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In the past few years, various somatic point mutations of isocitrate

dehydrogenase (IDH) encoding genes (IDH1 and IDH2) have been identified

in a broad range of cancers, including glioma. Despite the important function of

IDH1 in tumorigenesis and its very polymorphic nature, it is not yet clear how

different nsSNPs affect the structure and function of IDH1. In the present study,

we employed different machine learning algorithms to screen nsSNPs in the

IDH1 gene that are highly deleterious. From a total of 207 SNPs, all of the servers

classified 80 mutations as deleterious. Among the 80 deleterious mutations,

14 were reported to be highly destabilizing using structure-based prediction

methods. Three highly destabilizing mutations G15E, W92G, and I333S were

further subjected to molecular docking and simulation validation. The docking
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results andmolecular simulation analysis further displayed variation in dynamics

features. The results from molecular docking and binding free energy

demonstrated reduced binding of the drug in contrast to the wild type. This,

consequently, shows the impact of these deleterious substitutions on the

binding of the small molecule. PCA (principal component analysis) and FEL

(free energy landscape) analysis revealed that these mutations had caused

different arrangements to bind small molecules than the wild type where the

total internal motion is decreased, thus consequently producing minimal

binding effects. This study is the first extensive in silico analysis of the IDH1

gene that can narrow down the candidate mutations for further validation and

targeting for therapeutic purposes.
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nsSNPs, IDH1, molecular docking, simulation, binding free energy, introduction

1 Introduction

In primary brain tumor, glioblastoma, also known as grade IV

glioma, is the most common and deadly form of brain tumor

(Wirsching and Weller, 2017). In malignant gliomas, the primary

GBMs account for 90% while the secondary GBMs that emerge from

lower-grade gliomas (LGGs) in younger individuals account for less

than 10% of clinical reports (Ohgaki and Kleihues, 2013). After the

initial diagnosis, the survival for glioma individuals is from 14 to

16months. Recent investigations revealed some metabolic features

that are shared by virtually all GBMs and help to differentiate tumors

from the normal brain (Tan et al., 2020). TheGBMmetabolic features

are the excess generation of lactate in conjunction with the acetate and

glucose oxidations to provide macromolecular precursors and energy.

In low-grade glioma, secondary glioblastoma, and acute myelogenous

leukemia, the oncogenic mutations in the two-isocitrate

dehydrogenase (IDH) encoding genes (IDH1 and IDH2) have

been identified (Agnihotri et al., 2013; Zhou and Wahl, 2019).

Normally in the Krebs cycle, the isocitrate is converted into

a-ketoglutarate (a-KD) by isocitrate dehydrogenases (IDHs) in a

NAD(P)-dependent manner. IDH1, IDH2, and IDH3 are three

IDH isozymes that function in different subcellular

compartments. Various somatic point mutations of IDH1 or

IDH2 have been discovered in a variety of malignancies in recent

years, such as gliomas and AMLs (acute myeloid leukemias) (Yan

et al., 2009; Zhao et al., 2009). Identified mutations such as

IDH1 R132H/C/Q, IDH2 R140Q/W/L, and R172K/T/S/G/M

adversely affect the normal function of IDH protein and

initiate the abnormal activity of protein with IDH mutations

that produced oncometabolite 2-hydroxyglutarate from the

a-KG (Frezza et al., 2010; Huang, 2019). 2-HG may

accumulate to horrifically high levels of 5–35 mmol/g in

human glioma samples with IDH1/2 mutations, which is 100-

fold higher than its normal level in the brain (Dimitrov et al.,

2015).

Single nucleotide polymorphisms (SNPs), which affect

both coding and noncoding regions of DNA, are the most

common genetic changes. SNPs are found every 200–300 bp in

the human genome and account for around 90% of all genetic

differences in the human genome. Nonsynonymous SNPs

cause genetic alteration in the exonic regions of the protein

and disturb their sequence, structure, and normal function by

enhancing the abnormal transcription and translation

mechanisms. Previously, several in silico computational

techniques were developed to quickly and precisely assess

the functional implications of nonsynonymous variation on

protein structure and function (Junaid et al., 2018; Khan et al.,

2020a; Khan et al., 2020b; Khan et al., 2021). Until now, a total

of 298 SNPs with 207 missense mutations in the human

IDH1 gene has been described and deposited to the

gnomAD database.

