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Mitochondrial mutations drive prostate cancer
aggression
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Rached Alkallas1, Lawrence E. Heisler1, Junyan Zhang5, John D. Watson1, Melvin L.K. Chua 5, Michael Fraser5,

Francesco Favero3, Chris Lawerenz6, Christoph Plass7, Guido Sauter4, John D. McPherson 8,

Theodorus van der Kwast9, Jan Korbel 2, Thorsten Schlomm10, Robert G. Bristow5,11,12

& Paul C. Boutros 1,11,13

Nuclear mutations are well known to drive tumor incidence, aggression and response to

therapy. By contrast, the frequency and roles of mutations in the maternally inherited

mitochondrial genome are poorly understood. Here we sequence the mitochondrial genomes

of 384 localized prostate cancer patients, and identify a median of one mitochondrial single-

nucleotide variant (mtSNV) per patient. Some of these mtSNVs occur in recurrent mutational

hotspots and associate with aggressive disease. Younger patients have fewer mtSNVs than

those who diagnosed at an older age. We demonstrate strong links between mitochondrial

and nuclear mutational profiles, with co-occurrence between specific mutations. For example,

certain control region mtSNVs co-occur with gain of the MYC oncogene, and these mutations

are jointly associated with patient survival. These data demonstrate frequent mitochondrial

mutation in prostate cancer, and suggest interplay between nuclear and mitochondrial

mutational profiles in prostate cancer.
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Prostate cancer remains the most prevalent non-skin cancer
in men1 and exhibits a remarkably quiet mutational
profile2. Exome-sequencing studies of localized tumors

have revealed few recurrent somatic single-nucleotide variants
(SNVs)3, 4, while whole-genome sequencing studies have not
identified highly recurrent driver non-coding SNVs or genomic
rearrangements (GRs)5–8. Although strong mutagenic field effects
have been observed9, 10, their underlying mechanisms and to what
extent they drive tumor initiation or progression are unknown.
Nevertheless, promising molecular diagnostics predictive of
aggressive disease have been created using supervised machine-
learning techniques, both from RNA abundance data11, 12 and
from DNA copy number data13, showing strong linkage between
molecular features of prostate tumor cells and patient outcome.

Most studies of the prostate cancer genome have focused on
mutations occurring in the nuclear genome, and have ignored
the other genome of the cell: the mitochondrial genome.
Mitochondria are maternally inherited and play critical roles in
pathways dysregulated in cancer cells, including energy produc-
tion, metabolism and apoptosis14. It is therefore critical to evaluate
the status of the mitochondrial genome to have a complete view of
the overall mutational profile of prostate cancer. While mito-
chondrial mutations have been observed in several tumor types15–
17, including prostate cancer18–22, their global frequency and
clinical impact have not yet been comprehensively characterized.
Previous studies have found that mitochondrial mutations are
associated with increased serum prostate-specific antigen (PSA)
levels21, have suggested that mtDNA mutations increase cancer
cell tumorigenicity20, and indicate that overall mitochondrial
mutation burden is correlated with higher Gleason Scores22.

To characterize the mitochondrial mutation landscape of
prostate cancer, we analyzed the mitochondrial genomes
of 384 adenocarcinomas of the prostate across all National
Comprehensive Cancer Network (NCCN) defined risk categories,
including 164 early-onset prostate cancers (EOPCs, age at
diagnosis less than 50). We identify recurrent mutational
hotspots in the mitochondrial genome, which included recur-
rently mutated bases or recurrently mutated genes or regions. We
also confirm increasing mutation burden with patient age23–26,
identify interactions between nuclear and mitochondrial muta-
tion profiles and reveal specific mitochondrial mutations enriched
in aggressive prostate tumors.

