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Learning interpretable cellular and gene signature
embeddings from single-cell transcriptomic data

Yifan Zhao® ">®, Huiyu Cai® %°, Zuobai Zhang3, Jian Tang?™ & Yue Li® 1™

The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized
transcriptomic studies. However, large-scale integrative analysis of scRNA-seq data remains
a challenge largely due to unwanted batch effects and the limited transferabilty, interpret-
ability, and scalability of the existing computational methods. We present single-cell
Embedded Topic Model (scETM). Our key contribution is the utilization of a transferable
neural-network-based encoder while having an interpretable linear decoder via a matrix tri-
factorization. In particular, scETM simultaneously learns an encoder network to infer cell type
mixture and a set of highly interpretable gene embeddings, topic embeddings, and batch-
effect linear intercepts from multiple sScRNA-seq datasets. scETM is scalable to over 106 cells
and confers remarkable cross-tissue and cross-species zero-shot transfer-learning perfor-
mance. Using gene set enrichment analysis, we find that scETM-learned topics are enriched
in biologically meaningful and disease-related pathways. Lastly, scETM enables the incor-
poration of known gene sets into the gene embeddings, thereby directly learning the asso-
ciations between pathways and topics via the topic embeddings.
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dvances in high-throughput sequencing technologies!

provide an unprecedented opportunity to profile the

individual cells’ transcriptomes across various biological
and pathological conditions, and have spurred the creation of
several atlas projects?>~>. Emerged as a key application of single-
cell RNA sequencing (scRNA-seq) data, unsupervised clustering
allows for cell-type identification in a data-driven manner. Flex-
ible, scalable, and interpretable computational methods are cru-
cial for unleashing the full potential from the wealth of single-cell
datasets and translating the transcription profiles into biological
insights. Despite considerable progress made on clustering
method development for scRNA-seq data analysis®~16, several
challenges remain.

First, compared to bulk RNA-seq, scRNA-seq data commonly
exhibit higher noise levels and drop-out rates, where the data only
captures a small fraction of a cell’s transcriptome!”. Changes in
gene expression due to experimental design, often referred to as
batch effects!8, can have a large impact on clustering!18-20, If
not properly addressed, these technical artefacts may mask the
true biological signals in cell clustering.

Second, the partitioning of the cell population alone is insuf-
ficient to produce biological interpretation. The annotations of
the cell clusters require extensive manual literature search in
practice and the annotation quality may be dependent on users’
domain knowledge??. Therefore, an interpretable and flexible
model is needed. In the current work, we consider model inter-
pretability as whether the model parameters can be directly used
to associate the input features with latent factors or target out-
comes. Latent topic models are a popular approach in mining
genomic and healthcare data?!-23 and are increasingly being used
in the scRNA-seq literature?4, Specifically, in topic modeling, we
infer the topic distribution for both the samples and genomic
features by decomposing the samples-by-features matrix into
samples-by-topics and topics-by-features matrices, which also be
viewed as a probabilistic non-negative factorization (NMF)?>.
Importantly, the top genes under each latent topic can reveal the
gene signatures for specific cellular programs, which may be
shared across cell types or exclusive to a particular cell type.
Traditionally, the latter are detected via differential expression
analysis at individual gene levels, which has limited statistical
power in scRNA-seq data analysis because of the sparse gene
counts, small number of unique biological samples, and the
burdens of multiple testings.

Third, model transferrability is an important consideration.
We consider a model as transferable if the learned knowledge
manifested as the model parameters could benefit future data
modeling. In the context of scRNA-seq data analysis, it translates
to learning feature representations from one or more large-scale
reference datasets and applying the learned representations to a
target dataset?%27. If the model is not further trained on the target
dataset, the learning setting called zero-shot transfer learning. A
model that can successfully separate cells of distinct cell types that
are not present in the reference dataset implies that the model has
learned some meaningful abstraction of the cellular programs
from the reference dataset such that it can generalize to anno-
tating new cell types of different kinds. An analogy would be that
someone who has learned how to distinguish triangles from
rectangles may also be able to distinguish squares from circles. As
the number and size of scRNA-seq datasets continue to increase,
there is an increasingly high demand for efficient exploitation and
knowledge transfer from the existing reference datasets.

Several recent methods have attempted to address these
challenges. Seurat’ uses canonical correlation analysis to project
cells onto a common embedding, then identifies, filters, scores,
and weights anchor cell pairs between batches to perform data
integration. Harmony?® iterates between maximum diversity

clustering and a linear batch correction based on the mixture-of-
experts model. Scanorama!? performs all-to-all dataset matching
by querying nearest neighbors of a cell among all remaining
batches, after which it merges the batches with a Gaussian kernel
to form a single-cell panorama. These methods rely on feature
(gene) selection and/or dimensionality reduction methods;
otherwise they can not scale to compendium-scale reference? or
cohort-level single-cell transcriptome data?® or are sensitive to
the noise inherent to scRNA-seq count data. They are also non-
transferable, meaning that the knowledge learned from one
dataset cannot be easily transferred through model parameter
sharing to benefit the modeling of another dataset. NMF
approaches such as UNCURL3? works only with one scRNA-seq
dataset. LIGER? uses integrative NMF to jointly factorize mul-
tiple scRNA-seq matrices across conditions using genes as the
common axis, linking cells from different conditions by a com-
mon set of latent factors also known as metagenes. LIGER is
weakly transferable in the sense that the global metagenes-by-
genes matrix can be recycled as initial parameters when mod-
eling a new target dataset, whereas the cells-by-metagenes and
the final metagenes-by-genes must be further computed and
updated by iterative numerical optimization to fit the target
dataset.

Deep-learning approaches, especially autoencoders, have
demonstrated promising performance in scRNA-seq data mod-
eling. scAlign!> and MARS3! encode cells with non-linear
embeddings using autoencoders, which is naturally transferable
across datasets. While scAlign minimizes the distance between
the pairwise cell similarity at the embedding and original space,
MARS looks for latent landmarks from known cell types to infer
cell types of unknown cells. Variational autoencoders (VAE)32 is
an efficient Bayesian framework for approximating intractable
posterior distribution using proposed distribution parameterized
by neural networks. Several recent studies have tailored the ori-
ginal VAE framework towards modeling single-cell data. Single-
cell variational inference (scVI)® models library size and takes
into account batch effect in generating cell embeddings. scVAE-
GM!! changed the prior distribution of the latent variables in the
VAE from Gaussian to Gaussian mixture model, adding a cate-
gorical latent variable that clusters cells. Lotfollahi et al.>® devel-
oped a VAE model called scGen to infer the expression difference
due to perturbation conditions by latent space interpolation. A
key drawback for these VAE models is the lack of interpretability
—post hoc analyses are needed to decipher the learned model
parameters and distill biological meaning from the learned net-
work parameters. To improve interpretability, Svensson et al.l4
developed a linear decoded VAE (hereafter referred to as scVI-
LD) as a part of the scVI software.