Although IDH1 plays a crucial role in carcinogenesis

(gliomas) and has a polymorphism character, it is still

unclear how identified nsSNPs alter the protein’s structure

and biological activity. In this study, we employed a number of

computational approaches to find nsSNPs in the IDH1 gene

that are extremely detrimental to the structure and function of

the IDH1 protein.

2 Materials and methods

2.1 Collection of data

The available data on human IDH1 were obtained from

available online databases. The online database gnomAD

(https://gnomad.broadinstitute.org/) was used to retrieve all

predicted SNPs in the human IDH1gene (Karczewski and

Francioli, 2017). The amino acid sequence (UniProt: O75874)

and previously deposited 3D structure (PDB ID: 6BKX) of the

protein that expresses the IDH1 gene were obtained from the

UniProt online database (http://www.uniprot.org/) (Rose et al.,

2010; Consortium, 2015). The whole workflow of the work is

given in Figure 1.
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2.2 Disease-related single nucleotide
polymorphism predictions

2.2.1 Prediction of Functional Consequences of
nsSNPs

Different online servers such as PredictSNP (https://loschmidt.

chemi.muni.cz/predictsnp1/), Polymorphism Phenotyping version 2

(Polyphen-2) (http://genetics.bwh.harvard.edu/pp2), Sorting Intolerant

from Tolerant (SIFT) (http://sift.bii.a-star.edu.sg), Screening of

nonacceptable polymorphism (SNAP) (https://rostlab.org/services/

snap), Protein Analysis Through Evolutionary Relationship

(PANTHER) (http://www.pantherdb.org/tools/csnpScoreForm.jsp,

Multivariate Analysis of Protein Polymorphism (MAPP) (http://

mendel.stanford.edu/SidowLab/downloads/MAPP/), and predictor of

Human Deleterious Single Nucleotide Polymorphism (PhD-SNP)

(http://snps.biofold.org/phd-snp/phd-snp.html) were used to predict

the functional effect of all nonsynonymous single nucleotide

polymorphisms (nsSNPs) (Johnson et al., 2008; Sim et al., 2012;

Adzhubei et al., 2013; Landis et al., 2014; Bendl et al., 2015;

Capriotti and Fariselli, 2017). All of the nsSNPs that were verified

as highly deleterious by all of the aforementioned web servers were

selected for further analysis.

2.2.2 Structure-based stability calculation
For structure-based stability prediction, mCSM and

DynaMut webservers were used to estimate the impact of

each substitution on the structural stability and flexibility

(Pires et al., 2014; Rodrigues et al., 2018). The highly

deleterious mutations were processed for the prediction of

structure-based stability calculation. These servers use graph-

based signatures to estimate the impact of each mutation on

the protein’s structure. The top three mutations were selected

based on the mCSM and DynaMut results together for further

analysis.

2.2.3 Modeling of mutants of IDH1 protein
The crystal structure of the IDH1 protein was extracted from

PDB (Entry ID: 6BKX). Both ligands and water molecules were

separated from the protein structure, and the Chimera software

was used to minimize the wild-type structure of IDH1 protein.

Moreover, the predicted most deleterious mutations such as

G15E, W92G, and I333S were modeled in the wild-type

structure of IDH1 protein using the Chimera software.

2.2.4 Molecular docking of DWP with the wild
type and mutant IDH1

The impact of selected substitutions on the binding of DWP

((6aS,7S,9R, 10aS)-7,10a-dimethyl-8-oxo-2-(phenylamino)-

5,6,6a,7,8,9,10,10a-octahydrobenzo[h]quinazoline-9-carbonitrile with

the wild type and mutant was also evaluated using the molecular

docking approach. For this estimation, a previously described protocol

was employed using AutoDock Vina (Eberhardt et al., 2021).

FIGURE 1
Methodological workflow of the work. Each tool used in each step is also given.

