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Abstract: Drugs of abuse cause enduring functional disorders in the brain reward circuits, leading
to cravings and compulsive behavior. Although people may rehabilitate by detoxification, there is
a high risk of relapse. Therefore, it is crucial to illuminate the mechanisms of relapse and explore
the therapeutic strategies for prevention. In this research, by using an animal model of morphine
self-administration in rats and a whole-cell patch–clamp in brain slices, we found changes in synaptic
plasticity in the nucleus accumbens (NAc) shell were involved in the relapse to morphine-seeking
behavior. Compared to the controls, the amplitude of long-term depression (LTD) induced in the
medium spiny neurons increased after morphine self-administration was established, recovered after
the behavior was extinguished, and increased again during the relapse induced by morphine priming.
Intravenous injection of MA, a new peptide obtained by modifying Ca2+/calmodulin-dependent
protein kinase II (CaMKII) inhibitor “myr-AIP”, decreased CaMKII activity in the NAc shell and
blocked the reinstatement of morphine-seeking behavior without influence on the locomotor activity.
Moreover, LTD was absent in the NAc shell of the MA-pretreated rats, whereas it was robust in
the saline controls in which morphine-seeking behavior was reinstated. These results indicate that
CaMKII regulates morphine-seeking behavior through its involvement in the change of synaptic
plasticity in the NAc shell during the relapse, and MA may be of great value in the clinical treatment
of relapse to opioid seeking.

Keywords: long-term depression; Ca2+/calmodulin-dependent protein kinase II; relapse; reinstatement;
nucleus accumbens shell; morphine self-administration; synaptic plasticity; opioids

1. Introduction

Drugs of abuse induce pathological changes in the brain reward circuits, especially
the mesolimbic dopamine system, leading to mental and behavioral disorders, including
drug craving, compulsive drug use, and relapse [1]. According to DSM-V (the fifth edition
of the Diagnostic and Statistical Manual of Mental Disorders), Opioid Use Disorder is
characterized by compulsive use of opioids, craving, tolerance, withdrawal syndrome,
repeated relapse, and other features [2]. One of the hallmarks of Opioid Use Disorder is the
long-term likelihood of relapse, despite treatment [3].

A large number of studies have suggested that drug use-evoked changes in synaptic
plasticity of the brain reward circuits, which outlast the drug present in the brain and
contribute to the neural circuits’ reorganization [4], are important mechanisms of drug
addiction and relapse [2,5–7]. Repeated drug use alters the synaptic mechanisms that

Brain Sci. 2022, 12, 985. https://doi.org/10.3390/brainsci12080985 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci12080985
https://doi.org/10.3390/brainsci12080985
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0001-7526-7234
https://orcid.org/0000-0002-1489-0548
https://orcid.org/0000-0001-7424-6829
https://doi.org/10.3390/brainsci12080985
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci12080985?type=check_update&version=2


Brain Sci. 2022, 12, 985 2 of 15

normally serve reward-related learning and memory [8–14] and forms abnormal drug-
related memories, which lead to a high risk of relapse [8,15–19].

The molecular and cellular mechanisms underlying synaptic plasticity are found to
be involved in drug addiction and play key roles in the relapse [13,19–30]. For example,
drug usage altered two well-known important mechanisms of synaptic plasticity, long-term
potentiation (LTP), and long-term depression (LTD), in many brain regions [9,11,31–41].
Meanwhile, regulating synaptic plasticity influenced drug-seeking behavior [19,26,28,42].
Therefore, to develop good therapeutic strategies to prevent relapse to drugs of abuse, it is
essential to illustrate how the synaptic plasticity is altered during drug addiction and the
molecular mechanisms involved in this course.

Many molecules in the brain are involved in the mechanisms of synaptic plasticity,
one of which is Ca2+/calmodulin-dependent protein kinase II (CaMKII). CaMKII is crucial
in the processing of learning and memory [43–46] as well as the mechanisms of LTP and
LTD [47–54]. In the brain, the α- and β-subunits of CaMKII are the predominant isoforms
and form mostly dodecameric holoenzymes that are composed of either one or both subunit
types [55]. Weak stimuli activate the kinase through the binding of Ca2+/calmodulin
without autophosphorylation. If the duration or magnitude of the Ca2+ elevation is greater,
two or more subunits are activated on the same holoenzyme. In this case, an activated
CaMKII subunit is phosphorylated on Thr286 (this numbering refers to the α-isoform and is
Thr287 in the β-isoform) by its neighboring active subunit. Once phosphorylated, CaMKII
has Ca2+-independent “autonomous” activity [56]. When a threshold number of kinases
are phosphorylated, the rate of autophosphorylation exceeds the rate of dephosphorylation,
leading to the long-term persistent activation of CaMKII [55]. In other words, an increase
in the phosphorylation of CaMKII means an increase in the kinase activity. Moreover,
other mechanisms make CaMKII generate Ca2+-independent activity, in which binding to
the NMDA-receptor subunit GluN2B mediates the accumulation of CaMKII at excitatory
synapses in response to LTP stimuli [56]. Different degrees of activation and persistent
activity of CaMKII provide a molecular basis for processing synaptic memory, indicating
its essential role in the transition to drug addiction and relapse.

