statistically distinguishable immunoglobulin recombination models. This sug-

gests that, in addition to genetic, there is also nongenetic modulation of VDJ recombination. We demonstrate that

population-wide individualized VDJ recombination can result in orders of magnitude of difference in the probability to

generate (auto)antigen-specific Ig sequences. Our findings have implications for immune receptor–based individualized

medicine approaches relevant to vaccination, infection, and autoimmunity.

[Supplemental material is available for this article.]

The diversity, and thus antigen recognition breadth, of adaptive
immune receptor (AIR) repertoires (AIRR) is influenced by the sta-
tistics of V, D, and J gene (and allele) segment recombination (Chi
et al. 2020). Specifically, germline genes (and alleles), as well as
their frequencies, have been linked to antibody neutralization
breadth in infection (Avnir et al. 2016; Sangesland et al. 2020;
Mikocziova et al. 2021a), the occurrence of precursor sequences
of broadly neutralizing antibodies in the context of vaccine genet-
ics (Lee et al. 2021), and autoantigen-specific binding in autoim-
munity (Raposo et al. 2014; Parks et al. 2017).

With the advent of adaptive high-throughput AIRR sequenc-
ing (Weinstein et al. 2009), it has been observed that certain germ-
line genes, and consequently recombined AIRs, occur more often
than others (Weinstein et al. 2009; Rubelt et al. 2016; Greiff
et al. 2017a; Elhanati et al. 2018; Dupic et al. 2021). It has been
shown that the occurrence of naive AIRs could be predicted using
a mathematical (explicit Bayesian or deep generative) model of
VDJ recombination (Elhanati et al. 2018; Marcou et al. 2018;
Olson and Matsen 2018; Davidsen et al. 2019; Remmel and
Ackerman 2021)—hereafter called repertoire generation model
(RGM). The Bayesian RGM parameters (RGMPs) correspond large-
ly to those biological parameters that determine the biological

mechanisms of VDJ recombination (Fig. 1A). Importantly,
RGMPs enable computing the generation probability (Pgen) of a
given AIR sequence. Although previous reports suggested that
RGMP values differ across individuals (Marcou et al. 2018; Briney
et al. 2019), the extent of this potential variationwas neither quan-
tified nor statistically verified (Fig. 1B). Inter-individual RGMP var-
iation would imply that Pgens for identical AIR sequences differed
across individuals. If this hypothesis is correct, it will implicate
that each individual is biased toward exploring different AIR se-
quence spaces (Fig. 1C), which in turn has implications for the sus-
ceptibility to autoimmunity, cancer, and infectious diseases. For
example, potentially important precursor AIRs for vaccine re-
sponses (Sangesland et al. 2019; Lee et al. 2021) or potentially
damaging autospecific AIRs would occur more or less often de-
pending on the individual’s RGM.

In this study, we aimed to measure the magnitude of the in-
ter-individual RGMP variation and its effect on the immunoglob-
ulin (Ig) sequence Pgens.

Results

A method for quantifying the similarity between repertoire

generation models

Several studies have compared AIRRs across individuals using fea-
tures such as germline gene usage (Glanville et al. 2011; Rubelt
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et al. 2016; Bolen et al. 2017), clonal overlap (Weinstein et al. 2009;
Madi et al. 2014; Greiff et al. 2017a), clonal expansion (Stern et al.
2014; Greiff et al. 2015), and sequence similarity (Arora et al. 2018;
Miho et al. 2018, 2019). However, all these features describe post
VDJ recombination characteristics. So far, there is no sample
size–independent measure for comparing across individuals the
entirety of RGMP, such as germline gene segment choice probabil-
ities or deletion and insertion profiles (for exact numbers of param-
eters, see Methods, “Using JSD to compare RGMPs”). RGMPs can
be estimated from AIRR-seq data via probabilistic modeling of
VDJ recombination (Marcou et al. 2018): For each nucleotide se-
quence, the algorithm considers all plausible recombination sce-
narios (see Supplemental Fig. S13) of how this sequence could be
generated, and the parameters of the model (RGMPs) are opti-
mized tomaximize the likelihood over all sequences in the sample.
It is important to mention that this method, as well as previous
studies onVDJ recombinationmodeling, implicitly assumes stabil-
ity of the RGMPs within a certain time window (in the Discussion
section, we consider potential limitations of our analysis implied
by this assumption).

Previously, Marcou and colleagues (2018) used the Kullback–
Leibler divergence (KLD) (Kullback and Leibler 1951) for compar-
ing the RGMP values inferred from a synthetic AIRR with those
used to generate that synthetic AIRR. The investigators found
that the KLD decreased with increasing sample size, indicating, ac-
cording to the investigators, that the more sequencing reads were
used for inference, the higher the inference precision. In this work,
we favored the Jensen–Shannon divergence (JSD) as to compare in-
dividually inferred RGPs, which is a smoothed symmetric version
of the KLD. The square root of the JSD has the advantage of satis-
fying the triangle inequality (see Methods, “Using JSD to compare
RGMPs”), enabling the computation of a relative distance between
the RGMPs of any two repertoires (e.g., from different individuals
or subsamples of the same individual’s repertoire). The KLD is suit-
ed for quantifying by how much a distribution P diverges from a
reference, perfectly known distribution Q (Marcou et al. 2018),
whereas the JSD is designed to be used in a symmetric setting,
that is, with two arbitrary distributions. The JSD has previously
also been used for comparing TCR RGMPs inferred from 651 indi-
viduals with a “universal” RGM, inferred from TCR sequences
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Figure 1. Comparison of AIR repertoire generationmodels. (A) The process of recombining variable (V), diversity (D), and joining (J) immunoglobulin (Ig)
gene segments determines an individual’s naive Ig repertoire and, consequently, (auto)antigen recognition. VDJ recombination follows probabilistic rules
that can be described statistically as repertoire generation models (RGMs). So far, it remains unknown whether VDJ recombination rules differ across in-
dividuals. We set out to resolve this question by developing a distance measure that enables the quantification of RGM parameter (RGMP) similarity.
(B) Accounting for several sources of noise in murine and human Ig sequencing data (by leveraging various types of replicates), as well as allelic diversity,
(C ) we were able to implement a noise-aware, sensitivity-tested statistical test for comparing RGM similarity. We call our method desYgnator for DEtection
of SYstematic differences in GeneratioN of Adaptive immune recepTOr Repertoires (desYgnator). Using desYgnator, we found that replicate samples of the
same subject are consistently more similar to each other than to samples from other unrelated individuals or even monozygotic twins (or inbred mice)
indicating that not only genetic but also nongenetic factors contribute to the individualization of an RGM. We validated desYgnator by showing that
RGM did not differ across synthetic and experimental replicates. We quantified the implication of individual RGMs on Ig repertoire architecture in a
data set of approximately 100 human individuals by showing that the same (antigen-annotated) Ig sequence can have different generation probabilities
across individuals. Thus, the available Ig sequence space is individually biased, predisposed by the individual RGM.
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randomly drawn from individual samples (Sethna et al. 2020).
However, this study did not compare individual RGMP sets in a
pairwise fashion.

Because various sources of noise can arise in AIRR data
(Puelma Touzel et al. 2020; Desponds et al. 2021; Koraichi et al.
2021), we aimed to quantify their impact on the pairwise JSD of
RGMPs. We examined the selected potential sources of sample-as-
sociated noise by means of different types of replicates (Fig. 2):

1. Synthetic replicates (cyan curves), synthetic samples generated
using the same set of IGoR parameter values; these samples dif-
fer only by the unavoidable synthetic sampling noise and thus
allow for its quantification.

2. Data replicates (pale blue curves) subsampled without replace-
ment from the same AIRR FASTA file; these replicates differ
only by the data sampling noise.

3. Technical replicates (solid blue curves) for which the RNA sam-
ples were split and then sequenced independently; these sam-
ples differ owing to the technical noise and data sampling
noise. TheMOUSE_PRE andMOUSE_NAIVE data sets each con-
tain a pair of technical replicates (see Methods, “Experimental
immunoglobulin sequencing data”).

4. Biological replicates (violet curves) obtained from the same in-
dividual and differ owing to the biological noise (subsampling
of the B/T cells from the actual repertoire, different expression
levels), as well as owing to both technical noise and data sam-
pling noise. The HUMAN1 data set contains a single pair of bi-
ological replicates.

Samples from human monozygotic (MZ) twin subjects and
inbredmice (Fig. 2, red curves) and samples fromunrelated human
subjects (Fig. 2, salmon curves) both incorporate all types of noise
except the synthetic one. In addition, they incorporate potential
nongenetic (measurable in MZ twins and inbred mice) or genetic
systematic differences (measurable in unrelated human individu-
als). Comparing the distance between twin subjects with the dis-
tance between unrelated subjects allows for the discrimination
between nongenetic and genetic factors underlying the systematic
differences in AIRR generation.