Frontiers in Pharmacology frontiersin.org03

Suleman et al. 10.3389/fphar.2022.927570

https://loschmidt.chemi.muni.cz/predictsnp1/
https://loschmidt.chemi.muni.cz/predictsnp1/
http://genetics.bwh.harvard.edu/pp2
http://sift.bii.a-star.edu.sg/
https://rostlab.org/services/snap
https://rostlab.org/services/snap
http://www.pantherdb.org/tools/csnpScoreForm.jsp
http://mendel.stanford.edu/SidowLab/downloads/MAPP/
http://mendel.stanford.edu/SidowLab/downloads/MAPP/
http://snps.biofold.org/phd-snp/phd-snp.html
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.927570


2.2.5 Molecular dynamics simulation
The highly destabilizing and functional substitutions were

evaluated for the dynamic properties using the

AMBER2.0 molecular simulation tool. For this purpose,

ff14SB force field was recruited for uniformity with the

previous parameters (Salomon Ferrer et al., 2013). A TIP3P

water box (cutoff = 10.0 Å) was employed for solvation, while

neutralizations were performed by adding sodium ions. Each

complex was minimized well in two steps: the first for 6000 steps,

while the second was run for 3,000 steps. The further protocol

used in the previous study was employed. Lastly, for each

TABLE 1 List of highly deleterious and destabilizing mutations in IDH1.
Among the 80 mutations, 14 highly destabilizing ones are shown
in bold.

Index Mutation ΔΔG mCSM Outcome

1 G15E −3.094 Highly Destabilizing

2 D16H −1.439 Destabilizing

3 W23C −2.149 Highly Destabilizing

4 Y34C −1.848 Destabilizing

5 V35A −1.926 Destabilizing

6 Y42C −1.287 Destabilizing

7 D43A −0.396 Destabilizing

8 R49H −2.437 Highly Destabilizing

9 R49C −1.957 Destabilizing

10 R49P −1.427 Destabilizing

11 I76T −2.36 Highly Destabilizing

12 R82S −2.362 Highly Destabilizing

13 R82M −1.294 Destabilizing

14 V83F −1.491 Destabilizing

15 E85G −1.128 Destabilizing

16 L88F −1.714 Destabilizing

17 M91R −0.476 Destabilizing

18 M91T −1.317 Destabilizing

19 W92G −3.644 Highly Destabilizing

20 W92R −1.562 Destabilizing

21 N96H −0.752 Destabilizing

22 T98N −1.142 Destabilizing

23 N101Y −0.377 Destabilizing

24 T106M −0.611 Destabilizing

25 F108V −2.441 Highly Destabilizing

26 R109K −1.318 Destabilizing

27 I113S −1.972 Destabilizing

28 G150R −0.548 Destabilizing

29 V152G −2.065 Highly Destabilizing

30 I154R 0.027 Stabilizing

31 D160Y 0.05 Stabilizing

32 G177D −0.073 Destabilizing

33 Y183C −0.838 Destabilizing

34 A193T −0.975 Destabilizing

35 L207W −1.744 Destabilizing

36 Y208H −2.648 Highly Destabilizing

37 Y208C −1.847 Destabilizing

38 T214S −0.522 Destabilizing

39 Y219H −0.962 Destabilizing

40 Y219C −0.98 Destabilizing

41 D220G −1.683 Destabilizing

42 Y231H −2.007 Highly Destabilizing

43 Y235C −1.24 Destabilizing

44 Y246H −2.036 Highly Destabilizing

45 A256V −0.53 Destabilizing

46 K260N 0.221 Stabilizing

(Continued in next column)

TABLE 1 (Continued) List of highly deleterious and destabilizing
mutations in IDH1. Among the 80 mutations, 14 highly destabilizing
ones are shown in bold.