Results
Mitochondrial genome sequence analysis. We collected 384
tumors from patients with localized prostate cancer, comprising
164 EOPCs and 220 late-onset prostate cancers (LOPC; Supple-
mentary Data 1; Supplementary Fig. 1). The LOPC patients
represented the three NCCN risk groups: 19 low-risk, 151
intermediate-risk, and 36 high-risk. The average sequencing
depth of the mitochondrial genome was 13,577×, allowing
extremely sensitive mutation detection. This cohort does not
include any nuclear whole-genome duplication events, as
demonstrated by SNP microarray analysis7. We first evaluated the
mitochondrial copy number (MCN) for each sample from the
sequencing coverage of the mitochondrial and nuclear genomes.
MCN ranged from 75 to 1405 (mean: 431) across the cohort, and
was strongly associated with age (linear model, P= 1.67 × 10−26),
as well with clinical indices such as T-category (ANOVA,
P= 6.01 × 10−3) and Gleason Score (GS; ANOVA, P= 6.46 × 10−3;
Supplementary Fig. 2).

We next conservatively identified mitochondrial SNVs
(mtSNVs) as those positions that had an absolute difference in
their heteroplasmy fraction (ΔHF) between purity-adjusted
tumor and paired-normal samples of at least 0.20 (Supplementary

Fig. 1). Because the number of identified mtSNVs is dependent on
the heteroplasmy fraction threshold, we chose to balance false
positives and false negatives with an intermediate value. There
were 293 mtSNVs across all patients, with 47.4% of tumors
(182 out of 384) harboring at least one and 6.8% (26 out of 384)
harboring three or more (see “Methods” section, Fig. 1a;
Supplementary Data 2). Proportions of patients with 0, 1, 2, ≥3
mtSNVs are 202 out of 384 (52.6%), 110 out of 384 (28.6%),
46 put of 384 (12.0%), and 26 out of 384 (6.8%), respectively. The
number of patients with no mtSNVs was greater than expected by
chance, suggesting significant variability in mtSNV burden
(permutation test; P= 3.4 × 10−5). Tumors with a larger number
of mitochondria were more likely to have an mtSNV (generalized
linear model (GLM) family binomial; P= 8.38 × 10−7). mtSNVs
were associated with tumor size (T-category; X2 test; P= 2.47 × 10−4),
but not other clinical prognostic indices like pre-treatment PSA
and GS (Fig. 1a). PCR followed by Sanger sequencing validated
18 out of 25 predicted mtSNVs (Supplementary Fig. 3; Supple-
mentary Fig. 4; Supplementary Table 1), suggesting precision of
~ 75%, comparable to somatic indel detection accuracy27.

Frequently mutated mitochondrial loci. The noncoding control
region of the mitochondria (mtDNA positions: 1–576 and
16,024–16,569), was the most frequently mutated region with
15.4% (59 out of 384) of tumors harboring mutations in that
region (Supplementary Data 2; Supplementary Fig. 5). The con-
trol region comprises several elements, including the heavy- and
light-strand promoters, as well as the origins of replication for the
heavy strand (OHR), two hypervariable regions (HV1, HV2)
and three conserved sequence blocks (CSB1, CSB2, CSB3). All
functional locations were defined from mitmap.org28. Of these
regions, HV1 was the most frequently mutated (mtDNA posi-
tions: 16,024–16,383). Overall, mutation rates were generally
consistent across regions of the mitochondrial genome (Fig. 1b).

There were 157 mtSNVs in the 13 protein coding genes, 82%
(129 out of 157) of which were nonsynonymous, including six
premature stop codons and two mutated stop codons. The most
frequently mutated protein-coding gene was ND5 (30 out of 157).
We identified 21 specific positions mutated in at least two
patients (Fig. 1c): 10 within the control region, eight in protein-
coding regions and three in rRNA subunits. Of the coding
mutations, seven were non-synonymous and one introduced a
premature stop codon. In the control region, position 16,093—a
common site of tissue specific heteroplasmy29, 30—was the most
frequently mutated position (nine patients; Fig. 1c). Of protein-
coding genes, ND1 was frequently mutated, with two patients
having G3946A mutations (ΔHF: 0.63, 0.24), leading to a
structure-disrupting E214K amino acid change, resulting in a
reduction of complex assembly31. A second mutation, G4142A
was found in two patients (ΔHF: 1.0, 0.21; R279Q) and a third
mutation, G3842A, in three patients (ΔHF: 0.45, 0.21, 0.95;
premature stop codon).