Here, we developed a method for detecting such differences,
DEtection of SYstematic differences in GeneratioN of Adaptive im-
mune recepTOr Repertoires (desYgnator). To quantitatively dis-
criminate noise from systematic differences, we first investigated
how the JSD (hereafter “explicit JSD”) is impacted by each level
of noise with sample sizes from 1000 to 30,000 sequencing reads
(for the definition of sequencing read, seeMethods, “An approach
to building personalized RGMs that are robust to allelic variability
of IGHV genes”; for an explanation of sample size, see Methods,
“Using JSD to compare RGMPs”) on murine (Fig. 2B,E,
MOUSE_PRE and MOUSE_NAIVE data sets) and human (Fig.
2H,K, HUMAN1 and HUMAN2 data sets) samples.

Consistent with previous KLD estimations (Marcou et al.
2018), we found that the explicit JSD gradually decreases with an
increasing number of sequencing reads (Fig. 2B,E,H,K). Explicit
JSD values for data replicates, technical replicates, and biological
replicates were similar, suggesting that the noise introduced by
the technological processes (and even by the biological processes,
such as different expression levels) was negligible compared with
the data sampling noise.

However, RGMs inferred from samples of 30,000 sequencing
reads obtained from different subjects were all closer to each other
(i.e., the explicit JSD between them was lower) than to models in-
ferred from samples of 3000 sequencing reads obtained from the

same subject (Fig. 2B,E,H,K). Thus, the explicit JSD between in-
ferred RGMPs is sample size dependent (i.e., the RGMP estimates
are skewed differently for different sample sizes), suggesting either
that the inferred parameters are different or that the models have
different levels of complexity. Therefore, it is not recommended to
directly compare RGMP inferred from samples of different sizes.
Furthermore, the threshold for determining the statistically signif-
icant pairwise difference of RGMP sets is also sample size depen-
dent and thus may vary across sample sizes.

To compensate for this dependence of the thresholds on the
sample size, we introduced a normalized JSD (seeMethods, “Using
JSD to compare RGMPs”), which is obtained by dividing the ex-
plicit JSD of two RGMPs (inferred from samples of a certain size)
by the average explicit JSD between synthetic replicates (of the
same sample size). For the normalization, we computed the explic-
it JSD between 15 independently generated pairs of synthetic rep-
licates (we used RGMP inferred from the first sample of the
HUMAN2 data set to generate human synthetic replicates and
RGMP inferred from the first sample of the MOUSE_PRE data set
to generate mouse synthetic replicates). To validate that JSD nor-
malization allows compensating for potential dependencies of
the explicit JSD on sample size, we repeated all explicit JSD calcu-
lations for the normalized JSD (Fig. 2C,F,I,L).

The normalized JSD, unlike the explicit one, followed a clear
pattern: In the cases in which the underlying RGMPwere assumed
(and supposed) to be identical, that is, for all types of replicates rep-
resenting the same individual (Fig. 2C,F,I,L), the normalized JSD
remained on the same level with increasing sample size (cyan,
pale blue, solid blue, and violet). On the contrary, it increased
for the samples obtained from unrelated (Fig. 2I,L) and even
from twin subjects (Fig. 2C,F,L), salmon and red, respectively.
This analysis revealed (1) that the RGMP difference between indi-
viduals is distinguishable from the above-mentioned levels of
noise, provided the number of sequencing reads is sufficiently
high, and (2) that the normalized JSD, unlike the explicit JSD, en-
ables the detection of this difference via a sample size–indepen-
dent threshold. Of note, we expect the normalized JSD to
stabilize for a high enough sample size.

To investigate the identifiability of the inter-individual RGMP
difference, we derived a statistical test (see Methods, “A statistical
test for comparing repertoire generation models”) that compares
the JSD between two samples (technical or biological) to the expect-
ed level of noise from data replicates, and showed the associated P-
values in panels (Fig. 2D,G,J,M) related to other panels (Fig. 2C,F,I,
L), respectively. Altogether, using the developed statistical test (see
Methods, “Astatistical test for comparing repertoire generationmod-
els”), we failed to reject thenull hypothesis that the explicit and nor-
malized JSDs between RGMP sets of technical (for a sample size of
[1000, 3000, 10,000] sequencing reads) or biological (for all consid-
ered sample sizes) replicateswere higher than the difference between
RGMP sets of data replicates for all samples. This supports the state-
ment that both technical and biological noise were in most cases
dominated by the data sampling noise. When we tested the homo-
zygous twins andunrelated subjects in the sameway against the data
replicates, therewas a statistically significant difference (and even for
the sample size of 30,000 reads, the technical noise was negligible
when compared to the inter-individual difference). The test showed
that 1000 sequencing reads are sufficient to observe a significant dif-
ference (adjusted P-value<0.01) in the case of murine pre-/naive B-
cell data and human naive B cell data (Fig. 2D,G,J,M).

To measure the impact of genetic factors on the normalized
JSD, we computed the pairwise normalized JSD for five pairs of
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Figure 2. RGMPs are individual-specific independent of the degree of immunogenetic similarity between individuals. (A) Different sources of AIRR-seq
noise may arise impacting RGMP inference. To account for these sources of noise, different kinds of replicates are necessary. Specifically, biological repli-
cates (i.e., biological samples obtained from the same individual) allow for observing biological noise; technical replicates (an RNA sample that was split,
and the parts were sequenced independently) allow for observing technical noise; and data replicates (subsamples of the same AIRR FASTA file, termed “full
sample” in the figure) allow for observing data sampling noise. Samples obtained from different (either twin or unrelated) subjects incorporate all these
aforementioned sources of noise along with the associated potential nongenetic or genetic individual differences between their RGMPs. Synthetic repli-
cates (synthetic samples generated using the same RGMP sets) allow for observing synthetic noise. (B) Explicit Jensen–Shannon divergence (JSD) between
RGMP inferred from samples differing by several levels of noise: synthetic replicates; data replicates; technical replicates; twin mice. We computed the ex-
plicit JSD for random subsets of [1000, 3000, 10,000, 30,000] sequencing reads taken from samples of theMOUSE_PRE data set (19 IgH pre–B cell samples
from C57BL/6 mice and one technical replicate, see Methods, “Experimental immunoglobulin sequencing data”). Circles correspond to the median ex-
plicit JSD; shaded areas correspond to the whole range of the explicit JSD for the given sample size and pair type (from minimum to maximum). (C) The
amount of noise that accounts for the difference between synthetic replicates is quantified using the explicit JSD. This can be considered as the lower bound
of noise in our system.We then normalized the explicit JSD by this lower bound. (D) To test whether the difference between a pair of samples is significantly
higher than the difference between data replicates, we adapted the Student’s t-test. The adjusted P-values for data and technical replicates were above the
0.01 threshold for each sample size except 30,000 for technical replicates. The adjusted P-values for twin subjects were below the 0.01 threshold for all
sample sizes, indicating that the recombination models of the twin subjects are not identical. (E–G) Same as B–D but computed for the MOUSE_NAIVE
data set (19 IgH naive B cell samples from C57BL/6 mice and one technical replicate). The twin subjects are closer to each other than in the pre–B cell
case. The P-values of the statistical test, as in D, indicated RGMP of cross-subject samples differed systematically. (H–J) Same as B–D but computed for
the HUMAN1 data set (three IgH naive B cell samples of healthy Caucasianmale donors and one biological replicate). For all samples, individually restricted
germline allele databases were constructed. The considered sample pair types are synthetic replicates, data replicates, biological replicates, and unrelated
subjects. P-values indicate that biological as well as technical replicates were generated with the same RGMPs and that RGMPs differed across unrelated
human individuals. (K–M) Same as B–D but computed for the HUMAN2 data set (IgH naive B cell samples from five pairs of MZ twins). For all samples,
individually restricted germline allele databases were constructed (Methods, “An approach to building personalized RGMs that are robust to allelic vari-
ability of IGHV genes”). The considered sample pair types are synthetic replicates, data replicates, twin subjects, and unrelated subjects. P-values indicate
that RGMPs of humanMZ twins differ. All P-values were adjusted using the Bonferroni correction within one data set. The significance threshold of P=0.01
is indicated by a gray dashed line.
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MZ twins (HUMAN2 data set) (Supplemental Fig. S11). We found
that the normalized JSD between the RGMPs of samples obtained
fromtwin subjects is on average 5% lower thanbetween samples ob-
tained fromunrelated subjects,whichmay indicate that nongenetic
factors account for the majority of the normalized JSD difference
(taking into account that some of the normalized JSD is owing to
the noise). These data support the view that nongenetic factors
play an important role in IgH repertoire generation, which was
also noted for T cell repertoires, where MZ twins differed almost as
much in their recombined repertoires as unrelated individuals
(Dupic et al. 2021).