The NAc is the main component of the reward circuits and plays a critical role in
reward-related behaviors [57] and substance addiction, including alcohol [58]. In the
NAc, over 95% of the neurons are GABAergic Medium Spiny Neurons (MSNs), which
receive dopaminergic afferents mainly from the Ventral Tegmental Area and convergent
glutamatergic inputs from several subcortical brain regions and prefrontal cortex [2]. Based
on the anatomical composition, the NAc can be further divided into two distinct subregions:
the core and the shell, which receive differential inputs and participate in various processes
related to drug addiction [59]. Therefore, it is suggested that CaMKII activity in the NAc is
essential to addiction behavior and relapse.

Many studies have demonstrated that CaMKII in the NAc shell is involved in drug
addiction. For example, injection of CaMKII inhibitor KN-93 into the NAc shell attenuates
cocaine-seeking behavior [60], while chronic cocaine treatment activates the transcription
of αCaMKII in the NAc shell, enhancing the reinforcement of cocaine [61]. Moreover,
αCaMKII overexpression in the NAc shell increases animals’ response to amphetamine [62],
and decreases of phosphorylated αCaMKII at Thr286 by transient expression of a dominant-
negative αCaMKII mutant K42M in the NAc shell persistently blocked the enhanced
locomotor response to amphetamine and self-administration [63]. Similarly, cue-induced
reinstatement of alcohol seeking is associated with increased CaMKII phosphorylation on
Thr286 in the NAc shell of mice [64]. Consistent with the above findings, our previous
studies also demonstrated that αCaMKII phosphorylated on Thr286 in the NAc shell
increased during priming-induced morphine-seeking behavior in rats [30], and inhibiting
CaMKII activity in the NAc shell with “myr-AIP” blocked the reinstatement to morphine
seeking [29]. However, it is still unclear how CaMKII in the NAc shell regulates morphine-
seeking behavior during the reinstatement.
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We hypothesize that drug-evoked rapid changes of synaptic plasticity mediated by
CaMKII in the NAc shell may underlie the relapse to opioids even after long periods of
withdrawal. Therefore, in this paper, we studied the changes in synaptic plasticity at the
multiple stages of morphine addiction, especially the relapse, and explored whether and
how CaMKII was involved in the course.

2. Materials and Methods
2.1. Subjects

Male Sprague–Dawley rats, which weighed 220–250 g on arrival, were purchased
from the Laboratory Animal Center of the Academy of Military Medical Sciences in Beijing
(China). Rats were housed in a reverse-cycle room (12 h light/dark) with food and water
available ad libitum except for the training days of morphine self-administration. All rats
were afforded at least seven days of acclimation before the start of experimental procedures.

2.2. Surgery

As previously reported [29,30], before surgery, rats were anesthetized with 75 mg kg−1

of sodium pentobarbital intraperitoneally. An indwelling silastic catheter (AniLab, Ningbo,
China) connected to a polyethylene (PE) catheter (PE-50, Instech Solomon, Plymouth
Meeting, PA, USA), was inserted into the right jugular vein and sutured in place. The
PE catheter was then threaded subcutaneously over the scapula. We flushed the catheter
daily with 0.4 mL heparinized saline (100 IU mL−1). During the first four days following
surgery, rats received 160,000 IU of penicillin. After surgery, rats had at least seven days
for recovery.

All animal procedures were performed in accordance with the guidelines provided by
the Regulation for the Administration of Affairs Concerning Experimental Animals (China,
1988) and approved by the Research Ethics Review Board of the Institute of Psychology,
Chinese Academy of Sciences (A15016).