There were 22 mutations within mitochondrial tRNA genes,
and eight of these were located within anticodon stems. In CO1,
there were non-synonymous mutations at G5910A (A2T in one
patient; ΔHF: 0.84), and T6664C (I254T in one patient; ΔHF:
0.46), two amino acids previously observed to be mutated in
prostate cancer cells20. Two patients with mutations at position
6419 were detected within the CO1 gene (ΔHF: 0.2, 0.23),
although these two showed heteroplasmy within the normal
samples and homoplasmy in the tumor, suggesting that these
mtSNVs represent either tissue-specific heteroplasmy32 or
mutations that have gone to fixation in the tumor. Overall,
CO1 was mutated in 4.7% (18 out of 384) of patients, markedly
lower than the 11% rate previously reported20.
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Age effect on the distribution of mtSNVs in prostate cancer. As
expected, the occurrence of mitochondrial mutations was strongly
associated with patient age (GLM family binomial;
P= 5.88 × 10−9; Fig. 1a)23–26. The mitochondrial mutation rate
was significantly lower than that of the nuclear genome mutation
rate (Fig. 2a; P= 0.040, F-test), which may in part be explained by
differential mutation detection accuracy in the two genomes. To
further understand the association of mtSNVs with age, we
separated patients into those 50 and under years of age (EOPC;
n= 164) and those over 50 (LOPC; n= 220). The median ages of
the EOPC and LOPC cohorts were 47 and 63.5 years old,
respectively. Patients with EOPC were significantly more likely to
have no mitochondrial mutations, 117 out of 164 (71.3%), than
those with LOPC (85 out of 220, 38.6%; P= 4.22 × 10−10, pro-
portion test; Fig. 2b, c). Despite this difference in mutational load,
the two groups have similar distributions of mtSNVs across the
mitochondrial genome, with the highest fraction of mtSNVs
within the control region (Supplementary Fig. 6). EOPC patients
had about 224 fewer copies of the mitochondria than LOPC
patients (Mann–Whitney test; P= 4.56 × 10−30; Fig. 2d). This
effect was inverted in the normal samples with EOPC patients
having 86 more copies (Mann–Whitney; P= 1.54 × 10−14; Sup-
plementary Fig. 2d), consistent with the decline in lymphocyte
MCN with age33.

Associations between mtSNVs and nuclear genomic mutations.
Intriguingly, mutations in the large rRNA subunit (RNR2) were
significantly correlated with mutations in the mitochondrial gene
ND4 (Spearman’s Ρ= 0.19; P= 0.00015), suggesting to us an

inter-play between different mutational types. To rigorously
assess this phenomenon, we studied mutational associations
between the nuclear and mitochondrial genomes. We exploited a
set of 40 candidate nuclear somatic driver events recently iden-
tified through recurrence analyses, including five measures of
mutation density, six methylation events, six non-coding SNVs,
five coding SNVs, five measures of mutational density, ten
genomic rearrangements and eight copy number aberrations
(CNAs)7. The SNVs included recurrent coding SNVs in genes
that are commonly mutated in prostate cancer, as well as the six
most recurrent non-coding SNVs. To characterize per-region
mtSNVs, we defined 22 mutational features representing the
broad functional aspects of the mitochondria, 13 protein coding
genes, 2 rRNAs, tRNAs (treated as one group), the control region
and 3 subregions within the control region, along with mtSNV
number and MCN. For each of the nuclear features, we evaluated
their correlation to 22 mitochondrial mutational features in 194
LOPCs with the nuclear mutational data (Supplementary Data 3).
We detected multiple nuclear-mitochondrial mutational associa-
tions (Fig. 3a). For example, SNVs in FOXA1 were significantly
positively correlated with multiple mitochondrial features, as
were SNVs in MED12. Nuclear-mitochondrial correlations were
weakly dependent on the ΔHF threshold used to call mtSNVs
(Supplementary Fig. 7, Supplementary Data 4).