In this paper, we present single-cell Embedded Topic Model
(scETM), a generative topic model that facilitates integrative
analysis of large-scale single-cell transcriptomic data. Our key
contribution is the utilization of a transferable neural-network-
based encoder while having an interpretable linear decoder via a
matrix tri-factorization. The scETM simultaneously learns the
encoder network parameters and a set of highly interpretable
gene embeddings, topic embeddings, and batch-effect linear
intercepts from scRNA-seq data. The flexibility and expressive-
ness of the encoder network enable scETM to model extremely
large scRNA-seq datasets without the need of feature selection or
dimension reduction. By tri-factorizing cells-genes matrix into
cells-by-topics, topics-by-embeddings, and embeddings-by-genes,
we are able to incorporate existing pathway information into gene
embeddings during the model training to further improve
interpretability. This is a salient feature compared to related
methods such as scVI-LD. It allows scETM to simultaneously
discover interpretable cellular signatures and gene markers while
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(a) scETM modeling of single-cell transcriptomes across multiple experiments or studies

Variational autoencoding
scRNA-seq data

: OO g 2
. @ / W/ ° 5
I (;)ellt dhln 5 4\”/\ M ,\‘:’( O g
2|y atchs |8 O OO - N
2 s K/ Wy W
3 e (Ol = - Oz
5 ,,e‘g‘m.m g
K i Y
22 OO s
Vet s o Os
Genes \é\e g /" . \ logo?, 2
& S 8~ 4, +0,N(©O, 1)
hidden layers

softmax(3)

Linear decoding

B Expected transcription rate

Databast

gene-set informed
l embedding (optional)
n [
embedding @ genes genes
topics g 5 /';:
e 'EE % + 3
6, £ £
. . /;e?
Topic Topic Gene Batch effect Genes 3%
mixture  embedding embedding of sample s <
e —

Likelihood:
log p(Y|Y) =Y log Y

(b) Transfer learning to cluster cells from unseen data

[ Clustering training samples

@
®©
Du| yeo| — [ SETM ) (Fdrained ) . ;g
£ inference cETM-ENC °
Eg© ‘ ©
S o
\9 |
Genes 2 : Topics
5!
| R
Unseen data ” Trained
. ) _— 12} *
(e.g., cross-tissues, g | YO CETM-ENC 2180
cross-species)  © ©
Genes Topics

L——>» (c) Genes and topics embedding cluster
» (b) Clustering cells from training data or unseen data

(c) Genes and topics embedding cluster

T Topic 1: Pancreas function genes Topic 3: Diabetes pathway
ded, O\ m
I DD B g [} DD o
] o oo (]
DD ]
] [}
O /’E"'\D oo o
o shared top genes Bg
(] (] between topics 1 & 2
EL,/ & =] Topic 4: insulin resistance
=]
[} ]
0, m o Dg\@E
Egim Og\@ o
o g\E By B
u - a i} Topics
Topic 2: Insulin receptors signaling 8 O Genes
K

Fig. 1 scETM model overview. a scETM training. Given as input the scRNA-seq data matrices across multiple experiments or studies (i.e., batches), scETM
models the single-cell transcriptomes using an embedded topic-modeling approach. Each scRNA-seq profile serves as an input to a variational autoencoder
(VAE) as the normalized gene counts. The encoder network produces a stochastic sample of the latent topic mixture (64 for batch s=1, ..., S and cell
d=1, ... Ns), which can be used for clustering cells (see panel b). The linear decoder learns topic embedding and gene embedding, which can be used to
analyze cellular programs via enrichment analyses (see panel €). b Workflow used to perform zero-shot transfer learning. The trained scETM-encoder on a
reference scRNA-seq dataset is used to infer the cell topic mixture 8" from an unseen scRNA-seq dataset without training them. The resulting cell mixtures
are then visualized via UMAP visualization and evaluated by standard unsupervised clustering metrics using the ground-truth cell types. ¢ Exploring gene
embeddings and topic embeddings. As the genes and topics share the same embedding space, we can explore their connections via UMAP visualization or

annotate each topic via enrichment analyses using known pathways.

integrating scRNA-seq data across conditions, subjects and/or
experimental studies.

We demonstrate that scETM offers state-of-the-art perfor-
mance in clustering cells into known cell types across a diverse
range of datasets with desirable runtime and memory require-
ments. We also demonstrate scETM’s capability of effective
knowledge transfer between different sequencing technologies,
between different tissues, and between different species. We then
use scETM to discover biologically meaningful gene expression
signatures indicative of known cell types and pathophysiological
conditions. We analyze scETM-inferred topics and show that
several topics are enriched in cell-type-specific or disease-related
pathways. Finally, we directly incorporate known pathway-gene
relationships (pathway gene set databases) into scETM in the
form of gene embeddings, and use the learned pathway-topic
embedding to show the pathway-informed scETM (p-scETM)’s
capability of learning biologically meaningful information.

Results

scETM model overview. We developed scETM to model scRNA-
seq data across experiments or studies, which we term as batches
(Fig. 1a and Supplementary Fig. 1a). Adapted from the Embedded
Topic Model (ETM)33, scETM inherits the benefits of topic
models, and is effective for handling large and heavy-tailed

distribution of word frequency. In the context of scRNA-seq data
analysis, each sampled single-cell transcriptome is provided as a
vector of normalized gene counts to a two-layer fully-connected
neural-network (i.e., encoder; see detailed architecture in Sup-
plementary Fig. 1c), which infers the topic mixing proportions of
the cell. The trained encoder on a reference scRNA-seq data can
be used to infer topic mixture of unseen scRNA-seq data collected
from different tissues or species (Fig. 1b).

For interpretability, we use a linear decoder with the gene and
topic embeddings as the learnable parameters. Specifically, we
factorize the cells-by-genes count matrix into a cells-by-topics
matrix @ (inferred by the encoder), topics-by-embedding &, and
embedding-by-genes p matrices (Supplementary Fig. 1b). This
tri-factorization design allows for exploring the relations among
cells, genes, and topics in a highly interpretable way. To account
for biases across conditions or subjects, we introduce an optional
batch correction parameter A, which acts as a linear intercept
term in the categorical softmax function to alleviate the burden of
modeling batch effects from the encoder to let it focus on
inferring biologically meaningful cell topic mixture 6, The
encoder and embedding learning is performed by an amortized
variational inference algorithm to maximize the evidence lower
bound (ELBO) of the marginal categorical likelihood of the
scRNA-seq counts32. Compared to scVI-LD14, the linear decoder
component that learns a common embeddings for both topics
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Table 1 Model properties and unsupervised clustering performance on data integration tasks.

Transferable Interpretable MP HP ™ AD MDD MR
Harmony 0.969 0.955 0.705 0.994 0.784 0.763
Scanorama 0.915 0.859 0.542 0.997 0.587 0.780
Seurat 0.944 0.968 0.676 0.991 0.550 0.781
scVAE-GM v 0.805 NA NA 0.997 0.563 0.778
scVI v 0.932 0.759 0.670 0.991 0.541 0.783
LIGER v v 0.914 0.91 0.591 0.894 0.704 0.714
scVI-LD v v 0.875 0.656 0.608 0.989 0.666 0.718
scETM v v 0.946 0.943 0.761 0.996 0.717 0.859
scETM — 2 v v 0.851 0.474 0.629 0.996 0.719 0.773
scETM + adv v v 0.944 0.946 0.704 0.993 0.717 0.772
Batch Effect Strain Tech. Tech. Ind. Ind. Studies
The clustering performance is measured by adjusted rand index (ARI) between ground-truth cell types and Leiden’ clusters. scETM performances with or without the linear batch correction (scETM,
scETM — 2) are both reported. scETM + adv is scETM plus adversarial network loss to further correct batch effects. Batch variables include strain, sequencing technologies (Tech.) and individuals (Ind.).
NA is reported for models that did not converge. Experimental details are described in the “Methods"” section. We ran Seurat on all datasets with integration turned on whenever applicable.

and genes offers more flexibility and interpretability and overall
better performance as we demonstrate next (Fig. 1c). Details of
the scETM algorithm and implementation are described in
Methods.

Data integration. We benchmarked scETM, along with seven
state-of-the-art single-cell clustering or integrative analysis
methods—scVI®,  scVI-LD4,  Seurat v37, scVAE-GM!],
Scanoramal®, Harmony?8 and LIGER?, on six published datasets,
namely Mouse Pancreatic Islet (MP)34, Human Pancreatic Islet
(HP)7, Tabula Muris (TM)3, Alzheimer’s Disease dataset (AD)35,
Major Depressive Disorder dataset (MDD)??, and Mouse Retina
(MR)3¢37 (Supplementary Methods). Across all datasets, scETM
stably delivered competitive results especially among the trans-
ferable and interpretable models, while others methods fluctuate
across different datasets in terms of Adjusted Rand Index (ARI)
and Normalized Mutual Information (NMI) (Table 1; Supple-
mentary Table 1). Overall, Harmony and Seurat have slightly
higher ARIs than scETM, with trade-offs of model transferr-
ability, interpretability, and/or scalability, which we investigate in
the following sections.