To explore the impact of different components of the RGM
(e.g., V segment choice probability, V deletions, J given V choice
conditional probabilities, see Methods, “Using JSD to compare
RGMPs”) on the explicit and normalized JSD between the models,
we reproduced the afore-described experiment using only V-
choice-agnostic parameters (i.e., excluding IGHV-related parameters
and only investigating J choice, J deletion, D choice, D deletion, VD
insertion,DJ insertion) (Supplemental Fig. S7, columns 2 and 4) and
only V-related parameters (V choice, V deletion) (Supplemental Fig.
S7, columns 1 and 3). The data replicated the results obtained with
the full model except that for the V-choice-agnostic models, in
which the distances between samples from twin human subjects
were not lower than the distances between samples from unrelated
human subjects. This may indicate that genetic (genetically herita-
ble) factors are only responsible for the difference in V-related
RGMP and, consequently, that the difference in other RGMP (J seg-
ment choice, D segment choice, insertion, and deletion profiles) is
entirely caused by nongenetic factors. This is consistent with the
previous findings for post-recombination statistics in AIRR-seq
(IgH) samples, namely, that mainly V segment usage is genetically
heritable and not D or J segment usage or CDR3 similarity
(Glanville et al. 2011; Rubelt et al. 2016).

The technological process and the data preprocessing work-
flow may introduce unavoidable bias into AIRR-seq sample genera-
tion (e.g., different choices of PCR primers may result in very
different sequenced repertoires). To explore the influence of this
bias onRGMP inference,we compared the average values of thenor-
malized JSD for the HUMAN1 (where the sequences were generated
with Illumina HiSeq: 2×125 bp; shorter reads, high sequencing
depth) and HUMAN2 (Illumina MiSeq: 2×300 bp; longer reads,
lower sequencing depth) data sets (Fig. 2I,L). Lower read length in
the case of the HUMAN1 data set renders a subset of the V segment
alleles indistinguishable, also introducing bias in the RGMP infer-
ence (this bias, however, cannot substantially alter the analysis re-
sults) (see Supplemental Fig. S14). The average normalized JSD
differed twofold between the HUMAN1 and HUMAN2 data sets
for the sample size of 30,000 sequencing reads, indicating the pres-
ence of a technological bias in RGMPs. Thus, caution and care are
advisedwhen comparing IGoRmodels inferred fromsamples gener-
ated using different experimental protocols.

To conclude, using the normalized JSD, we found that IgH
RGMP differed not only across unrelated individuals but also
across inbred C57BL/6 mice and humanMZ twins, which may in-
dicate that the rules of IgH VDJ recombination are governed not
only by genetic factors but also by nongenetic ones.

Immunoglobulin RGM parameters are unique across human

individuals

To explore the variation of VDJ recombination rules on a larger
scale in human individuals (in naive B cell repertoires), we com-

puted the normalized JSD on a cohort of 99 unrelated individuals
from the HUMAN3 data set (see Methods, “Experimental immu-
noglobulin sequencing data”) (Fig. 3A; Gidoni et al. 2019).
Analogously to the HUMAN1 and the HUMAN2 data sets (Fig.
2), we constructed individually restricted germline allele databases
for all samples via merging the RGMPs corresponding to alleles of
the same V/D/J gene and calculated the explicit and normalized
JSD on the gene-level RGMPs (see Methods, “An approach to
building personalized RGMs that are robust to allelic variability
of IGHV genes”). For the sample size of 10,000 and 30,000
sequencing reads, all pairwise distances were higher than the dis-
tance between data replicates, indicating that again all individuals
had different RGMPs (Fig. 2). For lower sample sizes of 1000 and
3000 sequencing reads, the distances were closer to those between
data replicates but still significantly higher (Fig. 2D,G,J,M). This
suggests that 1000 sequencing reads are sufficient to overcome
noise when building personalized RGMs. Analogous results were
obtained when investigating the IGHV-only and IGHV-agnostic
explicit/normalized JSD (Supplemental Figs. S9, S10).

To visualize the similarity variation of RGMP in theHUMAN3
data set, we performed hierarchical clustering (single-linkage clus-
tering) (Müllner 2011) on pairwise computed normalized JSD (Fig.
3B). Although the range of the normalized JSD was large (min:
1.59; max: 4.71; median: 2.49), there were no clear clusters. Of
note, we detected a moderate correlation of pairwise differences
in RGMP values with IGH allele repertoire similarity (Spearman’s
correlation coefficient = 0.43, P-value<10−36) (Fig. 3C; see also
Supplemental Figs. S9, S10), suggesting that the difference in
RGMP values between individuals may in part be explained by
IGHV gene polymorphisms.

To conclude, by applying our analysis to a cohort of 99 hu-
man individuals, we delineated population-wide variation of
RGMP values.

Generation probabilities of antigen-annotated immunoglobulin

sequences vary within and among related and unrelated human

individuals

A direct corollary of the variation of RGMPs across individuals is
the variation of individualized generation probabilities (Pgens)
for the same Ig sequence. To study and quantify Pgen variation,
we analyzed generation probabilities (as computed by the RGMs
corresponding to individuals from the HUMAN2 and HUMAN3
data sets) of Ig sequences with known antigen specificity.

We assembled antigen-annotated IgH data from three sources
(Roy et al. 2017; Swindells et al. 2017; Raybould et al. 2020), lead-
ing to 3492 unique amino acid CDRH3 sequences specific to seven
antigens in total: SARS-CoV-2 (1062 sequences), transglutaminase
2 (or TG2 [autoantigen], 1048 sequences), HIV (324 sequences),
tetanus (290 sequences), influenza (283 sequences), MERS-CoV
(97 sequences), and SARS-CoV-1 (84 sequences). We also included
304 sequences that were specific to both SARS-CoV-1 and SARS-
CoV-2. To calculate the Pgens of CDRH3 amino acid sequences,
we used OLGA (Sethna et al. 2019) based on the RGMPs computed
with IGoR for Figures 2 and 3 (all RGMPs were inferred from sam-
ples of 30,000 sequencing reads).

To analyze the consistency of the Pgens across the RGMPs in-
ferred from different samples, we first used the RGMs correspond-
ing to the individuals from the HUMAN2 data set (Fig. 4A): an
RGM inferred from the sample obtained from the pair 1 twin A in-
dividual, an RGM inferred from a data replicate sample, an RGM
from a twin subject (pair 1 twin B individual), and an RGM
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inferred from an unrelated subject (pair 2 twin A). The Pgens were
highly consistent for the replicate samples: The ratio of the Pgens
of the same sequence computed with the two replicate RGMs was
in the overwhelming majority of cases below one order of magni-
tude (Fig. 4A, boxplots). However, for the RGMs inferred from dif-
ferent subjects, both MZ twin and unrelated, the Pgen ratio in
some cases reached four or even five orders of magnitude (Fig.
4A).Of note, wedid not observe that the ratios for twinswere lower
than those for unrelated individuals; in fact, for some of the anti-
gens (HIV, MERS-CoV), these ratios were higher on average than
for the unrelated individuals.

To quantify the Pgen variation of antigen-annotated CDRH3s
on a larger scale, we calculated the Pgen of each CDRH3 sequence
(Fig. 4B) using the RGM corresponding to the 99 individuals from
theHUMAN3data set (Fig. 3). For each sequence, we calculated the
fifth, the 25th, the 50th (median), the 75th, and the 95th percen-
tiles (Fig. 4B). We found that the per-sequence Pgen variation
strongly depended on the sequence itself. Variation was especially
high for those CDRH3 sequences with mid to low Pgen. To inves-

tigate this further, for each CDRH3 sequence, we calculated the
pairwise Pgen ratios (Fig. 4C). Then, for each antigen, we split
the CDRH3 sequences into three groups according to theirmedian
Pgens: “low” group, CDRH3 sequences with median Pgen<10−16

(i.e., sequences that are almost impossible to generate for most in-
dividuals; for instance, if a human generates approximately 3 ×
1013 throughout their life, then the probability to generate a se-
quence with Pgen=10−16 at least once is approximately 0.003);
“medium” group, CDRH3 sequences with median Pgen between
10−16 and 10−8; and “high” group, sequences with median Pgen
>10−8 (potential public clones: if a sequence can be generated
with probability 10−8 and the number of human B cells that can
be represented in an AIRR-seq sample is approximately 2 × 108

[Briney et al. 2019], then the sequence will be present in more
than 86% of the samples). The variation in the “high” group was
lower than in the first two groups: In the “high” group, the varia-
tion in most cases stayed within one order of magnitude, whereas
for the “medium” and “low” groups, it reached three orders of
magnitude for more than 100 of sequences. Of note, there were
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C