Index Mutation ΔΔG mCSM Outcome

47 G263E −0.546 Destabilizing

48 D273G −0.293 Destabilizing

49 G274S −0.962 Destabilizing

50 V276M −0.5 Destabilizing

51 S278P −0.225 Destabilizing

52 S278L −0.228 Destabilizing

53 D279H −0.517 Destabilizing

54 M291T −1.405 Destabilizing

55 T292I −0.114 Destabilizing

56 S293I 0.169 Stabilizing

57 P298L −0.358 Destabilizing

58 G300V −0.604 Destabilizing

59 G300D −1.749 Destabilizing

60 E306A 0.57 Stabilizing

61 H309R −0.568 Destabilizing

62 H309Q 0.139 Stabilizing

63 G310R −0.445 Destabilizing

64 R314C 0.301 Stabilizing

65 H315D −0.52 Destabilizing

66 R317C −0.995 Destabilizing

67 R317L −0.082 Destabilizing

68 T325M 0.467 Stabilizing

69 N328S −1.25 Destabilizing

70 N328K −0.122 Destabilizing

71 I330T −2.449 Highly Destabilizing

72 I333S −3.298 Highly Destabilizing

73 G339R −1.576 Destabilizing

74 L346P −1.191 Destabilizing

75 I367T −2.845 Highly Destabilizing

76 G370V −0.276 Destabilizing

77 M372T −1.565 Destabilizing

78 T373I −0.732 Destabilizing

79 T373N −1.561 Destabilizing

80 L401P -1.626 Destabilizing
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complex, a 100 ns production run under constant pressure was

completed. To control the temperature, a Langevin thermostat

with 1 atm pressure and 300 K was used (Zwanzig, 1973). The

particle mesh Ewald (PME) algorithm was used to compute long-

range interactions (Darden et al., 1993; Essmann et al., 1995). The

cutoff distances were set to 10 A˚. For the covalent bonds

involving hydrogen, the SHAKE algorithm was used (Ryckaert

et al., 1977). GPU-accelerated simulation (PMEMD.CUDA) was

used for all of the processes. Post simulation analyses including

dynamic stability calculated as RMSD (root mean square

deviation), residual flexibility estimated as RMSF(root mean

square fluctuation), hydrogen bonding analysis over the

simulation time, and the radius of gyration (Rg) for protein

packing assessment were calculated using CPPTRAJ and PTRAJ

modules of AMBER1.9 (Roe and Cheatham, 2013).

2.2.6 Binding free energy calculation
For the calculation of binding free energy, a whole trajectory

of each complex was subjected toMM/GBSA analysis by utilizing

MMPBSA.PY script (Hou et al., 2011). This widely applicable

approach, which has been previously used to characterize the

binding of various biological complexes, was used for estimation

by employing the following equation:

ΔGbind � ΔGcomplex − [ΔGreceptor + ΔGligand] (1).

Each term in the binding free energy was estimated using the

following equation:

G � Gbond + Gele + GvdW + Gpol + Gnpol (2).

2.2.7 Clustering of MD trajectories using
principal component analysis

To comprehend the motion of MD trajectories, an

unsupervised learning method known as principal component

analysis (PCA) (Pearson, 1901; Wold et al., 1987) was performed

to acquire knowledge regarding the internal motion of the

system. For this purpose, an Amber module known as

CPPTRAJ was used. The spatial covariance matrix was

determined for eigenvector and their atomic co-ordinates.

Using an orthogonal coordinate transformation, a diagonal

matrix of eigenvalues was generated. Based on the

eigenvectors and eigenvalues, the principal components were

extracted. Using these PCs, the dominant motions during

simulation were plotted (Balsera et al., 1996; Ernst et al., 2015).

3 Results and discussion

3.1 Identification of deleterious nsSNPs

The online public resources were used to retrieve all of the

available data on the human IDH1 gene. According to the

information obtained from the online gnomAD database,

there were a total of 298 SNPs in the IDH1 protein. Of these,

207 SNPs were identified as nonsynonymous. These 207 SNPs

were submitted to a different online server to identify the

deleterious mutations. First, the SNPs were submitted to

PredictSNP and MAPP servers, and only 141 and 140 SNPs

were found to be deleterious, respectively (Supplementary Table

S1). The nsSNPs were then submitted to PhD-SNP and SNAP

online tools and found 63 and 55 SNPs as deleterious,

respectively (Supplementary Table S2). The other online

servers such as PolyPhen-1, PolyPhen-2, SIFT, and

PANTHER analyzed the nsSNPs and predicted that out of

119 SNPs only 51, 46, 68, and 80 were deleterious,

respectively (Supplementary Tables S3, S4). All of the nsSNPs

were selected for further analysis and was predicted as highly

deleterious together by all of the abovementioned online servers.