We further experimented the same scETM without the batch
correction term, namely scETM-A. Compared to the A-ablated
model, the full scETM model confers higher ARI in 3 out of the 5
datasets (Table 1) and higher NMI in 4 out of the 5 datasets
(Supplementary Table 1). Improvement over the Human
Pancreas (HP) dataset is remarkably high, implying an effective
correction of the confounder due to the scRNA-seq technology
differences. We observe no improvement in the AD dataset in
terms of both ARI and NMI and small improvement in MDD
only in terms of NMI This implies a lesser concern of batch
effects from only the individual brain sample donors, with all data
being collected by the same technology in a single study.

We also evaluated the batch mixing aspect of scETM and other
methods using k-nearest-neighbor Batch-Effect Test (kBET)!8
(Table 2) and examined to what extent scETM’s batch mixing
performance can be improved by introducing an adversarial loss
term to scETM (Methods)38. Briefly, we used a discriminator
network (a two-layer feed-forward network) to predict batch
labels using the cell topic mixture embeddings generated by the
encoder network, and directed the encoder network to fool the
discriminator. We observe notable improvement on kBET with
similar ART and NMI scores (Table 1 and Supplementary Table 1,
row "scETM+-adv") at the cost of up to 50% more running time.
This shows the expandability of scETM. For the subsequent
analyses, we opted to use the results from scETM (without the
adversarial loss but with the linear batch correction 1) because of

its simpler design, scalability, comparable ARI scores, and less
aggressive batch correction (see below).

scETM is also robust to architectural and hyperparameter
changes, requiring very few or no architecture adaptation or
hyperparameter tuning efforts when applied to unseen datasets
(Supplementary Table 2). As a result, we used the same
architecture and hyperparameters for all datasets in Table 1.
We also performed a comprehensive ablation analysis to validate
our model choices. The ablation experiment demonstrates the
necessity of the key model components, such as the batch-effect
correction factors A and the batch normalization technique used
in training the encoder. Normalizing gene expression scRNA-seq
counts as the input to the encoder also improves the performance
(Supplementary Table 3).

Clustering agreement metrics are not the only metrics for
evaluating scRNA-seq methods, and are not available to
unannotated datasets. Therefore, we also evaluated the negative
log-likelihood (NLL) on held-out samples, which is a principled
way for model selection without labels. We computed the held-
out (10%) NLL. We found that scETM is robust to different
architectures in terms of the NLL (Supplementary Table 2). We
also found that ARI and NLL are modestly negatively correlated
on the TM dataset (Supplementary Fig. 2), implying an
agreement between the two metrics although this might not be
always the case since it highly depends on the cell type labels and
the data quality.

To further verify the clustering performance and validate our
evaluation metrics, we visualized the cell embeddings using
Uniform Manifold Approximation and Projection (UMAP)3 for
some of the datasets (Supplementary Figs. 3,4,5,6,7,8 and Fig. 2).
Altogether, these results support that scETM effectively captures
cell-type-specific information, while accounting for artefacts
arising from individual or technological variations.

Batch overcorrection analysis. Some methods may risk over-
correcting batch effects and fail to capture some aspect of bio-
logical variations. In the above analysis, we observe that some
methods such as LIGER conferred competitive kBET but low
ARI, suggesting potential overcorrection of batch effects. To
experiment the extent of batch overcorrection by each method,
we conducted two experiments using two datasets, namely the
Human Pancreas (HP) dataset’ and the Mouse Retina (MR)
dataset36:37,

For the HP data, we manually removed beta cells from all 5
batches except for batch CelSeq2, resulting in the cell type
distributions shown in Supplementary Table 4. We expect that, if
a method is guilty of batch-effect overcorrection, it would assign
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Table 2 Batch correction performance on data integration tasks. The batch correction performance is measured by kBET'8. More
details are described in Table 1 caption and Methods.

MP HP ™ AD MDD MR
Harmony 0.390 0.342 0.148 0.518 0.440 0.063
Scanorama 0.439 0.155 0.001 0.286 0.202 0.063
Seurat 0.538 0.381 0.281 0.195 0.085 0.053
scVAE-GM 0.233 NA NA 0.073 0.051 0.033
scVI 0.516 0.140 0.056 0.434 0.313 0.073
LIGER 0.602 0.660 0.374 0.771 0.716 0.176
scVI-LD 0.148 0.034 0.069 0.476 0.277 0.022
scETM+-adv 0.546 0.443 0.144 0.627 0.570 0.141
scETM 0.270 0.163 0.096 0.278 0.228 0.066
scETM — 4 0.217 0.000 0.000 0.122 0.066 0.017
Batch Effect Strain Technology Technology Individual Individual Studies
Harmony Scanorama Seurat v3 LIGER scVAE
ARI 0.763 ARI 0.780 ARI 0.781 ARI0.714 ARI0.778
scVI scVI-LD scETM scETM + adv.
Cell type
SRR @ amacrine
astrocytes
® Dbipolar
¢ @® cones
s @ fibroblasts
@ ganglion
2 horizontal
e microglia
muller
pericytes
. rods
unknown
vascular_endothelium
ARI 0.783 ARI0.718 ARI 0.859 ARI 0.772
Harmony Scanorama Seurat v3 LIGER scVAE
§r o D s &
i TP 3 >
e" »
kBET 0.063 kBET 0.063 kBET 0.053 kBET 0.176 kBET 0.033
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i @ Shekharetal.
:T:)« s Macosko et al.
kBET 0.073 KBET 0.022 KBET 0.066 KBET 0.141

Fig. 2 Integration and batch correction on the Mouse Retina dataset. Each panel shows the Mouse Retina cell clusters using UMAP based on the cell
embeddings obtained by each of the 9 methods. The cells are colored by cell types in the first two rows and by batches, which are the two source studies,
in the last two rows. The ARI and kBET scores of each method are shown below each plot. UMAP visualization for the other 5 datasets are illustrated in
Supplementary Figs. 3, 4, 5, 6, 7.
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Fig. 3 Benchmark of the efficiency and scalability of the seven scRNA-seq clustering algorithms. The line styles in the plot indicate model inputs. The
number of genes was fixed to 3000 in this experiment. We increased the number of cells randomly sampled from the combined AD and MDD dataset and
evaluated the performance of each method in terms of: a runtime, b memory usage, and ¢ adjusted rand index (ARI). The run-time of scETM on CPU is

annotated on the left panel.

beta cells to other non-beta cell clusters in the latent space by
forcing the alignment of different batches. Consequently, such
methods would have poor clustering scores. We evaluated all of
the methods on this dataset using 3 metrics: ARI, kBET, and
average silhouette width (ASW)*0. Briefly, higher ASW indicates
larger distances between cell types and lower distance within cell
type in the cell embedding space (Methods). We measured the
overall ASW as well as the ASW for only the beta cells (i.e., ASW-
beta). The results are summarized in Supplementary Table 5. We
observed that scETM struck a good balance between discriminat-
ing cell types (ARI: 0.9298; ASW: 0.3525; ASW-beta: 0.5370) and
integrating different batches (kBET: 0.1247). Adding the
adversarial loss to the scETM (i.e., sScETM-+adv) increased kBET
from 0.1247 to 0.3445 (while maintaining ARI above 0.92) but
greatly compromised ASW-beta (0.0045), suggesting a more
aggressive overcorrection. Similarly, LIGER performed the best in
kBET (0.5978) but conferred a much lower ARI (0.8476) and low
ASW-beta (0.0912), indicating a more severe overcorrection of
the batch effects (i.e., mixing beta cells with other cells).