2.3. Drugs

Morphine hydrochloride injection (Shenyang First Pharmaceutical Factory, Shenyang,
China) was diluted in sterile saline. Our previous studies have demonstrated that inhibiting
CaMKII activity in the nucleus accumbens shell with inhibitor “myr-AIP” blocked the
reinstatement to morphine-seeking behavior [29], which indicates CaMKII inhibitor may
be of great value to preventing relapse to opioids clinically. In the present study, we
modified myr-AIP with poly-arginine [65] and got a novel peptide named “MA”, which
can be administrated intravenously. MA (myr-βAla-Arg-Arg-Arg-Arg-Arg-Arg-Arg-Lys-
Lys-Ala-Leu-Arg-Arg-Gln-Glu-Ala-Val-Asp-Ala-Leu) was synthesized by GL Biochem
(Shanghai, China).

2.4. Morphine Self-Administration (SA)
2.4.1. Apparatus

As previously reported [29,30], sixteen 29 × 29 × 26 cm operant chambers (AniLab,
Ningbo, China) were used. Each chamber had a white house light for illumination. Two
holes located in a sidewall were each equipped with a blue LED. A speaker outside the
chamber provided auditory stimuli. A liquid dipper with a recessed magazine, which is
located between the two holes, was used in tests for a natural reward. The drug solution
was delivered through Tygon tubing, which was encased in a protective metal spring leash
and connected to a pump-driven syringe. Numbers of “nose-pokes” and drug infusions
were recorded by a computer via an interface (AniLab, Ningbo, China).

2.4.2. Training

As previously reported [29,30], rats were trained to poke a hole for intravenous
morphine injections on a fixed-ratio (FR) 1 schedule. Each day included one training
session lasting 3 h. When the session began, the house light was on. Poking the active hole
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led to a morphine infusion (0.3 mg kg−1) accompanied by the light-tone mixed stimulus as
the cue. Poking the inactive hole had no scheduled consequences. A 15-s time-out followed
morphine infusion. The chamber was completely dark during the time-out, and poking
any hole had no consequences. The house light was turned on again after the time-out.
Each rat was allowed 20 g of rat chow during training days.

2.4.3. Extinction

Each day included one extinction session lasting 3 h. The extinction procedure was
the same as the training session, except that poking the active hole did not lead to any
morphine injection.

2.4.4. Reinstatement

Immediately after receiving an intraperitoneal injection of 5 mg kg−1 morphine, rats
were placed in the operant chamber. The procedure of reinstatement was the same as the
extinction session. A reinstatement session lasted 3 h.

2.5. Saccharin SA
2.5.1. Training and Extinction

As previously reported [30], rats were trained to poke the nose into a hole for 0.2%
(wt/vol) saccharin solution under an FR1 schedule during their dark cycle. The training
and extinction procedures were the same as the morphine SA, except that poking the active
hole led to 0.1 mL saccharin delivery instead of morphine infusion. Each training session
and extinction session lasted only 1 h.

2.5.2. Reinstatement

Saccharin seeking was reinstated with two 0.1 mL saccharin deliveries. The session
began with a noncontingent saccharin delivery. The interval between the two deliveries
was 10 min. The reinstatement procedure was the same as for extinction except for the two
saccharin deliveries. The session lasted 1 h.

2.6. Locomotor Activity

Operant chambers were equipped with photocells for quantifying locomotor activity.
The photocells were spaced evenly along the longitudinal axis of the chamber and posi-
tioned 2.5 cm above the floor. Separate interruptions of photocell beams caused by the
movement of rats were detected and recorded. The total number of beam breaks represents
the level of locomotor activity.

2.7. Behavior Experiments
2.7.1. Acquisition, Extinction, and Reinstatement of Morphine Self-Administration

Acquisition: Rats were trained to self-administer morphine over 18 consecutive train-
ing sessions (one per day). During the phase, rats learned to acquire morphine by them-
selves, and the number of active pokes increased greatly.

Extinction: After the acquisition, rats underwent 21 consecutive extinction sessions
(one per day); during the phase, the number of active pokes decreased.

Reinstatement: Twenty-four hours after the last extinction session, morphine-seeking
behavior was reinstated by morphine-priming injection.

2.7.2. Effect of MA on Morphine Priming-Induced Reinstatement of Morphine Seeking

Rats were trained to self-administer morphine over 18 consecutive sessions. After
acquisition, rats underwent 21 consecutive extinction sessions. Twenty-four hours after the
last extinction session, morphine-seeking behavior was reinstated by morphine-priming
injection. Rats were given MA dissolved in 0.4 mL sterile saline intravenously 45 min
before the morphine-priming injection. The dose of MA is 0.4 µg/g. Control rats were
injected with the same volume of saline.
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2.7.3. Effect of MA on the Reinstatement of Saccharin Seeking

Rats were trained to self-administer saccharin over 14 consecutive sessions. After the
acquisition, rats underwent 21 consecutive extinction sessions. Forty-five minutes before
the reinstatement session, rats were given MA (0.4 µg/g) dissolved in 0.4 mL sterile saline
or the same volume of saline intravenously.