Only 80 mutations were selected for the structure-based stability

analysis using mCSM as shown in Table 1. mCSM predicted that

only 14 mutations (G15E(-3.09), W23C(-2.14), R49H(-2.43),

I76T(-2.36), R82S(-2.36), W92G(-3.64), F108V(-2.44),

V152G(-2.06), Y208H(-2.64), Y231H(-2.00), Y246H(-2.03),

I330T(-2.44), I333S(-3.29), and I367T(-2.84)) out of 80 were

highly destabilizing. These 14 mutations were further verified

using the DynaMut web server.

The reported 14 highly destabilizing mutations were then

processed using the DynaMut server to determine the effect of

these 14 mutations on the flexibility of protein structure. Among

these 14 mutations, 12 mutations induced higher flexibility while

the other two mutations, G15E and V246H, demonstrated

structural rigidity. These changes in flexibility shown in red

and blue were mapped onto the corresponding protein

structure and are presented in Figure 2. Among these

14 mutations, only three mutations were reported to be

consistently highly destabilizing, which were then selected for

further analysis (Table 2).

3.2 Molecular docking analysis of the wild
type and mutants

Molecular docking-based investigation of the binding

variations caused by these mutations in contrast to the wild

type revealed significant differences. The docking score for the

wild type was calculated to be −8.76 kcal/mol. The interaction

analysis revealed multiple hydrogen bonds including Ser326,

Lys374, and Asp375, while various pi–pi interactions and

pi–alkyl interactions were observed. The interaction pattern of

the wild type is given in Figure 3A. On the other hand, despite the

significant reduction in the number of bonding contacts, the

His314 (correspond to His315) hydrogen bond remained

conserved, which has been reported to be associated with the

inhibitory properties of this drug. With a single hydrogen bond

and various other interactions, the docking score for this complex

was calculated to be −7.35 kcal/mol. It can be seen that this
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FIGURE 2
Effect of mutations on the flexibility of different residues. Different colors represent different levels of flexibility. The red regions demonstrate
that the flexibility is increased, the blue regions show that the flexibility is decreased due to the mutations, and gray represents no change in the
flexibility.
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complex has lost important hydrogen bonds of essential residues,

thus reducing the bonding energy and contributing to resistance

to chemotherapy. The interaction pattern of G15E is given in

Figure 3B. Moreover, the docking score for W92G was estimated

to be −8.62 kcal/mol. This complex retained some important

hydrogen contacts, that is, Ser326 and His314 (correspond to

His315), which gives comparable results to the wild type. With

various hydrogen bonding contacts, many pi–pi, pi–alkyl, and

salt bridge contacts were also reported in this complex. The

interaction pattern ofW92G is given in Figure 3C. I333S lies near

the active site and reports a substantial decrease in the bonding

pattern. With only one hydrogen bond of His314 (corresponding

to His315) and pi–alkyl interaction with Val311, this complex

reported a significant decrease in the docking score. The docking

score for this complex was calculated to be −6.87 kcal/mol. The

interaction pattern of I333S is given in Figure 3D.

3.3 Investigation of the dynamic behavior
of the wild-type and mutant complexes

To provide worthy insights into the impact of any particular

mutation on the structure and function of a protein

comprehension of key dynamic features is essential. For

instance, dynamic stability [root mean square deviation

(RMSD)] can be used to estimate the stability of a biological

complex in a dynamic environment. To assess the structural

stability, we herein also calculated RMSD as a function of time.

The wild type and the three mutants were compared and are

shown in Figures 4A–C. The wild type presented more stable

behavior than the three mutants. As shown in Figure 4A, the wild

type initially demonstrated a higher RMD for a short period

(2–6 ns); thereafter, the complex equilibrated and attained

stability at 2.5 Å. The RMSD continued to follow the same

trend until 55 ns and then decreased to 2.1 Å until the end of

simulation. No significant perturbation was observed during the

simulation, and the average RMSD was calculated to be 2.30 Å.