We then visualized the clustering by UMAP to examine how
the beta cells are assigned to different clusters (Supplementary
Fig. 9). We found that beta cells (colored in red) were clustered
separately by scETM from other cell types. In contrast, beta cells
were mixed up with other cell types by methods including
Harmony and LIGER, which overcorrected the batch effects when
integrating the five batches. Visually, we also observe that scETM
+adv method moves the beta cell cluster closer to the alpha cell
cluster, confirming a higher level of overcorrection compared
to scETM.

The MR dataset is a collection of two independent studies on
mouse retina3®37. Here we consider the two source studies as two
batches, hereafter referred to as the Macosko batch and the
Shekhar batch. Many cell types are uniquely present in the
Macosko batch (Supplementary Table 6). There is also a large
difference in the cell proportion between the two batches. In
particular, rods is only 0.35% in Shekhar but 65% in Macosko. In
this scenario, we expect that methods that overcorrect the batch
effects would tend to mix rods with cells of other cell types from
the Shekhar batch, resulting in low ARI and high kBET. On the
contrary, a desirable integration method would strike a balance
between the ARI (or ASW) and kBET on this combined dataset.
Therefore, this setup imposes a great challenge on the integration
methods.

Overall, scETM achieved the highest ARI (0.859), reasonable
ASW (0.2873), and modest kBET (0.0656), indicating its ability to
capture the true biology from the data without over-correcting
the batch effects (Supplementary Table 7). In contrast, LIGER is

more aggressive in its batch correction, resulting in the highest
kBET score of 0.176 but lowest ARI score of 0.714. We further
investigated the extent of improving kBET while maintaining a
high ARI score with scETM+-adv. Indeed, scETM+-adv conferred
an increased kBET of 0.1410 and a reasonably high ARI score of
0.7720. Visualizing the clustering of each method using UMAP
(Fig. 2) confirms the quantitative clustering results.

Incidentally, we also notice that scETM is not sensitive to the
669 doublelets or contaminants, all of which were from the
Shekhar batch (Supplementary Table 8). In contrast, if we did not
filter out the doublets/contaminants, the performance of LIGER
and Seurat degrades drastically possibly due to batch over-
correction or failing to integrate the same cell types from different
batches together.

Scalability. A key advantage of scETM is its high scalability and
efficiency. We demonstrated this by comparing the run-time,
memory usage, and clustering performance of the state-of-the-art
models using their recommended pipelines when integrating a
merged dataset consisting of cells from the MDD and AD data-
sets (Methods). Because of the simple model design and efficient
implementation (e.g., sparse matrix representation, multi-
threaded data retrieval, etc; Discussion), scETM achieved the
shortest run-time among all deep-learning based models (Fig. 3a).
Specifically, on the largest dataset (148,247 cells), scETM ran 3-4
times faster than scVI and scVI-LD, and over 10 times faster than
scVAE-GM. We note that the run-time largely depends on the
implementation rather than the network architectures and loss
functions in these deep-learning methods. Harmony and Sca-
norama were the only methods faster than scETM, yet they both
operate on a hundred principal components at most. Although
for comparison purpose we used the top 3000 most variable genes
for all of the methods, scETM can easily scale to all of the genes,
which is more desirable because the resulting model can gen-
eralize to other datasets.

Because of the amortized stochastic variational inference
scETM in principle takes linear run-time and constant memory
with respect to the sample size per training epoch. The use of
multi-threaded data loader to streamline the random minibatch
retrieval and loading further speed-up the training process in
practice. In contrast, the memory requirement of Seurat increases
rapidly with the number of cells, due to the vast numbers of
plausible anchor cell pairs in the two brain datasets (Fig. 3b). In
terms of clustering accuracy, scETM consistently confers compe-
titive performance, whereas Harmony and Scanorama perform
unstably as dataset sizes vary (Fig. 3c). UMAP visual inspection of
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scVAE embeddings suggests that scVAE likely suffers from under-
correction of batch effects (Supplementary Fig. 8). The sudden
drop of LIGER’s clustering performance in the largest benchmark
dataset may be due to batch overcorrection.

Although it has been widely accepted by the deep-learning
community that computing using Graphical Processing Units
(GPUs) results in ~ 10 x speed-up over computing using CPU,
the adoption of GPUs in the computational biology community is
beginning to catch up. In our non-exhaustive experiment on the
Mouse Pancreas dataset, training scETM for 1000 steps on the
6-core Core i7 10750H CPU requires 650 s (Fig. 3a), while with
an Nvidia RTX 2070 laptop GPU it only takes 50 s—a 13 x speed-
up over the CPU computer.

Transfer learning across single-cell datasets. A prominent fea-
ture of scETM is that its parameters, hence the knowledge of
modeling scRNA-seq data, are transferable across datasets. Spe-
cifically, as part of the scETM, the encoder trained on a reference
scRNA-seq dataset can be applied to infer cell topic mixture of a
target scCRNA-seq dataset (Fig. 1b), regardless of whether the two
datasets share the same cell types. As an example, we trained an
scETM model on the Tabula Muris FACS dataset (TM (FACS))
(which is a subset of the TM dataset) from a multi-organ mouse
single-cell atlas, and evaluated it using the MP data, which only
contains mouse pancreatic islet cells. Although the two datasets
were obtained using different sequencing technologies in two
independent studies, the model yielded an encouragingly high
ARI score of 0.941, considering that a model directly trained on
MP achieves ARI 0.946. Interestingly, in the UMAP plot, the TM
(FACS)-pretrained model placed B cells, T cells and macrophages
far away from other clusters and separated B cells and T cells
from macrophages, which is not observed in the model directly
trained on MP (Supplementary Figs. 3,4,5,6,7; Supplementary
Table 9). We repeated the same experiment three times with
different random seeds and observed consistently that B and
T cells are close to each other and distant from macrophages
(Supplementary Fig. 10). We also experimented transfer learning
by first training scETM on TM (FACS) with pancreas removed
and then applied to MP dataset. The performance decreased but
is still reasonably good (Supplementary Table 9), demontrasting
scETM’s ability to transfer knowledge across tissues.

Encouraged by the above results, we then performed a
comprehensive set of cross-tissue and cross-species transfer-
learning analysis with 6 tasks (Methods): (1) Transfer between the
TM (FACS) and the MP dataset (including MP — TM (FACS));
(2) Transfer between the Human Pancreas (HP) dataset and the
Mouse Pancreas (MP) dataset; (3) Transfer between the Human
primary motor cortex (M1C) (HumMI1C) dataset and the Mouse
primary motor area (MusMOp) dataset both obtained from the
Allen Brain Map data portal*>. We chose to transfer between the
human M1C and mouse MOp because of the high number of
shared cell types between the brain regions of the two species. The
batches for HumMI1C are the two post-mortem human brain
M1 specimens and the two mice for MusMOp. Note that in these
transfer-learning tasks (A — B) we only corrected batch effects
during the training on the source data A but not during the
transfer to the target data B.

As a comparison, we evaluated and visualized the clustering
results in all 6 transfer-learning tasks using scETM, scVI-LD, and
scVI (Fig. 4; Supplementary Tables 10 and 11). Overall, scETM
achieved the highest ARI across all tasks and competitive KBET
scores. In particular, scETM trained on TM (FACS) on
heterogeneous tissues clustered much better the MP cells (ARI:
0.941; kBET: 0.339) than scVI (ARIL: 0.484; kBET: 0.257) and
scVI-LD (ARI: 0.398; kBET: 0.256). Remarkably, scETM trained

only on the MP dataset can cluster reasonably well the much
larger TM single-cell data, which were collected from diverse
primary tissues including pancreas. This implies that scETM does
not merely learn cell-type-specific signatures but also the
underlying transcriptional programs that are generalizable to
unseen tissues.