2.8. Western Blotting

Rats were decapitated, and the brain was removed. The NAc shell were dissected at
−20 ◦C and then frozen at −80 ◦C. The brain tissue samples were homogenized in lysis
buffer (BeyotimeP0013, Haimen, China) with protease and phosphatase inhibitor cocktails
(Roche, Indianapolis, IN, USA). Protein concentrations were measured using the BCA
method (Pierce, Rockford, IL, USA). A total of 10 µg of proteins were loaded in each lane
and separated by 12% SDS-PAGE. The proteins were then transferred to PVDF membranes
and incubated for 40 min at room temperature in a blocking solution (5% milk in Tris-
buffered saline with 0.1% Tween, TBST), followed by an overnight incubation at 4 ◦C in
blocking solutions containing primary antibodies to phosphorylated CaMKII (Thr286/287)
(1:1000; Abcam, Cambridge, UK), αCaMKII (1:2000; Abcam), or βCaMKII (1:1000; Abcam).
The membranes were then probed with an HRP-conjugated secondary antibody (1:3000;
Zhongshan GoldenBridge Technology, Beijing, China) for 1 h at room temperature after
being washed three times with TBST for five minutes each. ECL Western blotting detection
reagents (Thermo Scientific, Rockford, IL, USA) allowed for the visualization of bands.
ChemiDoc XRS apparatus (Bio-Rad, Hercules, CA, USA) was used to capture the signals,
and Quantity One software (Bio-Rad) was used to quantify them. Following membrane
stripping, an HRP-conjugated antibody to glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) (1:5000; Kangcheng, Shanghai, China) was used to probe the membranes as a
loading control.

2.9. Electrophysiology in Brain Slices

Slices were prepared according to the method detailed in our earlier research [66]. Un-
der deep anesthesia caused by sodium pentobarbital, the brain was rapidly transferred into
the ice-cold cutting solution, which contained (mM) 90 sucrose, 87 NaCl, 2.5 KCl, 7 MgCl2,
0.5 CaCl2, 1.25 NaH2PO4, 25 NaHCO3 and 10 glucose and left for 3–5 min. Then, using a
vibrating blade microtome (Leica, Heidelberger, German), 300-µm sagittal slices were cut.
Slices were placed in an incubating chamber filled with artificial cerebrospinal fluid (ACSF)
that contained (mM) 124 NaCl, 4.5 KCl, 1 MgCl2, 2 CaCl2, 1.25 NaH2PO4, 26 NaHCO3,
and 10 glucose and was maintained at a pH of 7.2–7.4 bubbled with carbogen (95% O2/5%
CO2). Recover was given at 33 ◦C for 45 min before recording. Recordings were done in
a chamber, which was perfused continuously with carbonated ACSF containing 10 µM
bicuculline (Tocris, Bristol, UK) to antagonize GABAA receptors. Whole-cell recordings
from MSNs in the shell region of NAc slices were obtained with a Heka EPC10 amplifier.
Recording pipettes were filled with solution containing (mM) 122.5 Cs-gluconate, 17.5 CsCl,
2 MgCl2, 10 HEPES, 0.5 EGTA, 4 ATP (Sigma-Aldrich, St Louis, MO, USA) with pH 7.2–7.4
adjusted by CsOH. Excitatory postsynaptic currents (EPSCs) were evoked by stimulating
prefrontal cortical inputs via constant-voltage current pulses (1 ms), which were delivered
through a concentric bipolar electrode (FHC, Bowdoinham, ME, USA) at 0.067 Hz. LTD
was triggered by a pairing protocol (1 Hz, 480 s, −40 mV). Neurons were voltage-clamped
at −60 mV except where noted. After 7~10 min of stable baseline recording, the pairing
protocol was introduced. The magnitude of LTD was estimated from EPSCs recorded
during the last 10 min after LTD induction as a percentage of baseline EPSCs amplitude.
We collected data by Pulse software (HEKA, Reutlingen, Germany) and transformed them
by the ABF utility of Minianalysis (Synaptosoft, Decatur, GA, USA). Minianalysis was used
to determine the electrophysiological properties.
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2.10. Data Analysis

The amplitudes of the evoked EPSCs in the control group, acquisition group, extinc-
tion group, and reinstatement group were analyzed using a one-way analysis of variance
(ANOVA). Dunnett’s multiple comparison test was used for the posttest. The reinstatement
data were analyzed by ANOVA with treatment (MA and saline) as the between factor
and poke (active and inactive) as the within factor. Other data were analyzed by inde-
pendent two-tailed t-tests: the data of beam breaks, Western blot data, and comparison of
EPSCs amplitude between MA group and saline controls. All the data are expressed as
mean ± standard error of the mean (SEM). The level of significance was set at p < 0.05.