Comparatively, the G15E mutant initially demonstrated

significant perturbations in the RMSD, particularly between

5 and 20 ns. The RMSD then stabilized for a period between

21 and 55 ns and then continued to increase gradually until the

end of the simulation. The complex reported a higher RMSD

between 56 and 73 ns, then abruptly decreased, and then

increased back with major deviation until the end of

simulation. The complex reached the complete stability state

after 80 ns. This shows that this mutation, despite its location

away from the binding cavity, allosterically affects the binding

affinity by compromising the stability of the protein. Since it has

been previously reported that mutations that alter the protein

stability result in radical function, thus this corroborates with the

current findings (Dehury et al., 2020a). The RMSD graph for

G15E mutant is given in Figure 4A. Unlike the wild type and

G15E, the W92G complex demonstrated significant structural

instability from the start of the simulation. The RMSD during the

first 60 ns reported minor deviations at different time intervals,

thus resulting in continuous destabilization effects of mutation.

The RMSD increased to 6.0 Å at 60 ns and then gradually

decreased until 100 ns. An average RMSD for W92G was

recorded to be 3.60 Å and is shown in Figure 3B. On the

other hand, the I333S mutant was reported to be the most

destabilizing mutation among the shortlisted top deleterious

mutations. First, the complex reported significant deviations

until 55 ns and then gradually increased the RMSD and

followed the same pattern to demonstrate significant

deviations until the end of the simulation. An average

RMSD of 3.2 Å was calculated for the I333S complex and

is shown in Figure 4C. It has been reported that mutations

that increase the stability may also increase the binding while

destabilizing mutations decrease the binding. The current

findings strongly corroborate with the previous reports where

the filtration of mutations to obtain the most deleterious

mutations showed that R132C, R132G, R132H, R132L, and

R132S decrease the stability of IDH1 (Kumar et al., 2018).

The stability feature is also reported to be affected by

mutations in other diseases, which results in deleterious

effects (Dehury et al., 2020a). Thus, herein, the mutations

demonstrated destabilizing effects in contrast to the

wild type.

3.4 Protein structure packing analysis

An assessment of protein packing reveals information

regarding the binding and unbinding events that occurred

during simulation. These events are steered by the bonding of

TABLE 2 List of highly deleterious and destabilizingmutations in IDH1.
Among the 14 mutations, three are highly destabilizing reported
by both the servers (mCSM and DynaMut) shown in bold.

Index Mutation ΔΔG ENCoM ΔΔG DynaMut

1 G15E 1.101 −3.347

2 W23C −0.977 −0.288

3 R49H −0.348 −1.701

4 I76T −0.198 −1.926

5 R82S −0.607 −2.139

6 W92G −1.741 −2.633

7 F108V −0.341 −2.520

8 V152G −0.894 −1.667

9 Y208H −0.662 −0.591

10 Y231H −0.369 −0.945

11 Y246H −0.136 −0.100

12 I330T −0.171 −0.733

13 I333S −0.478 −3.413

14 I367T −0.318 −2.610
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small molecules with the protein cavity. For instance, this

approach has been used previously to see the impact of

mutations on the structural compactness when IDH1 binds to

its homodimer (Yuan et al., 2017). Herein, to understand the

structural compactness, radius of gyration (Rg) was calculated as

a function of time. Consistent with the RMSD results, the wild-

type complex reported a uniform pattern of Rg during the

simulation. There was a slight increase in Rg between 40 and

60 ns, but it then stabilized again until the end of the simulation.

The average Rg for this complex was calculated to be 22.5 Å. On

the other hand, for the G15E mutant, despite its similar Rg value,

, wild-type deviations at different time intervals were observed.