In cross-species transfer learning between HP and MP, scETM
captured better the conserved pancreas functions compared to
scVI and scVI-LD (Fig. 4; Supplementary Table 10). On the other
hand, cross-species transfer between MusMOp and HumMICis a
much more challenging task due to the evolutionarily divergent
functions of the brains between the two species. Nonetheless,
scETM conferred a much higher ARI of 0.696 for the
MusMOp — HumMIC transfer and ARI of 0.167 for the
HumM1C — MusMOp transfer. In contrast, scVI-LD and scVI
did not work well on these tasks with ARI scores lower than 0.1.
Since they cannot separate cells by cell types, all cells are mixed
together, leading to a high kBET score. The improvements
achieved by scETM over scVI(-LD) are possibly attributable to
the simpler linear batch correction on the source data, jointly
learning topic and gene embedding, and the topic-modeling
formalism, which together lead to an encoder network that is
better at capturing the transferable cellular programs.

Pathway enrichment analysis of scETM topics. We next inves-
tigated whether the scETM-inferred topics are biologically rele-
vant in terms of known gene pathways in human. One approach
would be to arbitrarily choose a number of top genes under each
topic and test for pathway enrichment using hypergeometric
tests. This approach works well when there are asymptotic p-
values at the individual gene level. In our case, each gene is
characterized by the topic scores, making it difficult to system-
atically choose the number of top genes per topic. To this end, we
resorted to Gene Set Enrichment Analysis (GSEA)**. Briefly, we
calculated the maximum running sum of the enrichment scores
with respect to a query gene set by going down the gene list that is
sorted in the decreasing order by a given topic distribution S
(Methods). For each dataset, we trained a scETM with 100 topics.

For the HP dataset, each topic detected many significantly
enriched pathways with Benjamini-Hochberg False Discover Rate
(FDR) < 0.01 (Fig. 5a). Many of them are relevant to pancreas
functions, including insulin processing (Fig. 5b), insulin receptor
recycling, insulin glucose pathway, pancreatic cancer, etc
(Supplementary Table 12). As scETM jointly learns both the
gene embeddings and topic embeddings, we can visualize both
the genes and topics in the same embedding space via UMAP
(Fig. 5¢). Indeed, we observe a strong co-localization of the genes
in Insulin Processing pathway and the corresponding enriched
topic (i.e., Topic 54).

For the AD dataset, we found topics enriched for Reactome
Amyloid Fiber Formation, KEGG AD, and Deregulated CDK5
triggers multiple neurodegenerative in AD (Supplementary Fig. 11
and Supplementary Table 13). For MDD dataset, we found
enrichment for substance/drug induced depressive disorder
(Supplementary Figs. 12, 13 and Supplementary Table 14). The
full GSEA enrichment results for all 3 datasets are listed in
Supplementary Data 1. As a comparison, we also performed
GSEA over the 100 gene loadings learned by scVI-LD (matching
the 100 topics in the scETM) on these 3 datasets but found fewer
relevant distinct gene sets (Supplementary Tables 12, 13 and
Supplementary Table 14) or weaker statistical enrichments by
GSEA (Supplementary Fig. 14).

Differential scETM topics in disease conditions and cell types.
We sought to discover scETM topics that are condition-specific
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Fig. 4 Cross-tissue and cross-species zero-shot transfer learning. Each panel displays the UMAP visualization of cells by training on dataset A and the
applied to dataset B (i.e., A — B). In total, we performed 6 transfer-learning tasks: TM (FACS) < MP, HP (inDrop) <> MP, MusMOp < HumMI1C. For each
task, we evaluated scETM, scVI-LD, or scVI, which are the rows in the above figure. The cells are colored by tissues or cell types as indicated in the legend.
The corresponding ARl and kBET are indicated below each panel. For MP — TM (FACS), we evaluated the ARI based on the 92 cell types although we
colored the cells by the 20 tissues of origin instead of their cell types because of the large number of cell types. Abbreviations: TM (FACS): tabula muris
sequenced with fluorescence-activated single-cell sorting; MP: mouse pancreas; HP (inDrop): human pancreas sequenced with InDrop technology;
HumM1C: human primary motor cortex (from Allen Brain map); MusMOp: mouse primary motor area (from Allen Brain map).

or cell-type specific. Starting with the AD dataset, we found that
the scETM-learned topics are highly selective of cell-type marker
genes (Fig. 6a) and highly discriminative of cell types (Fig. 6b). To
detect disease signatures, we separated the cells into the ones
derived from the 24 AD subjects and the ones from the 24 control
subjects. We then performed permutation tests to evaluate whe-
ther the two cell groups exhibit significant differences in terms of
their topic expression (Methods). Topic 12 and 58 are differen-
tially expressed in the AD cells and control cells (Fig. 6c, d;
permutation test p-value = le-5). Interestingly, topic 58 is also
highly enriched for mitochondrial genes. Indeed, it is known that
B-amyloids selectively build up in the mitochondria in the cells of
AD-affected brains#°. For the MDD dataset, topics 1, 52, 68, 70,
86 exhibit differential expressions between the suicidal group and
the healthy group (Supplementary Fig. 18c) and interesting
neurological pathway enrichments (Supplementary Table 14).
We also identified several cell-type-specific scETM topics from
the HP, AD, and MDD datasets. In HP, topics or metagenes 20,
45, 99 are upregulated in acinar cells, topic 12 upregulated in
macrophage, topic 52 upregulated in delta, and topics 30 and 37
are upregulated in more than one cell types, including
endothelial, stellate and others (Supplementary Fig. 15). In AD,
as shown by both the cell topic mixture heatmap and the
differential expression analysis (Fig. 6b), topics 19, 35, 50, 69, 97
are upregulated in oligodendrocytes, micro/macroglia, astrocytes,

endothelial cells, and oligodendrocyte progenitor cells (OPCs)
respectively (permutation test p-value = le-5; Fig. 6b, Supple-
mentary Fig. 16). Interestingly, two subpopulations of cells from
the oligodendrocytes (Oli) and excitatory (Ex) exhibit high
expression of topics 12 and 58, respectively, and are primarily AD
cells (Supplementary Fig. 17). Among them, there is also a strong
enrichment for the female subjects, which is consistent with the
original finding3”.

For MDD, topics 1, 20, 59, 64, and 72 are upregulated in
astrocytes, oligodendrocytes, micro/macroglia, endothelial cells,
and OPCs, respectively (Supplementary Fig. 18c). This is
consistent with the heatmap pattern (Supplementary Fig. 18b).
Several topics are dominated by long non-coding RNAs
(lincRNAs) (Supplementary Fig. 18a). While previous studies
have suggested that lincRNAs can be cell-type-specific?0, it
remains difficult to interpret them*’. We further experimented
the enrichment using only the protein coding genes, but did not
find significantly more marker genes among the top 10 genes per
topic (Supplementary Fig. 19).

Pathway-informed scETM topics. To further improve topic
interpretability, we incorporated the known pathway information
to guide the learning of the topic embeddings (Fig. 7a). We
denoted this scETM variant as the pathway-informed scETM or
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p-scETM. In particular, we fixed the gene embedding p to a
pathways-by-genes matrix obtained from pathDIP4 database?s.
We then learned only the topics embedding &, which provides
direct associations between topics and pathways (Methods). We
tested p-scETM on the HP, AD and MDD datasets. Without
compromising the clustering performance (Supplementary
Table 15), p-scETM learned functionally meaningful topic
embeddings (Supplementary Fig. 20; Supplementary Tables 16
and 17). In the HP topic embeddings, we found Insulin Signaling,
Nutrient Digestion and Metabolism to be the top pathways
among several topics (Supplementary Fig. 20a). In the MDD topic
embeddings, the top pathway associated with Topic 40, Beta-2
Adrenergic Receptor Signaling, was also enriched in a MDD
genome-wide association studies*®. In the AD topic embeddings,
we found the association between Topic 9 and Alzheimer
Disease-Amyloid Secretase pathway.