3. Results
3.1. Alterations of the Amplitude of LTD Induced in the NAc Shell in the Different Stages of
Morphine Addiction

First, we established an animal model of morphine self-administration and relapse.
Rats underwent acquisition, extinction, and reinstatement of morphine-seeking behavior
(see Section 2.7.1). As shown in Figure 1B, during the training course, the number of active
pokes increased greatly and was maintained stably in the last three sessions (22.6 ± 3.36;
23.3 ± 2.74; 23.0 ± 2.63); during the extinction course, the number of active pokes decreased
and were maintained very low at the last three extinction sessions (5.36 ± 0.800; 3.50 ± 1.09;
4.63 ± 0.844). In the reinstatement session, this number (38.8 ± 14.9) increased again.
The number of inactive pokes remained stable during the last three training sessions
(5.25 ± 1.41; 4.38 ± 0.706; 5.00 ± 1.83), the last three extinction sessions (3.88 ± 1.03;
3.00 ± 0.926; 4.13 ± 1.20) and the reinstatement (3.38 ± 0.981).
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Figure 1. Acquisition, extinction, and reinstatement of morphine-seeking behavior in rats.
(A) Timeline of acquisition, extinction, and morphine priming-induced reinstatement in rats.
(B) The number of active pokes and inactive pokes in the last 3 training sessions, the last 3 extinc-
tion sessions, and the reinstatement session (n = 8). Data are expressed as mean ± SEM.

To determine the involvement of synaptic plasticity in the NAc shell during morphine
addiction, we evaluated LTD induced in this region by the whole-cell patch–clamp. After
the acquisition, extinction, and reinstatement of morphine self-administration, rats were
decapitated respectively, and NAc slices were prepared. The control group was the naïve
rats which were purchased at the same time. LTD was then induced in MSNs in the
shell region. As shown in Figure 2, after induction, the amplitude of evoked EPSCs in
the NAc shell decreased obviously in rats that acquired morphine self-administration
behavior (Figure 2B) compared with the control group (Figure 2A). The amplitude of
EPSCs recovered in the extinguished rats (Figure 2C). Interestingly, the amplitude of EPSCs
decreased again when the morphine-seeking behavior was reinstated (Figure 2D). We
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analyzed the amplitude of EPSCs recorded in the last 10 min. The data (Figure 2E) revealed
a significant difference between the four groups (F3,36 = 103.6, p < 0.001). Post analysis
showed the significantly decreased amplitude of EPSCs in the acquisition group (p < 0.001)
and the reinstatement group (p < 0.001), compared with the controls.
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Figure 2. Alterations of LTD expression in the NAc shell were correlative to the addiction behavior
in the animal model of morphine self-administration. (A) LTD was induced in the NAc shell in
the control rats (n = 11). (B) LTD induced in the NAc shell in the rats acquired morphine self-
administration (n = 14). (C) LTD induced in the NAc shell in the extinguished rats (n = 4). (D) LTD
induced in the NAc shell in the rats reinstated by morphine priming (n = 6). (E) Average EPSCs (%
of baseline) recorded in the last 10 min after LTD induction in the four groups. Asterisks indicate
significant decreases of EPSCs in the acquisition and reinstatement groups compared to the controls
(*** p < 0.001). Data are expressed as mean ± SEM.

These results demonstrated the amplitude of LTD induced in the NAc shell increased
after the acquisition of morphine self-administration, recovered after extinction, and in-
creased again after reinstatement, indicating the changes in synaptic plasticity in the NAc
shell play important roles in the development of morphine addiction and relapse. These
results also imply that modulating the synaptic plasticity in the NAc shell may prevent the
relapse to opioids.