Figure 3. Immunoglobulin RGM parameters are unique across human individuals. (Inset) For samples from a cohort of 99 unrelated individuals, two
kinds of distance were computed: the normalized JSD between RGMPs inferred from these samples and the number of differing IGHV alleles.
Additionally, for each sample, we computed the normalized JSD between its own RGMPs and RGMPs inferred from its data replicate. (A) The distribution
of the pairwise normalized JSD for 99 individuals of the HUMAN3 data set was computed for subsamples of 1000, 3000, 10,000, and 30,000 sequencing
reads. The blue line corresponds to the average distance between data replicates. (B) Heatmap visualization of A for the subsample size of 30,000 sequenc-
ing reads: The values on the diagonal correspond to the average distance between data replicates. (C) The number of IGHV gene alleles that differ between
any two individuals as a function of the normalized JSD between their RGMP inferred from subsamples of 30,000 sequencing reads.
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Figure 4. Generation probabilities of antigen-annotated immunoglobulins (CDRH3 sequences) vary by several orders of magnitude within the human
population. (Inset) For a data set of CDRH3 amino acid sequences annotated with antigen specificity, we computed Pgens using a set of RGMs correspond-
ing to N different experimental samples. Each CDRH3 sequence is thus annotated with N Pgens. (A) Pgens of antibody CDRH3 amino acid sequences (an-
notated with antigen specificity) computed using RGMs corresponding to samples of different levels of immunogenetic similarity: a pair of data replicate
models, a pair of models from twin individuals, and a pair of models from unrelated individuals. The x-axis always stands for the Pgen as computed with the
model corresponding to the pair 1 twin A individual from the HUMAN2 data set. The y-axis corresponds to the Pgen as computed with the other model in
the pair (data replicate or twin/unrelated subject). The boxplots show the distribution of the min(x,y)/max(x,y) ratios, that is, the pairwise difference of
Pgens. (B) For each CDRH3 amino acid sequence, we calculated its Pgen as determined by the models corresponding to the 99 individuals from the
HUMAN3 data set. The x-axis itemizes each of the CDRH3 sequences tested; the y-axis denotes the fifth, 25th, 50th, 75th, and 95th percentiles of the
99 Pgens of each CDRH3. (C) Pairwise ratios of the Pgens from B by antigen. For each antigen, we divided the CDRH3 amino acid sequences into three
groups depending on the sequence’s median Pgen across individuals: low (median Pgen<10−16), medium (10−16≤median Pgen<10−8), and high
(10−8≤median Pgen).

Genome Research 2215
www.genome.org



no HIV-specific sequences with a median Pgen>10−8; all tested
HIV-specific CDR3 sequences belonged to either “low” or “medi-
um” groups.

To summarize, we showed that individual RGMP variation re-
sults in individualized biases toward generating antigen-specific
CDRH3 sequences that, in some cases, may lead to a difference
of more than three orders of magnitude in the Pgen of an anti-
gen-specific CDRH3 sequence.

Normalized JSD is a sensitive measure to detect subtle repertoire

generation parameter differences

Given that the normalized JSD-based distance depends on the un-
derlying RGMP value distribution, we sought to understand the
sensitivity of RGMP parameter inference to variation in the Ig rep-

ertoire structure. To this end, we measured the sensitivity of IGoR
RGMP inference following small changes in RGMP values. High/
low sensitivity means that a given parameter has a great impact/
negligible impact on the generated Ig repertoire. This impact can
be subsequently measured with the normalized JSD between the
initial and the modified RGMP sets.

Starting from an initial RGMP set, we chose a specific RGMP,
changed its value, and subsequently used synthetic replicates to
test if IGoR was able to correctly determine the shifted value (sin-
gle-parameter focus) (Fig. 5A–D; Supplemental Fig. S12A–D) and to
investigate the sensitivity of the explicit/normalized JSD to such
changes (whole-repertoire focus) (Fig. 5E–H; Supplemental Fig.
S12E–H). We calculated the explicit JSD between the inferred
RGMP sets and the one used for generation (“ground truth
RGMP”) and compared it to the explicit JSD across the inferred
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Figure 5. The sensitivity of RGMP inference and their impact on Pgen values vary by RGMP. (Inset) Given a set {Θ} of RGMPs, we modified one of the
parameter values, obtaining a modified RGMP set {Θ′}, generated a set of synthetic IgH sequences using {Θ′} and then inferred RGMP values from these
sequences, thus obtaining RGMP set {Θ′ ′}. By comparing {Θ′} and {Θ′ ′}, we estimated the stability of the RGMP inferencemodel in IGoR. (A–D) RGMP value
retrieval error (the difference between the inferred parameter value and the ground truth one) for RGMPs inferred from synthetic samples that were gen-
erated using a modified RGMP set with increased conditional probability to observe a certain J segment given a V segment for synthetic sample sizes of
1000, 3000, 10,000, and 30,000 sequencing reads (10 synthetic samples for each sample size) based on the HUMAN2 data set. The dashed line corre-
sponds to zero difference (i.e., no error observed). (E–H) Normalized JSD between the inferred RGMP sets and the initial modified one (boxes; each
box corresponds to the same 10 synthetic samples that were used in A–D). Average normalized JSD across the inferred RGMP sets themselves equals
one because it is the value used for normalization (i.e., between synthetic replicates; dotted line). (I) All J|V conditional probabilities are ranked by their
importance, then the k (k in [1…20]) most important probabilities are chosen and multiplied by a coefficient from 10−2 to 106; the rest is rescaled, to
sum up to one. The x-axis corresponds to this multiplicative coefficient. The y-axis corresponds to the normalized JSD between the modified model
and the unmodified one. The green colors correspond to the first five most important parameters. The circles correspond to the values obtained by gen-
erating synthetic samples using the modified model and inferring the parameters back as in E–H. (J) Pgens evaluated on identical sequences using different
RGM parameter values (each point corresponds to a single sequence). The x-axis corresponds to the Pgen evaluated using the model parameter values
inferred from the same sequences that the Pgens were computed for (the “self” model). The y-axis corresponds to the Pgens evaluated using other
RGMP values (inferred from a data replicate sample, a technical replicate sample, and a sample from a twin subject). The boxplots show the corresponding
Pgen ratio distributions. (K) Analogous to J but the Pgens were computed only on a set of sequences that consisted of themost impactful combinations of V
and J segments (five top pairs as computed in I).
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RGMPs (i.e., between synthetic replicates). For V and J segment
(conditional) probabilities, we increased the probability of a seg-
ment and then rescaled all other ones accordingly; namely, we ap-
plied a multiplicative shift to the chosen segment probability. We
chose the RGM inferred from a subsample of 30,000 sequencing
reads from the pair 1 twin A sample of the HUMAN2 data set as
the starting RGM.

As there are 124 human V segments in our database (for de-
tails, see Supplemental Fig. S2) and tens of thousands of parame-
ters in total (for a detailed description of model parameters, see
Methods, “Using JSD to compare RGMPs”), we restricted our focus
to three representative human V gene alleles: a very rare segment
(IGHV1-8∗01, choice probability of 0.003 in the etalon model), a
segment of moderate frequency (IGHV4-34∗01, choice probability
of 0.024), and amore frequent one (IGHV1-69∗06, choice probabil-
ity of 0.037). We defined the parameter value retrieval error as the
difference between the inferred parameter value and the ground
truth one used for generating the synthetic data. We calculated
the parameter value retrieval error as a function of sample and shift
size (Supplemental Fig. S12A–D; Fig. 5A–D): We used sample sizes
of 1000 among 30,000 sequencing reads, and we shifted the pa-
rameter values multiplicatively by a factor of two, five, and 10.
We chose these values to not make the modified models too dis-
tant from themodels inferred fromexperimental samples: A differ-
ence of one order of magnitude in the usage of a given V segment
can easily be observed within the population (Rubelt et al. 2016;
Gidoni et al. 2019).

For the V segments (Supplemental Fig. S12, IGHV1-8∗01, tur-
quoise boxes; IGHV4-34∗01, yellow boxes; IGHV1-69∗06, violet
boxes), the parameter value estimation was unbiased for IGHV1-
8∗01 and IGHV4-34∗01 and was slightly biased for IGHV1-69∗06:
Its probability was systematically underestimated, and the bias
was proportional to the multiplicative shift size (i.e., proportional
to the parameter value itself). The variance of the parameter value
retrieval error decreased with increasing sample size, whereas the
error variance strongly decreased, as expected for a maximum like-
lihood estimator like the IGoR inference module. The normalized
JSD distance between the inferred RGMP sets and the ground truth
one (Supplemental Fig. S12E–H; Fig. 5E–H) was inmost cases high-
er than the normalized JSD between the inferred sets themselves.
This may indicate the presence of a bias in the IGoR synthetic
data generation process, namely, a factor thatmakes synthetic rep-
licates closer to each other than to the RGMP set used for
generation.