To further demonstrate the utility of p-scETM, we also used
7481 gene ontology biological process (GO-BP) terms®0>! as the

fixed gene embedding, which learns the topics-by-GOs topic
embedding from each dataset. Under each topic, we selected the
top 5 high-scoring GO-BP terms to examine their relevance to the
target tissue or disease (Fig. 7b and Supplementary Data 2). For
the HP dataset, Negative Regulation of Type B Pancreatic Cell
(GO:2000675) and Regulation of Pancreatic Juice Secretion
(GO:0090186) are among the top GO-BP terms for Topics 27
and 68, respectively. For the AD dataset, Amyloid Precursor
Protein Biosynthetic Process (GO:0042983) is among the top 5
GO-BP terms under Topic 40. For the MDD dataset, similar top
GO-BP terms were found among topics learned using all of the
genes and using only the coding gene. Many topics exhibit high
embedding scores for neuronal functions including Neuronal
Signal Transduction (GO:0023041), Central Nervous System
Projection Neuron Axonogenesis (GO:0021952), and Branchio-
motor Neuron Axon Guidance (GO:0021785). Interestingly,
Topic 98 in MDD—coding genes only and Topics 22, 51 in
MDD—all genes involve Adenylate Cyclase Modulating
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Fig. 6 scETM topic embeddings of the Alzheimer's Disease snRNA-seq dataset. a Gene-topic heatmap. The top genes that are known as cell-type
marker genes based on PanglaoDB are highlighted. For visualization purposes, we divided the topic values by the maximum absolute value within the same
topic. Only the differential topics with respect to cell-type or AD were shown. b Topics intensity of cells (n =10,000) sub-sampled from the AD dataset.
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of topics across the eight cell types and two clinical conditions. Colors indicate mean differences between cell groups with and without a certain label (cell-
type or condition). Asterisks indicate Bonferroni-corrected empirical p-value < 0.05 for 100,000 one-sided permutation tests of upregulated topics in each

cell-type and disease labels.

G-protein Coupled Receptors (GPCRs) Signaling (GO:0007188),
which is the target of several recently-developed antidepressant
drugs®2.

Discussion

As scRNA-seq technologies become increasingly affordable and
accessible, large-scale datasets have emerged. This challenges
traditional statistical approaches and calls for transferable, scal-
able, and interpretable representation learning methods to mine
the latent biological knowledge from the vast amount of scRNA-
seq data. To address these challenges, we developed scETM and
demonstrated its state-of-the-art performance on several unsu-
pervised learning tasks across diverse scRNA-seq datasets. scETM
demonstrates excellent capabilities of batch-effect correction and
knowledge transfer across datasets.

In terms of integrating multiple scRNA-seq data from different
technologies, experimental batches, or studies, we introduce a
simple batch-effect bias term to correct for non-biological effects.
This in general improves the cell clustering and topic quality.
When using the original ETM33, we observed that ubiquitously
expressed genes such as MALATI tended to appear among the
top genes in several topics. Our scETM corrects the background
gene expressions by the gene-dependent and batch-dependent

10

intercepts. As a result, the ubiquitously expressed genes do not
dominate all topics from scETM. We also introduced a more
aggressive batch correction strategy by adversarial network loss,
which shows improved kBET with small trade-off for the ARI in
most datasets.

In terms of scalability, although scETM is similar to other
existing VAE models in terms of theoretical time and space
complexity, we emphasize that implementation is also very
important, especially for deep-learning models. For example,
scVAE-GM!! is much slower and more memory consuming than
scVIO, while they are very similar VAE models. One of the main
speedups provided by scETM comes from our implementation of
a multi-threaded data loader for minibatches of cells, which does
not need to be re-initialized at every training epoch as the stan-
dard PyTorch DataLoader. Compared to scVI and scVI-LD, the
normalized counts in both the encoder input and the recon-
struction loss used by scETM remove the need to infer the cell-
specific library size variable, and the simpler categorical likelihood
choice also helps reduce the computational time.

In terms of transferrability, many existing integration methods
require running on both reference and query datasets to perform
post hoc analyses such as joint clustering and label
transfer’-%10-28_ In contrast, our method enables a direct or zero-
shot knowledge transfer of the pretrained encoder network
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Fig. 7 Pathway-topics embeddings learned by the pathway-informed scETM (p-scETM). a p-scETM overview. Pathways information as pathways-by-
genes are provided as the gene embedding in the linear decoder. The learned topic embedding is the direct association between the topics and pathways.
b The pathway-topics heatmap of top 5 pathways in selected topics. Here, the pathways are the Gene Ontology-Biological Processes (GO-BP) terms. For
the HP dataset, GO-BP terms whose names include the keywords insulin or pancreatic were highlighted. For the AD dataset, GO-BP terms whose names
include the keywords amyloid or alzheimer were highlighted. For MDD—all genes and MDD—coding genes only, GO-BP terms whose names include the
keywords neuron or G-protein were highlighted.
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parameters learned from a reference dataset in annotating a new
target dataset without further training. We demonstrated this
important aspect in cross-technology, cross-tissue, and cross-
species applications, for which we achieved superior performance
compared to the state-of-the-art methods.

In terms of interpretability, our quantitative experiments
showed that scETM identified more relevant pathways than scVI-
LD. Qualitative experiments also show that scETM topics pre-
serve cell functional and cell-type-specific biological signals
implicated in the single-cell transcriptomes. By seamlessly
incorporating the known pathway information in the gene
embedding, p-scETM finds biologically and pathologically
important pathways by directly learning the association between
the topics with the pathways via the topic embedding. Recently
proposed by>3, single-cell Hierarchical Poisson Factor (scHPF)
model applies hierarchical Poisson factorization to discover
interpretable gene expression signatures in an attempt to address
the interpretability challenge. However, compared to our model,
scHPF lacks the flexibility in learning the gene embedding and
incorporating existing pathway knowledge, and is not designed to
account for batch effects. Moreover, scETM has the benefits of
both flexibility in the neural-network encoder and the interpret-
ability in the linear decoder.

As future work, we will extend scETM in several directions. To
further improve batch correction, as our current model only
considers a single categorical batch variable, we can extend it to
correct for multiple categorical batch variables. For a small
number of categorical batch variables, we may use several sets of
batch intercept terms to model them. For hierarchical batch
variables, we may use a tree of batch intercept terms. For
numerical batch effects such as subject age, one way is to convert
them into categorical batch variables by numerical ranges. When
the number of batch variables become larger, we consider three
strategies. First, we can add the batch variables as the covariates in
the linear regression on the gene expression and fit the linear
coefficients each corresponding to a sample-dependent batch
variable. Second, we can factorize the batches-by-genes into
batches-by-factors and factors-by-genes. Learning the two
matrices will be similar to the scETM algorithm. Third, we can
extend our current scETM+adv to correct for both categorical
and continuous batch variables with a discriminator network,
which predicts batch effects using the encoder-generated cell
topic mixture3s,

To further improve data integration, we can extend scETM to a
multi-omic integration method, which can integrate scRNA-seq
plus other omics such as protein expression measured in the same
cells as scRNA-seq®* or scATAC-seq measured in different cells
but the same biological system’. In these applications, multi-
modality over different omics will need to be considered to
capture the intrinsic technical and biological variance of each
omic while borrowing information among them.

To further improve interpretability, the original ETM used
pretrained word embedding from word2vec® on a larger refer-
ence corpus such as Wikipedia to improve topic quality on
modeling the target documents’3. Similarly, although we
demonstrated the use of existing pathway information in p-
scETM, we can also pretrain our gene embeddings on PubMed
articles, gene regulatory network, protein-protein interactions, or
Gene Ontology graph using either gene2vec®® or more general
graph embedding approaches®’->858. We expect that the gene
embedding pretrained from these (structured) knowledge graphs
will further improve the efficiency and interpretability of scETM.