3.2. Intravenous Injection of “MA” Decreases CaMKII Activity in the NAc Shell and Attenuates
Morphine-Seeking Behavior

As mentioned above, some studies have demonstrated that CaMKII is involved in the
mechanisms of LTD [52,53,67–69]. More importantly, our previous work has demonstrated
that αCaMKII activity increases in the NAc shell during the reinstatement of morphine-
seeking behavior, and inhibiting CaMKII activity in the NAc shell blocks the reinstatement
of morphine seeking in rats [29]. Therefore, based on these results, we hypothesize that
CaMKII activity in the NAc shell regulates morphine-seeking behavior by its involvement
in the mechanisms of synaptic plasticity in this brain region.

To further explore the neural mechanisms of CaMKII involved in the relapse to mor-
phine, we modified CaMKII inhibitor “myr-AIP” with poly-arginine to enhance its mem-
brane permeability [65,70]. We obtained a new peptide named MA (see Section 2.3), which
can be administrated intravenously.
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Firstly, we examined whether MA had a similar blocking effect on the reinstate-
ment of morphine-seeking behavior. After acquisition and extinction of morphine self-
administration, rats were injected with MA before the reinstatement test (see Section 2.7.2).
The reinstatement data (Figure 3A) was analyzed with between-within ANOVA, which
revealed a main effect of MA pretreatment (F1,26 = 8.28, p < 0.01), and a treatment-poke
interaction (F1,26 = 8.67, p < 0.01). Subsequent analyses showed significantly higher number
of active pokes in saline controls than that in MA group (t26 = 2.99, p < 0.01), and no
difference (t26 = 0.32, p = 0.76) in the number of inactive pokes. The locomotor activity was
measured during the reinstatement test, and the data revealed no significant difference
(t22 = 0.14, p = 0.89) between the saline group and MA pretreatments (Figure 3B).
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Figure 3. Intravenous injection of MA before the reinstatement test blocked the reinstatement of
morphine seeking induced by morphine-priming injection and had no significant effect on locomotor
activity. (A) Number of nose-pokes in saline group (n = 15) and MA group (n = 13) in the reinstatement
session. Asterisks indicate a significant difference (** p < 0.01) in the number of active pokes between
MA group and saline controls. (B) The level of locomotor activity in the reinstatement session. There
was no significant difference between the two groups. Data are expressed as mean ± SEM.

Our results demonstrated that intravenous injection of MA before giving morphine-
priming blocked the reinstatement of morphine-seeking behavior without influence on
locomotor activity.

Then, we examined whether MA inhibited CaMKII activity during the reinstatement
test. After the reinstatement test (see Section 2.7.2), rats were decapitated immediately
and the brain was removed for the collection of proteins from the NAc shell. The levels of
phosphorylation on Thr286/287 in CaMKII in the NAc shell were measured. Compared
to the saline controls, the phosphorylated CaMKII in the NAc shell of the MA group
decreased (Figure 4B,D), whereas the levels of total αCaMKII and βCaMKII did not change
(Figure 4A,C). Because phosphorylation of CaMKII on Thr286/287 means the activity of
the enzyme increases, our data revealed intravenous injection of MA inhibited CaMKII
activity in the NAc shell during the reinstatement test.

In summary, the modified peptide “MA” blocked the reinstatement of morphine-
seeking through its inhibitory effect on the CaMKII activity in the NAc shell. Because MA
can be administrated intravenously, it has potential clinical value in preventing relapse
to opioids.
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Figure 4. Intravenous injection of MA decreased phosphorylation of CaMKII on Thr286/287 in
the NAc shell during the reinstatement. (A,C) No significant differences in the levels of total α
(t4 = 0.56, p = 0.61) and βCaMKII (t4 = 0.16, p = 0.88) between saline controls (n = 3) and MA group
(n = 3). (B) The levels of αCaMKII phosphorylated on Thr286 in the NAc shell were lower in the MA
group than that in the saline controls during the reinstatement (t4 = 4.23, p < 0.02). (D) The levels of
βCaMKII phosphorylated on Thr287 in the NAc shell were lower in the MA group than that in the
saline controls during the reinstatement (t4 = 3.84, p < 0.02). Asterisks indicate a significant difference
(* p < 0.05) between saline controls and MA group. Data are expressed as mean ± SEM.

3.3. LTD Expression in MSNs in the NAc Shell Was Absent in MA-Pretreated Rats

To determine whether changes in synaptic plasticity in the NAc shell involved in
the inhibitory effect of MA on the reinstatement of morphine seeking, we evaluated LTD
induced in the NAc shell in the rats pretreated with MA.