For the J segments (Fig. 5A–D, IGHJ6, brighter boxes; IGHJ5,
medium boxes; IGHJ6, darker boxes), the parameter value estima-
tion was unbiased, and the variance of the parameter value retriev-
al error also showed a negative trend with increasing sample size.

To explore the boundaries of IGoR sensitivity, we iteratively
modified the RGMPs by shifting 20 of the most important (i.e.,
of the highest value) parameters and analyzed the normalized
JSD between the modified and unmodified model parameters.
This time, we used the model inferred from sample 20 of the
MOUSE_NAIVE data set. All V probabilities (Supplemental Fig.
S12) and J|V (Fig. 5I) conditional probabilities were ranked by their
importance, then the k (k in [1…20]) most important probabilities
were chosen and multiplied by a coefficient from 10−2 to 106; the
other probabilities were rescaled to unity. We then tested the nor-
malized JSD values for the shift size 10 by generating five synthetic
samples using the modified model. The normalized JSD values in-
dicate that changing as few as five parameter values is sufficient to
significantly change the generated repertoire.

To estimate the impact of the RGMP value variation on the
Pgen of a sequence, we computed the Pgens of the same sequences
using several different models (Fig. 5J): a model with parameter
values inferred from the same sequences that the Pgens were com-
puted for the “self” model (sample 20, MOUSE_NAIVE), a model
inferred from a data replicate sample, amodel inferred from a tech-
nical replicate sample, and a model inferred from a twin subject
(sample 17, MOUSE_NAIVE). This way, the self-model Pgens are
more reliable, and we can refer to them as a ground truth.

To account for how specific RGMPs impact the Pgen values,
we calculated the distribution of the Pgen ratio between the self-
model and the other three (Fig. 5J). The Pgens computed using
the replicate models (both the data replicate and the technical
one) were closer to the self-model Pgens (the ratio was close to
one in most cases) than those computed using the twin subject
model, for which the ratio was below three in most cases but
reached almost two orders ofmagnitude for∼1%of the sequences.
These high Pgen differences between the twin models persisted
whenwe limited our analysis to only those sequences that consist-
ed of the most used V and J segments (top five V-J, i.e., to the se-
quences with higher Pgens) (Fig. 5K). This indicates that the
difference in the Pgens is not an artifact that originates from the
inference of the low-impact parameters.

Collectively, our data support the view that certain parame-
ters impact IGoR RGMP inference and Pgen evaluation to a sub-
stantially larger extent than others and that an artificial
perturbation of as few as five parameter values is sufficient to pro-
duce an observable difference in the generated repertoire.
Moreover, our analysis also supports the view that the JSD is a suf-
ficiently sensitive measure to detect this difference.

Discussion

We demonstrated that IgH VDJ recombination rules (RGM) and,
consequently, IgH sequence generation probabilities differ across
individuals, even between homozygous human twins and inbred
mice (Fig. 1). Our approach (which we call desYgnator) relies on
a hierarchy of experimental controls as well as information and
statistical theories and provides new recommendations for unbi-
ased comparison of RGMbetween individuals thatwere previously
thought to be identical (Fig. 2). Our results indicate that inter-indi-
vidual differences in VDJ recombination are not only influenced
by genetic differences in germline gene repertoires, such as germ-
line gene polymorphisms or structural variation (Kenter et al.
2021), but also influenced by nongenetic differences (e.g., epige-
netics). Indeed, it has been previously shown that epigenetic
mechanisms intervene in the regulation of VDJ recombination
(Pulivarthy et al. 2016). Specifically, our work shows not only
that individuals differ in their recombined expressed repertoire
(Dupic et al. 2021) but also that already the individual sources
(RGMs) of each expressed repertoire differ. We found that the dis-
tance between RGMs of twin subjects is on average 5% lower than
that between RGMs of unrelated subjects (Supplemental Fig. S11).
However, the distance between RGMs of twin subjects was not
lower than between RGMs of unrelated subjects when it was mea-
sured for V-segment-agnostic RGM (Supplemental Fig. S7), sug-
gesting that nongenetic factors account for the majority of the
RGMP differences in general and for almost all of the V-segment-
unrelated RGMPs. Thus, although some of the genetic factors
might be masked by the limitation of the data and preprocessing
pipeline (such as potentially unidentified differences in D or J
gene alleles), our results suggest that V-segment-unrelated

Individualized VDJ recombination

Genome Research 2217
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275373.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275373.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275373.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275373.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275373.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275373.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275373.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275373.121/-/DC1


RGMPs (i.e., J and D segment choice, their deletion profiles, and
nontemplated insertion profiles) are not genetically heritable
(Glanville et al. 2011) for IgH. Specifically, we posit that the ability
of VDJ recombination to generate a high amount of antibodies
specific to a given antigen is partially genetically heritable
(Venkataraman et al. 2021) when antigen binding is governed by
the VH-region (e.g., influenza) (Avnir et al. 2016), whereas in cases
in which most of the binding is governed by the V-agnostic por-
tion of the Ig heavy chain (i.e., CDRH3), it may not be genetically
heritable. Of note, in the largest structural antibody-antigen bind-
ing data set to date, we previously showed that the CDRH3 is the
sole obligate region for antibody binding (Akbar et al. 2021a).
Therefore, our analysis suggests that for a large number of anti-
gens, large-scale antigen recognition driven by naive IgH reper-
toire is not genetically heritable. Future studies will need to
further refine these conclusions in light of potentially unidentified
D and J gene alleles as well as access to selection-free data and im-
plementation of improved preprocessing pipelines.

We found that, for unrelated subjects, the aforementioned
RGMP difference correlates with the number of differing IGHV al-
leles (Fig. 3C). The correlation can even be observed with V-seg-
ment-agnostic RGM (Supplemental Fig. S10C). We speculate that
this may be caused by at least two reasons: First, individuals that
are more different in the IGHV locus are more genetically dissimi-
lar in general; hence, they are more likely to have polymorphisms
in other parts of the IG superlocus or to differ in nongenetic factors
that affect the VDJ recombination. Second, different sets of IGHV
germline segments inherently affect the inference of other RGMPs:
The model has to explain the data with other VDJ scenarios.

The study of AIR sequence enrichment, for instance, to iden-
tify antigen-expanded sequences, previously assumed a unique
RGM shared by all individuals of a species (Marcou et al. 2018).
We showed one effect of the variation in RGMPs by applying dif-
ferent models to a given set of CDRH3 sequences (Figs. 4, 5). We
found that the extent of correlation between the Pgens was consis-
tent with the degree of immunogenetic similarity between the
models; namely, the correlationwas higher for themodels inferred
from replicate samples than from samples obtained from different
subjects. We also found that the Pgen of the same Ig sequence can
differ by several orders of magnitude between individuals, and,
consequently, that the effectively available Ig sequence space var-
ies from one individual to another. Thus, future methods for iden-
tifying antigen-specific sequences may require considering
individual-specific RGM.

In our work, we considered several types of replicate samples:
biological replicates (DeWitt et al. 2016), technical replicates
(Greiff et al. 2017a), and in silico constructed data replicates and
synthetic replicates. Despite providing a reliable baseline for esti-
mation of the RGMP variation when inferring from samples
from the same subject, these types of replicates do not span all
steps of AIRR-seq sample generation. For example, our analysis re-
veals the importance of quantifying the extent towhichRGMPdif-
fers across different library preparation protocols, for example,
RACE, multiplex, and influence of UMI usage (Menzel et al.
2014; Khan et al. 2016; Vázquez Bernat et al. 2019; Barennes
et al. 2021; Trück et al. 2021).

Our approach is highly sensitive to subtle RGMP modifica-
tions:We showed that an artificial perturbation of as few as five pa-
rameter values can be detected using desYgnator (Fig. 5).