One prominent nuclear-mitochondrial mutational interactions
was co-occurrence of MYC copy number gain and mtSNVs
within the OHR (Fig. 3b). Mutations within the OHR may
dysregulate mtDNA replication, while MYC induces mitochon-
drial biogenesis by activating genes required for mitochondrial
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function34 and influences metabolic plasticity in cancer stem
cells35. Risk of biochemical failure (BCR) after primary definitive
treatment by radiotherapy or surgery was significantly higher for
patients whose tumors harbored both MYC CNAs and OHR
mtSNVs relative to those with neither or one of these two
mutations, suggesting a synergistic mitochondrial-nuclear effect
on disease aggression (Fig. 3c). Several other similar instances of
apparent synergistic mitochondrial-nuclear effects on disease
aggression were observed (Supplementary Fig. 8a–e), suggesting
that this is a common phenomenon in prostate cancer. While we
have used the region defined as OHR (mtDNA positions:
110–441) as the mitochondrial feature, this subregion of the
Control Region significantly overlaps with a region defined as
HV2 (mtDNA positions: 57–372). We confirmed that HV2
mtSNVs show the same synergistic effect with MYC CNAs as
mtSNVs defined as OHR (Supplementary Fig. 8f). Interestingly,
MYC CNAs were more common in LOPCs (14.5%; 29/200) than
in EOPCs (8.4%; 10/119) making it impossible to assess if the
same nuclear-mitochondrial interactions occur in both disease
states. Further evaluation of changes in nuclear-mitochondrial
associations across disease progression will be revealing.

Clinical impact of mtSNVs in prostate cancer. The recurrence
of mitochondrial mutations in specific regulatory regions and
their association with prognostic nuclear mutations strongly
suggested their ability to drive disease aggression. We therefore

systematically evaluated the association of individual mitochon-
drial somatic mutational features with disease aggression in 165
patients with clinical follow-up using Cox proportional hazards
modeling. Of our 22 mitochondrial mutational features (Fig. 3a),
four were significantly associated with biochemical relapse rates
(Fig. 4a; Supplementary Table 2): mutations in CSB1, OHR, ATP8
and HV1. We should note that MT-ND4L was not included in
this analysis as only one patient of the 165 had a mtSNV in this
gene. To evaluate if these mutations were independent prognostic
variables, we employed multivariable modeling to adjust for age,
pre-treatment PSA, T-category and GS. After adjustment,
mtSNVs in HV1 were associated with better patient outcome
(Fig. 4b; Hazard Ratio, HR= 0.28, 95% CI= 0.08–0.9, P= 0.032,
Wald test), while mtSNVs in OHR were associated with sig-
nificantly worse patient outcome (Fig. 4c; HR= 2.47, 95%
CI= 1.13–5.38, P= 0.023, Wald test).

These data suggested that mtSNVs might comprise a novel way
to predict patient outcome. We therefore assessed the ability of a
multi-mtSNV signature to identify patients at elevated risk for
biochemical failure (who therefore might benefit from treatment
intensification) and those at low risk (who might therefore
be appropriate for surveillance protocols). Using leave-one-out
cross-validation and univariate feature-selection, we created a
three-class signature that separated patients into three distinct
risk groups for biochemical failure (Supplementary Fig. 9a).
The signature identified both patients at elevated risk (Fig. 4d;
HR= 3.41, 95% CI= 1.71–6.80, P= 0.0005, Wald test) and
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patients at low-risk (HR= 0.23, 95% CI= 0.08–0.65, P= 0.005,
Wald test). These effects are independent of clinical features:
when we considered only the clinically-homogeneous NCCN
intermediate risk group, the same mtSNV signature again
separated three groups with distinct risk profiles (Supplementary
Fig. 10). The cross-validation method identified seven genes
(CO2, CO3, ATP8, HV1, OHR, CSB1, ND4L) as informative for
classification. Patients with mtSNVs in (CO2, CO3, HV1) were
classified as low-risk and patients with mtSNVs in (ATP8, OHR,
ND4L, CSB1) were classified as high-risk. To show that this does
not lead to over-fitting, we chose the three most frequently mutated
regions of the seven (CO3, HV1, OHR), which also clearly
separated patients into three groups (Supplementary Fig. 9b).

Discussion
The mitochondrial mutational landscape of cancer has been
relatively unexplored. Previous work has shown a large-scale
mtDNA deletion has predictive value in the prostate biopsy
outcomes36, suggesting the feasibility of mtDNA-based molecular
tests. We identify a large number of mtSNVs in localized prostate
cancer. These mutations show complex interplay with nuclear
mutational characteristics, and appear to work together to drive
tumor aggressiveness.