After the reinstatement test (see Section 2.7.2), rats were decapitated immediately and
NAc slices were prepared. LTD was then induced in MSNs in the shell region. In the
saline controls, LTD was induced robustly (Figure 5A); however, the expression of LTD was
absent in the MA group (Figure 5B). We analyzed the amplitude of EPSCs recorded in the
last 10 min. The data revealed a significant difference (t138 = 10.9, p < 0.001) between the
MA group and the saline controls (Figure 5C).

Consistent with our hypothesis, these results suggest that increased CaMKII activity in
the NAc shell promotes morphine-seeking behavior through its involvement in regulating
synaptic plasticity in this brain region. Decreasing CaMKII activity in the NAc shell by MA
pretreatment impairs the synaptic plasticity, reflected in the absence of LTD in this region.
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robustly (51.8 ± 2.34% of baseline, n = 9) in saline controls. (B) LTD was absent (113 ± 6.31% of
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3.4. MA Had No Significant Influence on the Reinstatement of Saccharin-Seeking Behavior

To determine whether MA attenuated morphine-seeking behavior specifically without
affecting the natural reward process, we examined its effect on the saccharin-seeking be-
havior (see Section 2.7.3). As shown in Figure 6, the data revealed there were no significant
differences (F1,15 = 3.21, p = 0.09) in the number of noses pokes during the reinstatement.
This result demonstrated MA pretreatment did not influence the saccharin-seeking be-
havior, which means MA can be a potential medication for preventing relapse to opioids
without side effects on the natural reward process.
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Figure 6. Intravenous injection of MA before the reinstatement test had no significant effect on the rein-
statement of saccharin-seeking behavior induced by noncontingent saccharin delivery. (A) Number of
nose-pokes in the 14 training sessions (days 1–14) and the last extinction session (day 35). (B) Number
of nose-pokes in saline group (n = 10) and MA group (n = 7) in the reinstatement session. There was
no significant difference in the number of nose-pokes between the two groups. Data are expressed as
mean ± SEM. (C) Number of active nose-pokes of each individual in the reinstatement session. MA:
n = 7; Saine: n = 10.
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4. Discussion
4.1. Opioid Addiction and Synaptic Plasticity in the NAc Shell

In this study, we found the alterations in the synaptic plasticity (also called metaplastic-
ity [71]) in the NAc shell were closely associated with the development of opioid addiction
behavior, reflected in the changes of LTD expression in the NAc shell during the differ-
ent stages of morphine self-administration. Moreover, pretreatment of CaMKII inhibitor
MA suppressed the expression of LTD in the NAc shell and blocked the reinstatement of
morphine-seeking behavior induced by morphine priming. These results demonstrated
that repeated drug exposure potentiated the synaptic plasticity in the NAc shell, which may
be an important part of the mechanisms underlying the durable neurotransmission changes
and high risk of relapse. During extinction training, synaptic plasticity in the shell was
recovered in the absence of morphine but easily to be altered. During the reinstatement,
only a small dose of morphine priming caused the rapid change of synaptic plasticity in the
shell, contributing to the reinstatement of morphine-seeking behavior. Therefore, alteration
of synaptic plasticity in the NAc shell can be considered as a switch, potentiation of synaptic
plasticity represents “on” and impairment and even loss represent “off”. In the “on” state,
drug-seeking behavior is prompted, whereas in the “off” state, it is suppressed. Results
from other related studies also support our inference. For example, Li et al. found synaptic
plasticity in the NAc shell was potentiated following morphine-induced conditioned place
preference (CPP) expression in rats, demonstrated by the facilitated LTP induced in the
pathway from the hippocampus to the NAc shell [72].

Moreover, alteration of synaptic plasticity in the NAc shell can regulate drug-seeking
behavior, offering a potential target mechanism for the treatment of drug addiction and
prevention of relapse. Interventions that potentiate or weaken synaptic plasticity in the
NAc shell and even other brain regions can regulate drug-seeking behavior. In fact, results
from some studies support this opinion. For example, Brebner et al. found systemic or
intra-NAc infusion of the membrane-permeable GluR2 peptide, which blocks NAc LTD,
prevented the expression of amphetamine-induced behavioral sensitization in the rat [28].
Usage of “MA” in this study blocked expression of LTD in the NAc shell and attenuated
morphine-induced reinstatement of drug-seeking behavior.