In addition to the biological findings and the statistical
framework developed, we provide guidelines for RGM analyses.
Specifically, we find that only RGMPs inferred from samples of

the same size may be directly compared (Fig. 5). In contrast to cur-
rent practice, we show that RGMP data sets significantly differ
from one another, and we therefore suggest inferring RGMPs for
each individual, especially when an increased signal-to-noise ratio
is desired. Furthermore, it is commonly held that RGMPs need to
be either inferred from out-of-frame sequences or very early B/T
cell stages (Marcou et al. 2018). Although we agree that the ideal
data for RGMP inference would be to use B/T cells unaffected by
any selection (e.g., pro-B cells), we inferred RGMPs from both in-
and out-of-frame sequences of either pre-B- or naive B cell reper-
toires. By comparing the RGMP analysis results using out-of-frame
only and using all (both in- and out-of-frame) sequences for one of
the data sets, we found that both approaches led to identical con-
clusions but that RGMPs inferred from both in- and out-of-frame
sequences had lower variance (for details and reasoning, see
Supplemental Fig. S3). We also provide a guideline for preprocess-
ing human AIRR-seq data with respect to the correct set of germ-
line alleles for each individual (Supplemental Figs. S1, S2, S8).
We did not use a previously developed methodology for novel al-
lele inference (Corcoran et al. 2016; Ralph and Matsen 2016;
Zhang et al. 2016; Gadala-Maria et al. 2019) because our goal was
to provide stable input for the RGMP inference step and, after
that, to compare RGMP across individuals, which required a gene-
ral database of validated alleles, and because there is no consensus
in the field of AIRRs about inferring AIR germline genes from
short-read sequencing data (Collins et al. 2021; Yang et al. 2021).
We, therefore, discarded potentially novel alleles in favor of previ-
ously validated ones. This conservative approach may be shifted
toward including more precise allele information once available
in the future (e.g., obtained with long-read DNA sequencing)
(Rodriguez et al. 2020).

Machine learning is increasingly used for AIRR classification
both on the sequence (Greiff et al. 2017b; Isacchini et al. 2021;
Akbar et al. 2021a; Robert et al. 2021a) and repertoire level
(Emerson et al. 2017; Pavlovic ́ et al. 2021; Shemesh et al. 2021;
Sidhom et al. 2021), as well as for antibody generation
(Friedensohn et al. 2020; Akbar et al. 2021b). Future studies will
need to investigate whether differences in RGM also impact reper-
toire classification (Greiff et al. 2020; Rodriguez et al. 2020;
Kanduri et al. 2021). Our findings depend, but do not strictly
rely, on the assumption of temporal stability of RGMPs. Most of
the studies on VDJ recombination models assume to some degree
the stability of RGMPs—within a certain time window (Marcou
et al. 2018; Davidsen et al. 2019; Sethna et al. 2019; Dupic et al.
2021; Russell et al. 2021). The question of the temporal stability
of observed biological phenomena applies to the majority of bio-
logical studies (Pal and Tyler 2016; Rubelt et al. 2016; Yang et al.
2020). In our case, too, the potential temporal evolution of
RGMs is of particular interest, and it warrants future investigation.
Nevertheless, the identified dissimilarity of RGMPs among both
MZ human twins and inbred mice supports the view that a large
fraction of inter-individual Ig repertoire difference is nongenetic
in nature. If epigenetic factors influence AIRR architecture, it will
be useful to investigate whether, for example, aging changes the
rules of VDJ recombination over time. This may be performed
via analyzing longitudinal data (Mitsunaga and Snyder 2020) or
pre- and post-puberty data fromMZ twins (as epigenetic differenc-
es have been shown to arise after puberty) (Fraga et al. 2005).
Another way to investigate the nonheritable factors that impact
VDJ recombination could be by analyzing samples from different
cell populations in the same individual (from pro- to naive and
even memory B cells), as it will allow quantifying the influence
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of negative and positive selections (Nemazee 2017; Robert et al.
2021c). It will also be of interest to analyze data from individuals
for whom particular VDJ recombination mechanisms are disrupt-
ed, for example, in terminal deoxynucleotidyl transferase (TdT)–
deficient mice.

It is important to mention that although our study focused
on B cell data sets, our approach is directly applicable to TCR rep-
ertoires, provided the availability of the appropriate high-quality
data: RNA sequences of non-antigen-experienced T cells from bio-
logical and/or technical replicates and fromMZ twins and unrelat-
ed subjects (Rubelt et al. 2016; Nolan et al. 2020).

In the future, it will be interesting to determinewhether indi-
vidual differences in RGMP lead to differences in the propensity to
generate antigen-specific (e.g., auto-reactive) sequences (Shemesh
et al. 2021) and, consequently, to the existence of individualized
holes in the repertoire (Perelson and Oster 1979). These analyses
will require large-scale naive (unselected) and disease-linked
AIRR-seq data (Watson et al. 2017; Omer et al. 2021).
Furthermore, an analysis linking germline polymorphisms and
RGMP based on population-wide genomic data that include non-
coding regions (Mikocziova et al. 2020) will be of interest in future
studies. It will also be interesting to extend our analysis to account
for unconventional cases of VDJ recombination, such as the ab-
sence of D segments in TRB chains (de Greef and de Boer 2021)
or the occurrence of multiple D segments in IGH chains by
VDDJ recombination (Safonova and Pevzner 2020).

Our work also has implications for vaccine development,
because there is an increasing interest in understanding whether
B cells that are to be targeted by immunogens (including broadly
neutralizing antibodies) (Sangesland et al. 2019) exist within the
naive B cell repertoire of most individuals in a population of inter-
est (“public clones”) (Greiff et al. 2017b; Elhanati et al. 2018) and
whether those B cells occur at a high enough precursor frequency
such that they have a high likelihood to become activated in re-
sponse to immunization. These considerations relate to both V
gene usage and germline gene polymorphisms (Sangesland et al.
2019; Lee et al. 2021; Russell et al. 2021). Here we show that per-
sonalized VDJ recombination models contribute to the variation
in naive B cell precursor frequencies. Nowadays, high-throughput
AIRR sequencing technologies allow a comprehensive coverage
naive Ig repertoires, thus enabling the integration of VDJ recombi-
nation models into iterative individualized immunogen design
pipelines to advance vaccine discovery (Lee et al. 2021; Robert
et al. 2021b).

Methods

Experimental immunoglobulin sequencing data

We analyzed five publicly available Ig experimental data sets from
four sources:

MOUSE_PRE fromGreiff et al. (2017a) (ArrayExpress [https://www
.ebi.ac.uk/arrayexpress/] E-MTAB-5349): IgH pre–B cell samples
obtained from 19 inbred SPF C57BL/6 mice, sequenced on the
Illumina MiSeq platform (2 ×300 bp). For one of the mice,
Greiff and colleagues prepared two technical replicates, resulting
in 20 samples in total.

MOUSE_NAIVE from Greiff et al. (2017a) (ArrayExpress E-MTAB-
5349): IgH naive B cell samples obtained from 20 inbred SPF
C57BL/6 mice, sequenced on the Illumina MiSeq platform (2×
300 bp). For one of the mice, Greiff and colleagues prepared
two technical replicates, resulting in 21 samples in total.

HUMAN1 from DeWitt et al. (2016) (Dryad Digital Repository
doi:10.5061/dryad.35ks2): IgH naive B cell samples obtained
from three 25- to 40-yr-old Caucasian male donors, sequenced
on the Illumina HiSeq platform (1 ×130 bp spanning CDR3).
For one of the donors, DeWitt and colleagues prepared two bio-
logical replicates, resulting in four samples in total. For this data
set, we performed additional preprocessing: We filtered out all
the reads that spanned <70% of the V segment (for the V seg-
ment annotation to be more reliable) and then completed these
reads to full length using the VJ annotation.

HUMAN2 from Rubelt et al. (2016) (Sequence Read Archive [SRA;
https://www.ncbi.nlm.nih.gov/sra] SRP065626): IgH naive B
cell samples obtained from five pairs of adult MZ twins (10 sam-
ples in total), sequenced on the Illumina MiSeq platform (2 ×
300 bp).

HUMAN3 fromGidoni et al. (2019) (European Nucleotide Archive
[ENA; https://www.ebi.ac.uk/ena/browser/home] PRJEB26509):
IgH naive B cell samples obtained from 100 individuals from
Norway; 48 healthy controls (out of which 28 blood bank do-
nors and 20 healthy individuals), and 52 patients with celiac dis-
ease; sequenced on the Illumina MiSeq platform (2×300 bp).
We discarded one of the samples (S97) owing to the poor quality
of the sequencing reads.

For further experimental details on each data set, please refer
to the respective publications.

An approach to building personalized RGMs that are robust to

allelic variability of IGHV genes

Evidence published over the last couple of years has demonstrated
an extensive polymorphic and structural diversity in the immuno-
globulin germline locus (Watson et al. 2017; Yu et al. 2017; Collins
et al. 2020; Lees et al. 2020; Bernat et al. 2021; Khatri et al. 2021;
Martins et al. 2021; Mikocziova et al. 2021b). These findings indi-
cate that the RGMs used to annotate each individual’s AIR se-
quences with accurate Pgens need to be built for each individual
separately with the individualized set of alleles. The human
IGHV locus is highly diverse (Watson and Breden 2012; Watson
et al. 2017), and there exist multiple alleles for the majority of
IGHV genes in the IMGT and OGRDB databases, for example, up
to 19 alleles for genes IGHV1-69 and IGHV3-30) (Lefranc 2001;
Lees et al. 2020). AIRR-seq VDJ gene annotation tools (e.g.,
MiXCR by Bolotin et al. 2015; IgBLAST by Ye et al. 2013; the anno-
tation module of IGoR by Marcou et al. 2018; partis by Ralph and
Matsen 2016) rely solely on a given set of germline genes and al-
leles from a chosen germline gene database. Any sequencing
read within a sample needs to be aligned to all alleles in a germline
gene database. Taking a full germline database as reference might
be problematic for the inference of personalized RGMP because
each individual may only possess a subset of the alleles present
in the germline database.