Mitochondrial mutations also show associations with risk of
biochemical relapse. Interestingly, mtSNVs within the control
region can have conflicting outcomes; however, when separated
into the different noncoding subregions (HV1, OHR), we found
that certain loci were associated with better outcomes and others

with worse outcomes. The overlap of the OHR and HV2 within
the control region and their association with MYC CNAs high-
light the need for better understanding of the functions of the
control region37. In future, treating the control region as distinct
regulatory regions may provide further insight into the roles of
these regions, as well as any contribution they may make toward
tumor aggression. We note that the number of pairs of nuclear-
mitochondrial mutational features tested may elevate false-
positive rates, and it will be key to perform validation studies
in larger cohorts to verify their effect-sizes and biological
significance.

The differences observed in the mitochondrial mutational
profiles of EOPC and LOPC patients show a need to better
understand the association between mtSNVs and aging, and how
this may relate to the development of prostate cancer. While the
MCN of matched-normal samples decreases with patient age,
a previously observed trend33, tumor MCN estimates were
significantly higher in older patients, which could account for
the higher frequency of mtSNVs in these patients. However,
since the majority of the samples of each age group come from
different research centres, this striking difference in tumor MCN
will require further investigation to exclude any confounding
effects.

Further studies will be needed to assess when different mtSNVs
occur during tumor evolution and their timing relative to common
nuclear mutations. The function of many of these mtSNVs is
unclear, and functional and mechanistic studies linking them to
tumor evolution and mitochondrial function will be of great
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Biochemical RFR Biochemical relapse-free rate
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interest. This will more clearly identify the mitochondrial mutations
that are important for mitochondrial-nuclear communication and
how they may interact to drive tumor formation. Localized prostate
cancer remains the most diagnosed non-skin cancer in men, and
identification of aggressive disease remains an urgent clinical
dilemma. Addition of mtSNVs to prognostic biomarkers may be an
effective way of improving prediction of patient outcome, sup-
porting triage of patients with low-risk disease to surveillance
protocols and with high-risk disease to adjuvant therapy regimens.

Methods
Patient cohort. We collected 384 prostate cancer tumor samples with matched
normal samples (381 blood, 3 tissue-derived). The samples had Gleason Scores
ranging from 3 + 3 to 5 + 4. The 165 patients from the Canadian Prostate Cancer
Genome Network (CPC-GENE) underwent either radical prostatectomy or image-
guided radiotherapy as detailed in Fraser et al.7. In addition, 51 samples from
publicly available data sets were included in the somatic mutation analysis and
correlations with clinical variables, age, Gleason Score and T-category4–6, 8, three of
TCGA samples had tissue-derived normal samples as opposed to blood-normals.
All samples were manually macro-dissected and were assessed by an expert uro-
logical pathologist to have tumor cellularity >70%. All tumor specimens were taken
from the index lesion. Publicly available tumor tissues were obtained and used
following University Health Network Research Ethics Board (REB) approved study
protocols (UHN 06-0822-CE, UHN 11-0024-CE, CHUQ 2012-913:H12-03-192).
Local REB and ICGC guidelines were used to collect whole blood and informed
consent from CPC-GENE patients at the time of clinical follow-up.

EOPC patient cohort and sample processing. We collected 168 tumor samples
from EOPC patients. Informed consent and an ethical vote (institutional reviewing
board) were obtained according to the current ICGC guidelines. The patients did
not receive any neo-adjuvant radiotherapy, androgen deprivation therapy, or
chemotherapy prior to the surgical removal of tumor tissue. Tumor samples and a
normal blood control were frozen at −20 °C and subsequently stored at −80 °C.

EOPC DNA library preparation, sequencing and alignment. DNA library pre-
paration and whole-genome sequencing was performed on Illumina sequencers with
the raw length of the reads displaying a median of 101 bp. Reads were aligned to the
hg19 reference genome using BWA-MEM version 0.7.8-r455 [arXiv:1303.3997v2]
and duplicates were removed using Picard (http://broadinstitute.github.io/picard).
Mitochondrial reads were extracted using SAMtools38.