4.2. CaMKII Activity and Expression of LTD

Our previous studies have demonstrated CaMKII activity in the NAc shell increased
during the relapse to morphine [30], and inhibition of CaMKII activity blocked the reinstate-
ment of morphine-seeking behavior [29]. In this paper, we found that increased CaMKII
activity in the NAc shell was involved in the alteration of synaptic plasticity during the
morphine-priming induced relapse, demonstrated by the absence of LTD in the NAc shell
of rats pretreated with “MA”. The modified peptide “MA”, which decreased CaMKII
activity and attenuated the relapse to morphine-seeking behavior, blocked the expression of
LTD in the NAc shell. Based on these results, we infer that CaMKII-mediated potentiation
of synaptic plasticity in the NAc shell plays an important role in the relapse to opioids
induced by a small dose of the drug. Exposure to morphine priming induced increase of
CaMKII activity in the NAc shell, then facilitated the potentiation of synaptic plasticity
(switch “on”), and finally resulted in the reinstatement of morphine- seeking behavior.

It is well known that CaMKII activity is involved in the mechanisms of synaptic
plasticity and memory processing [56]. In the last decade, research has revealed the
involvement of CaMKII activity in LTD and associated molecular mechanisms. Mockett
et al. found that Group I mGluR-dependent protein synthesis and associated LTD in rat
hippocampus required the activation of CaMKII [73]. Coultrap et al. found that NMDAR-
dependent LTD required “autonomous” CaMKII activity-mediated phosphorylation of
AMPA receptor subunit GluR1 at Ser567 [68]. Goodell et al. found that activation of
DAPK1 suppressed the binding of CaMKII to GluN2B and its synaptic accumulation,
which is crucial for LTD [74]. More interestingly, Woolfrey et al. found a novel regulation
mechanism in which CaMKII regulates the depalmitoylation and synaptic removal of
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the scaffold protein AKAP79/150 indirectly to mediate structural long-term depression
correlated with dendritic spine shrinkage in cultured hippocampal neurons [53]. These
studies indicate that CaMKII can mediate both LTP and LTD through differential trafficking
and substrate selection [56]. In our study, the mechanisms of CaMKII in the expression of
LTD are still unclear and need further studies to illuminate them.

4.3. The Specific Inhibitory Effect of MA on Morphine-Seeking Behavior

Our previous study found protein levels of αCaMKII phosphorylated on Thr286 and
βCaMKII phosphorylated on Thr287 in the NAc core decreased but did not change in the
NAc shell during the reinstatement of saccharin-seeking behavior induced by saccharin
deliveries [30]. Now that CaMKII activity did not increase in the NAc shell, and even
decreased in the NAc core, it is not surprising that CaMKII inhibitor “MA” did not attenuate
the saccharin-seeking behavior. These results also reveal the effects of drugs of abuse on
reward-related circuits are completely different from natural rewards, not only in the
change of molecules but in the involved subregions.

The specific effect on drug-seeking behavior makes MA a potential medication for pre-
venting relapse to opioids. However, because CaMKII is multifunctional and is expressed
ubiquitously in the brain and other tissue [56], inhibition of CaMKII through intravenous
injection of MA may cause some side effects.

4.4. CaMKII Activity and MA

Activated CaMKII subunit can be phosphorylated on Thr286 (this numbering refers to
the α-isoform and is Thr287 in the β-isoform) by its neighboring active subunit, making it
has Ca2+-independent “autonomous” activity [56]. When lots of kinases are phosphorylated
in the site, the rate of autophosphorylation will exceed the rate of dephosphorylation,
leading to the long-term persistent activation of CaMKII [55]. As Myr-AIP or AIP inhibits
the enzyme activity by binding to the substrate-binding site of the CaMKII subunit for
autophosphorylation [75], it reduces the protein level of CaMKII phosphorylated on Thr286
(Thr287) without effect on the expression of total αCaMKII and βCaMKII. MA is obtained
by modifying myr-AIP with poly-arginine, so it has a similar effect (Figure 4) to myr-AIP.

5. Conclusions

Our research data suggest that alterations of synaptic plasticity in the NAc shell play
an important role in the development of morphine addiction and the relapse to morphine-
seeking behavior in rats, demonstrated by the changes in LTD expression in different stages
of addiction. Increased CaMKII activity in the NAc shell involved potentiation of synaptic
plasticity and the reinstatement of morphine-seeking behavior. Intravenous injection of MA
decreased CaMKII activity in the NAc shell, therefore inhibited the potentiation of synaptic
plasticity in this brain region, demonstrated by the absence of LTD expression, and finally
blocked the relapse to morphine-seeking behavior induced by morphine priming. MA has
no significant effect on the locomotor activity and natural reward process, implying its
value in the prevention of relapse to opioids.
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