Theoretically, one human individual cannot have more than
two alleles of the same gene. However, the structure of the IGHV
locus allows for exceptions to the “two alleles per gene” rule
(Ford et al. 2020; Mikocziova et al. 2020) owing to the existence
of repeated segments. Additionally, sequencing and PCR errors
may lead to misalignments (we set the upper bound for the frac-
tion of erroneous allele assignments owing to sequencing/PCR er-
rors to 5%) (Supplemental Fig. S6).

For each human individual of each data set in this study
(HUMAN1, HUMAN2, and HUMAN3 data sets; see Methods,
“Experimental immunoglobulin sequencing data”), we aimed to
construct an individually restricted germline gene database that
contained only those validated alleles that are present in the given
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individual. This restricted database is thus a subset of all available
validated alleles present in IMGT and OGRDB.

In this section, we show an example of deriving such an indi-
vidually restricting process via analyzing the HUMAN3 data set, as
it is the most diverse one (99 unrelated individuals). The pipeline
itself is described in the following.

For each IGHV (Supplemental Fig. S1A) and IGHJ
(Supplemental Fig. S1B) gene and each individual, we calculated
the fraction of sequencing reads (for the definition of a sequencing
read, see Methods, “An approach to building personalized RGMs
that are robust to allelic variability of IGHV genes”) assigned to
the two most frequent alleles (top_1 and top_2), as well as the
fraction of sequencing reads assigned to all remaining alleles
(rest-fraction). This calculation exposed three genomic scenarios
(Supplemental Fig. S1C):

Case 1: a very high fraction of reads (>90%) assigned to the most
frequent allele and negligible fractions of reads assigned to the
lower frequency alleles. We assumed this scenario corresponds
to an individual that is homozygous for this gene. This case
was found for at least four IGHV genes for 97 out of 99 individ-
uals and for IGHJ1–IGHJ5 genes for all individuals. The IGHJ6
gene belonged to this case for 44 out of 99 individuals.

Case 2: nonnegligible fractions (>5%) of sequencing reads assigned
to the first and the second most frequent alleles and a very low
rest-fraction (<5%), suggesting a heterozygous individual. This
case was found for at least one IGHV gene for 93 out of 99 indi-
viduals. The only IGHJ gene this case was found for was IGHJ6
(for 54 out of 99 individuals).

Case 3: a high rest-fraction (>5%), suggesting that this individual
has more than two alleles of the current gene (excluding errors
leading to a systematic misalignment). This case was found for
at least one IGHV gene for 93 individuals. No IGHJ gene be-
longed to case 3 (Supplemental Fig. S1B), which may be ex-
plained by the fact that the IGHJ locus is composed of fewer
genes and fewer alleles per gene (Watson and Breden 2012;
Gidoni et al. 2019; Peres et al. 2019).

To illustrate case 3, we visualized the allelic complexity of
the IGHV1-69 gene (Supplemental Fig. S1D–F), known to be cru-
cial for generating potent neutralizing antibodies (Avnir et al.
2016; Brouwer et al. 2020). Specifically, in individual 20 of the
HUMAN3 data set, sequencing reads were aligned to eight alleles
of IGHV1-69 (gene 69 in IGHV gene family 1). IGHV1-69 has a
known duplication in the IMGT database named IGHV1-69D
(Giudicelli et al. 2004), and the chromosomal locations of
many alleles of IGHV1-69 (D) are yet to be described. This means
that the duplication and the original gene may share alleles (e.g.,
IGHV1-69∗01) (see Supplemental Fig. S1D). It is not feasible to
determine the origin of the shared allele from a recombined
VDJ sequence, so it is de facto possible to observe three different
alleles of IGHV1-69: two originating from the gene itself and the
third one from the duplication. In the aforementioned individual
20, only three alleles out of eight had above-the-threshold frac-
tions of the sequencing reads annotated with IGHV1-69:
IGHV1-69∗01, IGHV1-69∗04, and IGHV1-69∗06, which is exactly
the case described in the previous sentence. IGHV1-69∗04 and
IGHV1-69∗06 might have originated from the gene IGHV1-69,
whereas IGHV1-69∗01 might be, in fact, IGHV1-69D∗01 having
originated from a duplication.

IGHV1-69 has 19 alleles of this gene, some of which are very
close to each other, namely, differing by a single nucleotide sub-
stitution (Supplemental Fig. S1E). There were five individuals
(i.e., individuals 46, 47, 65, 83, 87) that had four alleles
(Supplemental Fig. S1F) with fractions above the 5% threshold
(i.e., each of these alleles accounted for >5% of the sequencing

reads assigned to IGHV1-69), 37 individuals with three frequent
alleles, and 34 individuals with two frequent alleles (which can
signify a normal heterozygous gene or a homozygous with a mu-
tated copy). The remaining individuals had a single IGHV1-69 al-
lele with a frequency above the threshold. To summarize, human
Ig AIRR-seq samples can have more than two alleles of the same
IGHV gene, and one should treat these cases separately to avoid
systematic biases in the fitted RGMs or to ensure that these sys-
tematic biases are the same for all considered AIRR-seq samples,
which would allow comparing the RGMPs inferred from these
samples.

Finally, we individually restricted germline gene databases as
follows (see Supplemental Fig. S2): We set the maximum possible
number of alleles (which we denoted by k) for each gene individu-
ally (Supplemental Table 1) based on the information on its poten-
tial copy number, duplications in the databases, and the high rest-
fraction from Supplemental Figure S1A and trimmed all alleles af-
ter the second CYS, amino acid position 104 in the IMGT unique
numbering scheme (Lefranc et al. 2003). Then, we determined the
k most frequent alleles of the given gene in the sample in order to
restrict the RGM to these alleles only.

To visualize the effect of this preprocessing pipeline on the
fractions of the remaining alleles (i.e., not the two or the kmost fre-
quent ones), we recomputed the fractions from Supplemental
Figure S1A after trimming the alleles and setting the per-gene k val-
ues but before restricting the set of alleles to the k most frequent
ones (Supplemental Fig. S1G). This procedure led to nonzero
rest-fractions <5% in the majority of cases, suggesting that we suc-
cessfully eliminated (most of) the systematic alignment bias. The
last step of the pipeline consisted of restricting the allele database
and realigning the sequencing reads, which eliminated rest score
assignments (Supplemental Fig. S5). This preprocessed data set
was used for all Pgen inferences.

Of note, when we applied the described workflow to the
HUMAN2 data set, the individually restricted allele database
of each MZ twin was slightly different owing to the presence of
weakly expressed alleles. However, the allele sets of MZ twins
were more similar than those of unrelated individuals.

To reduce the amount of noise caused by PCR amplification,
we assembled the clone contigs usingMiXCR (Bolotin et al. 2015).
So as not to lose the information contained in the clone frequen-
cies, wemultiplied each clone by the number of reads used to con-
struct it. We refer to these multiplied clone nucleotide sequences
as “sequencing reads.” With this approach, RGMP inference ex-
pectedly depends on the clone size distribution, but the down-
stream analysis is affected only to a limited extent. By
calculating clone distribution evenness profiles (Greiff et al.
2015), we showed that controlling for the noise using replicate
samples allows us to separate this effect from the systematic differ-
ences in RGMP values (Supplemental Fig. S15).

Using JSD to compare RGMPs

To statistically model VDJ recombination, we used the IGoR tool
(Marcou et al. 2018). IGoR allows building customVDJ recombina-
tion pipelines (i.e., to define dependencies between recombina-
tion events); we used the following pipeline for simulation of
IgH VDJ recombination, where each step defines a subset of the
model parameters:

1. AV segment is chosen. Thus, each of the V germline segments
from the database is assigned with a choice probability (form-
ing a vector of #V parameters). For the humanmodel, we con-
sidered 124 unique V genes. For the mouse model, we
considered all 238 V gene alleles.
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2. Depending on the V segment, a J segment is chosen. Each of
the J segments is thus assigned with #V conditional choice
probabilities (forming a parameter matrix of size #V × #J; we
considered six unique J genes for the human model, four
unique genes for the mouse model).

3. Depending on the V and J segments, a D segment is chosen,
Each of the D segments is assigned with #V×#J conditional
choice probabilities (forming a three-dimensional parameter
tensor of size #V×#J × #D; 35 unique D genes for the human
model, 25 unique genes for the mouse model).