Together, scETM serves as a unified and highly scalable fra-
mework for integrative analysis of large-scale single-cell tran-
scriptomes across multiple datasets. Compared to existing
methods, scETM offers consistently competitive performance in

data integration, transfer learning, scalability, and interpretability.
The simple Bayesian model design in scETM also provides a
highly expandable framework for future developments.

Methods

scETM data generative process. To model scRNA-seq data distribution, we take
a topic-modeling approach®. In our framework, each cell is considered as a
document, each scRNA-seq read (or UMI) as a token in the document, and the
gene that gives rise to the read (or UMI) is considered as a word from the voca-
bulary of size V. We assume that each cell can be represented as a mixture of latent
cell types, which are commonly referred to as the latent topics. The original LDA
model® defines a fixed set of K independent Dirichlet distributions g over a
vocabulary of size V. Following the ETM model®3, here we decompose the
unnormalized topic distribution §* € R¥*" into the topic embedding & € R¥*£
and gene embedding p € R**Y, where L denotes the size of the embedding space.
Therefore, the unnormalized probability of a gene belonging to a topic is pro-
portional to the dot product between the topic embedding matrix and the gene
embedding matrix. Formally, the data generating process of each scRNA-seq
profile d is:

1. Draw a latent cell type proportion 6, for a cell d from logistic normal
0, ~ LN(0,1):
Yh exp(8,4)

2. For each gene read (or UMI) w; 4 in cell d, draw gene g from a categorical
distribution Cat(r,.):

8, ~N(0,I), 6, = softmax(8;) =

m

N
[w,4=¢] 4

Wia ™~ | | rd,g( y Yag = i;[wi.d =gl 2)
. =

Here N, is the library size of cell d, w; 4 is the index of the gene that gives rise to the
it read (or UMI) in cell d (i.e, [w;q=g]), and ya, is the total counts of gene g in
cell d. The transcription rate 74, is parameterized as follows:

Pl .

Tag = ma Fag = 0s0p, + Aa), (3)
Here 6, is the 1 x K cell topic mixture for cell d, « is the global Kx L cell topic
embedding, p,is a L x 1 gene-specific embedding, and A(4) is the batch-dependent
and gene-specific scalar effect, where s(d) indicates the batch index for cell d.
Notably, to model the sparsity of gene expression in each cell (i.e., only a small
fraction of the genes have non-zero expression), we use the softmax function to
normalize the transcription rate over all of the genes.

scETM model inference. In scETM, we treat the latent cell topic mixture 8, for each
cell d as the only latent variable. We treat the topic embedding &, the gene-specific
transcriptomic embedding p, and the batch-effect A as point estimates. Let Y be the
D x V gene expression matrix for D cells and V genes. The posterior distribution of
the latent variables p(8]Y) is intractable. Hence, we took a variational inference
approach using a proposed distribution g(8,) to approximate the true posterior.
Specifically, we define the following proposed distribution: q(dly) = I1,4(S4ly), where
q(8,ly,) = py + diag(e,)N(0,1) and [p,, log 03] = NNET(y,; Wy). Here y,, is the
normalized counts for each gene as the raw count of the gene divided by the total
counts in cell d. The function NNET(v; W) is a two-layer feed-forward neural-
network used to estimate the sufficient statistics of the proposed distribution for the
cell topic mixture d,.

To learn the above variational parameters Wy, we optimize the evidence lower
bound (ELBO) of the log-likelihood, which is equivalent to minimizing the
Kullback-Leibler (KL) divergence between the true posterior and the proposed
distribution: ELBO = [E,[log p(Y|®)] — KL [q(®|Y)||p(®)]. The Bayesian learning
is carried out by maximizing the reconstruction likelihood with regularization in the
form of KL divergence of the proposed distribution (q(8,ly,) = N (u,, diag(s,)))
from the prior (p(8,;) = N(0,I)). For computational efficiency, we optimize ELBO
with respect to the variational parameters by amortized variational inference3241:42,
Specifically, we draw a sample of the latent variables from g(d]y) for a minibatch of
cells from reparameterized Gaussian proposed distribution g(8]y)*2, which has the
mean and variance determined by the NNET functions. We then use those draws as
the noisy estimates of the variational expectation for the ELBO. The optimization is
then carried out by back-propagating the gradients into the encoder weights and the
topic and gene embeddings.

Details of training scETM. We chose the encoder for inferring the cell topic
mixture to be a 2-layer neural-network, with hidden sizes of 128, ReLU
activations®, 1D batch normalization®!, and 0.1 drop-out rate between layers. We
set the gene embedding dimension to 400, and the number of topics to 50. We
optimize our model with Adam Optimizer and a 0.005 learning rate. To prevent
over-regularization, we start with zero weight penalty on the KL divergence and

12 | (2021)12:5261 | https://doi.org/10.1038/s41467-021-25534-2 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

linearly increase the weight of the KL divergence in the ELBO loss to 10~7 during
the first { epochs. With a minibatch size of 2000, scETM typically needs 5k-20k
training steps to converge. We show that our model is robust to changes in the
above hyperparameters (Supplementary Table 2). During the evaluation, we used
the variational mean of the unnormalized topic mixture g, in q(d,|y,;) =

N(u,, diag(o,)) as the scETM cell topic mixture for cell d.

scETM+-adv: adversarial loss for further batch correction. In the scETM+-adv
variant, we added a discriminator network (a two-layer fully-connected network)
to predict batch labels using the unnormalized cell topic mixture embedding &
generated by the encoder network. This discriminator helps batch correction in an
adversarial fashion. Specifically, in each training iteration, we first update the
scETM parameters once by maximizing the ELBO plus the batch prediction cross-
entropy loss from the discriminator, with a hyperparameter controlling the weight
of the latter term. It should be noted that by maximizing the prediction loss the
encoder network learns to produce batch agnostic cell embeddings. Then we
update the discriminator network eight times by trying to minimize the cross-
entropy loss in predicting the batch labels.

scETM software. We implemented scETM using the PyTorch library®2. Our
initial implementation was based on the ETM code from GitHub (adjidieng/
ETM) by33. Since then, we completely revamped the code to substantially improve
the scalability and to integrate it into the Python ecosystem. In particular, we
packaged and released our code on PyPI so one can easily install the package by
entering pip install scETM in the terminal. The package is integrated with
scanpy!® and tensorboard®. Users can view the cell, gene and topic
embeddings interactively via tensorboard. For example, one can easily train a
scETM as follows:

from scETM import scETM, UnsupervisedTrainer

model = scETM (adata.n_vars, adata.obs.batch_indices.nunique())
trainer = UnsupervisedTrainer (model, adata)
trainer.train(save_model_ckpt = False)

model.get_all embeddings_and_nll(adata)

The above code snippet will instantiate an scETM model object, train the
model, infer the unnormalized cell topics mixture of adata and store them in
adata.obsm[ ‘delta’]. We can also access the gene and topic embeddings via
adata.varm[ ‘rho’] and adata.uns|[‘alpha’].

Transfer learning with sScETM. When transferring from a reference dataset to a
target dataset, we operate on the genes common to both datasets. For cross-species
transfer, the orthologous genes based on the Mouse Genome Informatics
database®495 are considered as common genes. The trained scETM encoder can be
directly applied to an unseen target dataset, as long as the genes in the target
dataset are aligned to the genes in the reference dataset. In the main text, for
example, we trained scETM on a reference dataset and evaluated the scETM-
encoder on a target dataset in six transfer-learning tasks (Fig. 4).