Nuclear mutation calling. Recurrent nuclear genomic features were obtained from
Fraser et al.7, which included five recurrent coding SNVs from commonly mutated
genes in prostate cancer; the six most recurrent noncoding SNVs; CNAs from eight
commonly mutated prostate cancer genes; the 10 GRs included the five most
recurrent translocations and the four most recurrent inversions plus a recurrent
inversion containing the PTEN gene; the TMPRSS-ERG fusion; presence or
absence of kataegis events; chromothripsis; three metrics of mutation density
(median dichotomized PGA estimates, number of SNVs and number of GRs); six
methylation events were identified through univariate CoxPH modelling as asso-
ciated with disease progression. Nuclear somatic SNVs were predicted by Soma-
ticSniper (v1.0.2)39, (n = 172 samples), setting the mapping quality threshold to 1,
otherwise with default parameters. Nuclear SNVs were filtered using SAMtools
(v0.1.6)38 and SomaticSniper (v1.0.2) provided filters, as well as a mapping quality
filter and false-positive filter from bam-readcount (downloaded 10 January 2014).
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Fig. 4 Clinical impact of mitochondrial mutations in prostate cancer. a The associations of biochemical recurrence (BCR) and 21 mitochondrial features:
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Nuclear SNVs were then annotated by ANNOVAR (v2015-06-17)40. The nuclear
mutation rate was obtained by dividing the number of SNVs after filtering by the
number of callable loci. CNAs were analyzed by Affymetrix OncoScan microarrays
(n= 194) and the methylation data were generated by Illumina Infinium Human
Methylation 450k BeadChip kits (n= 104). Genomic rearrangements were called
using Delly (v0.5.5)41 (n= 172). Chromothripsis scores (n = 159) were calculated
by ShatterProof (v0.14)42 and subsequently dichotomized with a 0.517 threshold.
Sample processing, whole-genome sequencing and whole-genome sequencing data
analysis are as described in detail by Fraser et al.7.

Mitochondrial SNV calling. Reads mapped to the mitochondria during whole-
genome alignment were extracted using BAMQL (v1.1)43 using the command:

bamql -I -o out_mito_reads.bam -f input_wgs.bam ’(chr(M) &
mate_chr(M)) | (chr(Y) & after(59000000) & mate_chr(M))’;

The second part of the query statement collects reads, where one of the pair
mapped to chrM and the other unmapped, which in our data was also assigned to
an unresolved region in chrY.

The output files from BAMQL were used as input bam files for the
mitochondrial genome analysis program MToolBox (v0.2.2)44. The versions of the
various system requirements were: Python v2.7.2; gmap v.2013-07-2045; samtools
v0.1.1838; java v1.7.0_72; picard v1.92 (http://broadinstitute.github.io/picard);
muscle v3.8.3146. We used default parameters for MToolBox and used the default
RSRS47 as the reference genome. The default parameters include a minimum base
quality score of 25, samples that failed the MToolBox program using default
parameters, but successfully completed at a lower base quality parameter setting of
20, were nonetheless removed from the analysis.

MToolBox_v0.2.2/MToolBox.sh -i bam -r RSRS -M -I -m ’-D
genome_index/ -H hg19RSRS -M chrRSRS’ -a ’-r genome_fasta/
-F -P -C’

The predicted mitochondrial genome for each tumor sample and the number of
reads supporting each base were compared to the corresponding normal sample, if
available, from each patient. Positions where the absolute difference in
heteroplasmy fraction (ΔHF) was >0.2 were considered to be mitochondrial SNVs
(mtSNVs). While this does not preclude the possibility of tissue-specific
heteroplasmy being mislabeled as somatic mutations, this allowed us to identify
somatic variants as well as ignore those positions that could be called population
variants, reducing the number of potentially false positive variant calls.
Heteroplasmy fraction estimates were adjusted to account for tumor cellularity
using cellularity values calculated by qpure48. Tumor HF values were adjusted with
the following equation:

TumorHFcellularity ¼ ðTumorHFMToolBox � ð1� cellularityÞ
�NormalHFMToolBoxÞ=cellularity

If there were no cellularity values available, we assumed cellularity = 1.0. Those
values of Tumor HFcellularity that were less than zero or greater than one were
rounded to zero and one, respectively.