4. Depending on the V segment, the V deletion length is deter-
mined. Thus, for each V segment, a discrete distribution is as-
signed—deletion profile (forming a parameter matrix of size
#V×maximum deletion length=41).

5. Analogously, depending on the J segment, the J deletion
length is determined, and for each of the J segments, a discrete
distribution is assigned (forming a parameter matrix of size #J
×maximum deletion length=41).

6. Depending on the D segment, the D3′ deletion length is deter-
mined, after which, depending on the D segment and the D3′

deletion length, the D5′ deletion length is determined. This
way, each of the D segments is assigned with a D3′ deletion
length distribution and D3′|D5′ deletion length distribution
(forming a parameter matrix of size #D×maximum deletion
length and a three-dimensional parameter tensor of size #D×
maximum deletion length×maximum deletion length= 41).

7. VD insertion length and nucleotide composition are deter-
mined (length probabilities forming a vector of length maxi-
mum insertion length=41).

8. VD insertion nucleotide composition is determined (via a
Markov chain with 16 parameters).

9. DJ insertion length and nucleotide composition are deter-
mined (length probabilities forming a vector of length maxi-
mum insertion length=41).

10. DJ insertion nucleotide composition is determined (via a
Markov chain with 16 parameters).

This way, a whole set of IGoR model parameter values defines a
multivariate discrete probability distribution.

KLD (Kullback and Leibler 1951) measures the difference be-
tween two probability distributions, P andQ. For discrete probabil-
ity distributions defined on the same probability space X, the KLD

is defined as KLD(P||Q) = ∑

x [X
P(X) log

P(X)
Q(X)

. Marcou et al. (2018)

calculated the KLD of the IGoR-estimated model parameter
values to the ground truth ones to validate the IGoR
inference module. We argue that a similar method can be used
for comparing IGoR models inferred from different AIRR-seq sam-
ples. We used the JSD, which is a smoothed symmetric version of
the KLD: JSD(P, Q) = (1/2)KLD(P||M)+ (1/2)KLD(Q||M), where
M = (1/2)(P +Q).

JSD is symmetric and nonnegative, and owing to the smooth-
ing, its square root satisfies the triangle inequality. Thus, the
square root of the JSD can be used as a distance between IGoRmod-
els, as well as between AIRR-seq samples the models were inferred
from.

The KLD (and, hence, the JSD) between two multivariate dis-
tributions can be decomposed into a sum of several components if
components of the distributions are conditionally independent.
Applied to the IGoR RGM, this means that the JSD (“explicit
JSD”) between two IGoRmodels can be decomposed into seven ad-
ditive terms.

The explicit JSD between two sets of IGoR parameter
models P1 and P2 can be then written as the sum of the JSDs of

the joint probabilities of conditionally independent recombina-
tion events:

JSD(P1, P2) = JSD(V1 · delV1, V2 · delV2)+ JSD(J1 · delJ1, J2 · delJ2)
+ JSD(D1 · delD3′

1 · delD5′
1, D2 · delD3′

2 · delD5′
2)

+ JSD(V1 · J1 ·D1, V2 · J2 ·D2)

+ JSD(insVD1, insVD2)+ JSD(insDJ1, insDJ2).

We computed a lower bound for the variation of the explicit JSD
introduced by the noise by recreating this variation in the most
controlled setting: For each data set, for a given sample size of N se-
quencing reads (N in [1000, 3000, 10,000, 30,000]), we used an
IGoR model M_0 (inferred from the first experimental sample of
each data set), generated 10 pairs of synthetic samples of N se-
quencing reads each, and computed the explicit JSD of the IGoR-
inferred RGMP values from these sequencing reads, within the
pairs (synthetic replicates on Fig. 2A). Thus, we obtained a set of
values of explicit JSD between data sets generated using the same
theoretical RGMP. To obtain the normalized JSD between two
RGMP sets, we divide their explicit JSD by the mean of the explicit
JSDs obtained using generated synthetic samples. We used the
same precomputed synthetic samples within one species: If the
normalized JSD for RGMP sets inferred from samples E1 and E2 is
to be calculated, we set normalizedJSD(E1, E2) = explicitJSD(E1, E2)/
meani,j explicitJSD(Si, Sj), where the same synthetic replicates Si
are used for any samples for a given species (human/mouse).

For the human data, we applied the allele preprocessing
pipeline (Supplemental Fig. S5) to remove the systematic bias
in the model inference. Subsequently, we summed the
parameters corresponding to alleles of the same gene and com-
pared different subjects on the gene, not on the allele level. We
did not apply the allele preprocessing workflow for the murine
data, because all subjects share by definition (inbred mice) identi-
cal germline gene sets.

In this study, we limited the maximum sample size to 30,000
sequencing reads owing to the high time and memory consump-
tion by IGoR (inferring RGMP values from all considered samples
took about 300,000 CPU hours).

A statistical test for comparing repertoire generation models

To test if the RGMP sets for two AIRR-seq samples A
(containing N sequencing reads) and B (containing K
sequencing reads) are indistinguishable, namely, that the explicit
JSD (or the normalized JSD, because they differ by a constant) be-
tween the models inferred from subsamples of these two
samples was not higher than between data replicates of A, we
used the following procedure. Without loss of generality, we as-
sume that N≤K.

First, we split sample A into two nonoverlapping samples A′

and A′ ′, both of size N/2 sequencing reads. Then, we sample N/2
sequencing reads fromB to obtain samples B′. After that, for a fixed
subsample size S (S in [1000, 3000, 10,000, 30,000]) sequencing
reads, we performed the following:

- Subsampling (without replacement) of S sequencing reads from
the samples A′ and A′ ′ each 30 times independently; this yields
30 nonoverlapping pairs and hence 30 (identically distributed)
measurements of the JSD between data replicates of A (the ex-
plicit JSD of the models inferred from the samples within one
pair).

- Subsampling of S sequencing reads from the samples A′ and B′

each 30 times independently; this yields 30 nonoverlapping
pairs and hence 30 independent measurements of the explicit
JSD between subsamples of A and B (the explicit JSD of themod-
els inferred from the samples within one pair).
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We used the null hypothesis that samples A and B are homo-
geneous, namely, that the expected values of the RGMP inferred
from them are equal. Consequently, the expected values of the
RGMP inferred from subsamples of A′, A′ ′, and B′ are equal.
Under the null hypothesis, the distance between model parame-
ters values inferred from subsamples of A′ and A′ ′ will not signifi-
cantly differ from the distance between model parameters values
inferred from subsamples of A′ and B′. Hence, the mean of the dis-
tribution of the explicit JSD between A′ and A′ ′ models will not dif-
fer from that of A′ and B′ models.Weused the unpaired Student’s t-
test to check if the null hypothesis holds.

To investigate the properties of our test, we repeated the test
procedure 30 times (Supplemental Fig. S4A) for pre–B cell data
for data replicates and for murine twin subjects (samples 1 and 2
from the MOUSE_PRE data set) for the subsample size 3000 se-
quencing reads. We used the sample size 3000 owing to the high
computational cost of the procedure. In the first case (i.e., when
the null hypothesis was known to hold), the P-value distribution
resembled a uniform distribution (Supplemental Fig. S4B); in the
second case, when the null hypothesis supposedly did not hold,
the P-values were highly skewed toward zero (Supplemental Fig.
S4C).

Software

We used IGoR v1.4.0 (Marcou et al. 2018; https://github.com/
qmarcou/IGoR) for RGMP inference, nucleotide sequence Pgen
evaluation and generation of synthetic AIRR-seq data, and OLGA
v1.2.3 (Sethna et al. 2019) for amino acid sequence Pgen evalua-
tion. We used MiXCR v3.0.12 (Bolotin et al. 2015) for AIRR-seq
data preprocessing and annotation.

Graphics

For visualization, we used the following Python packages:
Matplotlib v3.3.2 (Hunter 2007) and Seaborn v0.11.0 (https://
zenodo.org/record/4019146#.X3xdf1lRUxg).

Hardware

Computations were performed on a dedicated server as well as the
high-performance computing cluster FRAM (Norwegian e-infra-
structure for Research and Education sigma2.no/fram).

Data access

IGoR parameter files for all RGMs analyzed in this paper, along
with the FASTA files that contain the sequences these RGMPs
were inferred from, can be downloaded from the NIRD Research
Data Archive (https://archive.norstore.no/) at doi.org/10.11582/
2021.00089 (see also supplemental data set, https://archive
.sigma2.no/pages/public/datasetDetail.jsf?id=10.11582/2021.00089
[accessed October 12, 2021]). The code used to generate the results
in this paper can be found as Supplemental Code and at GitHub
(https://github.com/csi-greifflab/desygnator).
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