Pathway enrichment analysis. To assess whether a topic is enriched in any
known pathway, one common way is to test for Over Representation Analysis
(ORA)®. However, ORA requires choosing a subset of genes (e.g., from differential
expression analysis). While we could choose the top genes scored by each topic, it
requires some arbitrary threshold to select those genes. To avoid thresholding
genes, we employed Gene Set Enrichment Analysis (GSEA)*4. GSEA calculates a
running sum of enrichment scores (ES) by going down the gene list that is sorted in
the decreasing order by their association statistic with a phenotype.

In our context, we treated the gene scores under each topic from the genes-by-
topics matrix (i.e., B) as the association statistic. The ES for a gene set S is the
maximum difference between P_hit(S,i) and P_miss(S,i), where P_hit(S,i) is the
fraction of genes in S weighted by their topic scores up to gene index i in the sorted
list and P_miss(S,i) is the fraction of genes not in S weighted by their topic scores
up to gene index i in the sorted list. The enrichment p-value for each gene set is
computed by permutation tests by randomly shuffling the gene symbols on the
sorted list (while keeping the gene-topic scores in the decreasing order) 1000 times
to compute the null distribution of the ES for each gene set and each topic. The
empirical p-value was calculated as (N’ + 1)/(N + 1), where N is the number of
permutation trials in which ES is greater than the observed ES, and N is the total
number of trials (i.e., 1000). We then corrected the p-values for multiple testing
using Benjamini-Hochberg (BH) method®”.

For AD and HP datasets, we used the MSigDB Canonical Pathways gene sets®
as the gene set database in GSEA; and for MDD, we used PsyGeNET database® in
order to find psychiatric disease-specific associations. We also run GSEA for scVI-
LD gene loadings for comparison. The detailed pathway enrichment statistic can be
found in Supplementary Data 1.

Differential analysis of topic expression. We aimed to identify topics that are
differentially associated with known cell type labels or disease conditions. For topic

k and cell label j (i.e., cell type or disease condition), we first calculated the dif-
ference of the average topic activities between the cells with label j and the cells
without label j. For each permutation trial, we randomly shuffled the label
assignments among cells and recalculated the difference of average topic activities
from the resulting permutation. The empirical p-value was calculated as (N’ + 1)/
(N + 1), where N’ is the number of permutation trials in which the difference is
greater than the observed difference, and N is the total number of trials. To account
for multiple hypotheses, we applied Bonferroni correction by multiplying the p-
value by the product of the topic number and the number of labels. We performed
N =100,000 permutations.

We determined a topic to be differentially expressed (DE) if the Bonferroni-
corrected g-value is lower than 0.01 and the mean difference is greater than 2 for cell-
type DE topcis or 0.2 for disease DE topics. Supplementary Table 18 summarizes the
number of DE topics we identified for each cell type and disease conditions from the
AD and MDD data. We use the PanglaoDB database”’ to find the overlap between
top genes of cell-type-specific DE topics and known cell type markers.

Incorporation of pathway knowledge into the gene embeddings in p-scETM.
We downloaded the pathDIP4 pathway database from*3, and the Gene Ontology
(Biological Processes) (GO-BP) dataset from MSigDB v7.2 Release®®. Pathway gene
sets or GO-BP terms containing fewer than five genes were removed. We repre-

sented the pathway knowledge as a pathways-by-genes p matrix, where p;;= 1 if
gene set i contains gene j, and p;; = 0 otherwise. We standardized each column (i.e.,
gene) of this matrix for numerical stability. During training the p-scETM, we fixed
the gene embedding matrix p to the pathways-by-genes matrix.

Clustering performance benchmark and visualization. We assessed the perfor-
mance of each method by three metrics: Adjusted Rand Index (ARI)7!, Normalized
Mutual Information (NMI) and k-nearest-neighbor Batch-Effect Test (kBET)!S.
ARI and NMI are widely-used representatives of two families of clustering
agreement measures, pair-counting and information theoretic measures, respec-
tively. A high ARI or NMI indicates a high degree of agreement for a given
clustering result against the ground-truth cell type labels. We calculated ARI and
NMI using the Python library scikit-learn’2.

kBET measures how well mixed the batches are based on the local batch label
distribution in randomly sampled nearest-neighbor cells compared against the
global batch label distribution. Average silhouette width (ASW)*0 indicates
clustering quality using cell type labels. Silhouette width (SW) of a cell i is the
distance of cell i from all of the cells within the same cluster subtracted by the
distance of cell i from cells in a nearest but different cluster, normalized by the
maximum of these two values. ASW is the averaged SW over all the cells in a
dataset and larger values indicate better clustering quality. Therefore, larger ASW
indicates the higher distances between cell types and lower distance within cell type
in the cell embedding space. We choose the distance function to be the euclidean
distance. We adapted the Pegasus implementation’? for kBET calculation, and set
the k to 15.

All embedding plots were generated using the Python scanpy package!®. We use
UMAP? to reduce the dimension of the embeddings to 2 for visualization, and
Leiden’4 to cluster cells by their cell embeddings produced by each method in
comparison. During the clustering, we tried multiple resolution values and
reported the result with the highest ARI for each method.

For reproducibility, the evaluation and the plotting steps were implemented in a
single evaluate function in the scETM package, which takes in an AnnData
object with cell embeddings and returns a Figure object for the ARI, NMI, kBET,
and embedding plot. For consistency, we used this function to evaluate all methods,
including those written in R, where we used the reticulate package’” to call
our evaluate function.

We ran all methods under their recommended pipeline settings (Supplementary
Methods), and we use batch correction option whenever applicable to account for
batch effects. All results are obtained on a compute cluster with Intel Gold 6148
Skylake CPUs and Nvidia V100 GPUs. We limit each experiment to use 8 CPU
cores, 192 GB RAM and 1 GPU.

Efficiency and scalability benchmark of the existing methods. To create a
benchmark dataset for evaluating the run-time of each method, we merged MDD
and AD, keeping the genes that appear in both datasets. We then selected the 3000
most variable genes using scanpy’s highly variable genes(n_top
genes=3000, flavor="‘seurat v3’) function, and randomly sampled
28,000, 14,000, 70,000, and 148,247 (all) cells to create our benchmark datasets.
The memory requirements reported in Fig. 3 were obtained by reading the rss
attribute of the named tuple returned by calling Process () .memory info ()
from the psutil Python package’®. For methods based on R, we use the
reticulate package’® to call the above Python function for consistency. We
used the same settings (RAM size, number of GPUs, etc) as described in the
Clustering performance benchmark and visualization section throughout the
experiments.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The datasets analyzed during the current study are from publicly available repositories or
data portals. The acquisition and quality control steps for all datasets are included in the
supplementary information. The Human pancreatic islet dataset used in this study are
available in the GEO or EMBL-EBI database under the accession codes GSE81076,
GSE85241, GSE86469, E-MTAB-5061, and GSE84133. Mouse Pancreatic Islet dataset is
available in the GEO database under the accession code GSE84133. Major Depressive
Disorder dataset is available in the GEO database under the accession code GSE144136.
Mouse Retina dataset is available in the GEO database under the accession codes
GSE63473 and GSE81904. The Alzheimer’s disease (AD) is available in Synapse under
the access code syn18485175. The Tabula Muris dataset is available in the FigShare
database under the accession code 27733. The Allen Brain Atlas datasets’” namely
human primary motor cortex and the primary motor cortex datasets and are available
from the Allen Brain Portal [https://portal.brain-map.org/atlases-and-data/rnaseq/
human-m1-10x, https://portal.brain-map.org/atlases-and-data/rnaseq/mouse-whole-
cortex-and-hippocampus-10x, respectively]. Supplementary Information Section 1.1
describes the details in preprocessing these datasets.

Code availability
scETM source codes as well as the benchmarking workflows have been deposited at the
GitHub repository’8 (https://www.github.com/hui2000ji/scETM).
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