In the mitochondrial reference genome, there are three positions encoded as
“N” to preserve historical numbering, (523, 524 and 3107), in addition position 310
is located within a homopolymer region and is a common variant28. These four
positions can result in misalignments49, therefore they were filtered out of our
analyses, as in previous studies50. We also filtered out those positions with
relatively low coverage of <100 read depth. Positions of mitochondrial genes and
subregions of the noncoding control region were obtained from http://www.
mitomap.org. Pathogenicity scores from MutPred51, PolyPhen-252 and SiteVar53

were obtained from the MToolBox output. Mutations in tRNA genes were
compared to the Mamit-tRNA database54.

We chose to a threshold of 0.2 ΔHF in order to balance removing false positives
without excluding a large number of mtSNVs unnecessarily (Supplementary
Fig. 7c). As part of this assessment, we looked at four correlations between different
nuclear and mitochondrial features using mtSNVs assessed at increasing ΔHF
cutoffs from 0.1–0.6 (Supplementary Fig. 7, Supplementary Data 4). In each of
these four cases, raising ΔHF from 0.1 to 0.2 led to increasing correlation
coefficients between the two features. Three of the correlations that were not
significant at 0.1 ΔHF became significant at higher ΔHF, suggesting that some
mtSNVs with lower HF values may be either false positives or low-level tissue-
specific heteroplasmies. Any further increases in ΔHF had differing effects on the
four correlations.

mtDNA copy number. Mitochondrial copy number per cell was calculated using
the equation: (mitochondrial coverage/nuclear coverage) ×2, using nuclear cover-
age data from the whole-genome alignment7 and mitochondrial coverage data
calculated by bedtools genomecov (v2.24.0)55. The mitochondrial mutation rate per
megabase DNA was calculated by dividing the number of mtSNVs by the tumor
MCN multiplied by the number of callable bases, 16565, accounting for the 4
positions that were removed.

Survival and statistical analyses. The mtSNV data were compared to patient
clinical features in the R statistical environment (v3.2.3). Binomial regression (age,
PSA) and Chi-square tests (T-category, Gleason Score) were used to identify
associations between the clinical variables and mtSNVs for all 384 patients. Survival
analyses were performed on 165 patients due to survival data availability. Cox
proportional hazards models were used to calculate HRs for mtSNVs in the
different mitochondrial features such as genes or MCN, with verification of the
proportional hazards assumption. The mitochondrial feature MT-ND4L was
removed from this analysis as only one patient in the 165 cohort had a mtSNV in
this gene. Change in 10 year percent survival was calculated using survival rates.
Kaplan–Meier plots were created comparing biochemical recurrence with the
presence or absence of mutations in certain mitochondrial loci, (genes or non-
coding regions) or median-dichotomized tumor MCN. Nuclear genomic features
were chosen based on recurrence in a previous prostate cancer study7. The
data were visualized using the R-environment and lattice (v0.20-31), latticeExtra
(v0.6-26) and circos (v0.67-4)56. Associations between nuclear and mitochondrial
genome features were calculated using Spearman’s correlation.

PCR validation. Single-nucleotide variants in mitochondrial DNA were validated
by Sanger re-sequencing, as previously reported7. Briefly, 10 ng of total genomic
DNA (including mitochondrial DNA) was subjected to PCR amplification using
primer pairs flanking SNVs identified from whole-genome sequencing (Supple-
mentary Table 3). The sequence data surrounding the region of interest were
obtained from http://www.mitomap.org/bin/view.pl/MITOMAP/HumanMitoSeq.
The amplicon sequence generated by the in silico PCR was then entered into the
NCBI genome BLAST search engine to identify non-mitochondrial sequences that
were similar. This was done to ensure that there were some differences between the
designed primers and nuclear sequences, as well as to identify any sequence regions
that could confound downstream analyses. The genome used for the BLAST search
was GRCh38.p2 reference assembly top-level. These web pages were used on 20
and 21August 2015 and verified on 13 September 2016. PCR reactions were pur-
ified using the QIAquick PCR purification kit (Qiagen, Toronto, Canada). Sanger
re-sequencing was performed using amplicon-specific primers on an ABI 3730XL
capillary electrophoresis instrument (Thermo Fisher Scientific, Burlington, Canada)
at The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Canada.

Data availability. The sequencing data are available at the European Genome-
Phenome Archive (EGA) repository under accession EGAS00001001782.
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