This trend can be seen for the whole simulation time period

(0–100 ns), which shows maximum unbinding events induced by

the mutation. The W82G and I333S mutants demonstrated a

similar pattern of Rg for the first 40 ns. With slightly higher Rg

values, the two complexes reported patterns similar to those of

the wild type. However, W92G experienced a continuous

increase in the Rg between 41 and 60 ns and then a decreased

back effect was observed until 70 ns. The Rg value for the

remaining simulation time remained lower; however, major

deviations were reported. On the other hand, I333S reported a

gradual increase in the Rg value after 45 ns and continued to

follow this pattern until 75 ns. The Rg then again decreased and

remained consistent until the end of the simulation. The average

Rg values for W92G and I333S were calculated to be 22.80 Å and

22.78 Å, respectively. Interestingly the other reported mutations

in the interface site, that is, R132C, R132G, R132H, R132L, and

R132S, also demonstrated higher radius of gyration values; thus,

further validating our findings in terms of protein compactness

(Yuan et al., 2017; Bendahou et al., 2020). The Rg graphs for each

complex are shown in Figures 5A–C.

FIGURE 3
Molecular docking analysis of the wild-type and mutant complexes. (A) Representation of the interaction pattern of the wild type. (B)
Representation of the interaction pattern of G15E. (C) Representation of the interaction pattern of W92G. (D) Representation of the interaction
pattern of I333S.
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3.5 Residues’ flexibility indexing

Residues’ flexibility indexing is a key assessment to

understand the role of each residue in different biological

functions. The flexibility can be applied in different domains,

such as molecular recognition, drug binding, cascade signaling,

protein coupling, enzyme engineering, and protein designs. To

estimate the residual flexibility of each complex, we calculated

root mean square fluctuation (RMSF). As shown in Figure 5, all

of the complexes demonstrated a more similar pattern of RMSF

except for the regions between 125 and175 for all of the

complexes. The flexibility at this portion (125–175) revealed a

different pattern, which shows the impact of a particular

mutation on the protein’s internal dynamics. The wild type in

this region demonstrates minimal RMSF, while the three

mutations reported maximum RMSF. This consequently

shows the altered dynamics and residue flexibility by the

induced mutations in the structure, thus altering the binding

of small molecules and function. This overall higher flexibility

with the loss of compactness and intramolecular hydrogen bonds

makes these mutations more deleterious than the other

mutations. The findings are prevalidated by the previous

literature where increased flexibility was observed mediated by

different mutations. Moreover, other diseases mutations are

reported to decrease the binding either due to increasing the

cavity space or affecting the on/off switch, which consequently

increases/decreases the distance between essential atoms

(Dehury et al., 2020b; Dehury et al., 2020c). The RMSF of

each complex is shown in Figure 6.

3.6 Hydrogen bonding analysis

Macromolecular complexes, particularly protein–protein

coupling, are primarily driven by numerous factors, among

which hydrogen bonding and hydrophobic contacts are essential.

The environment of protein interfaces is enriched with water

molecules that work with the residues to form hydrogen bonds

(Chen et al., 2016). The mechanisms underlying protein–protein

interaction as well as the ramifications for hydrogen bonding are

unclear (Chodera and Mobley, 2013). Whether hydrogen bonds

govern protein–protein docking, in particular, is a long-standing

concern, and the mechanism is poorly understood (Patil et al., 2010;

Olsson et al., 2011). Therefore, it is important to understand the

hydrogen bonding landscape in protein–protein association. For

instance, previously, hydrogen bonding was predicted to estimate

the strength of the association between two molecules. As shown in

Figure 7A, the wild type reported an average of 215 hydrogen bonds,

while the G15E complex reported 212 hydrogen bonds over the

simulation time. On the other hand, the W92G complex reported

209 average hydrogen bonds in contrast to the wild type. The

hydrogen bonds in the wild type and I333S were comparable. In the

case of I333S, average hydrogen bonds were calculated to be 215,

FIGURE 4
Dynamic stability analysis of the wild-type and mutant
complexes. (A) Representation of the RMSD of the wild type and
G15E. (B) Representation of the RMSD of the wild type and W92G.
(C) Representation of the RMSD of the wild type and I333S.
The x-axis represents time in nanoseconds while the y-axis
represents RMSD in �A.

FIGURE 5
Radius of gyration analysis of the wild-type and mutant
complexes. (A) Representation of the Rg of the wild type and G15E.
(B) Representation of the Rg of the wild type and W92G. (C)
Representation of the Rg of the wild type and I333S. The
x-axis represent time in nanoseconds while the y-axis represent
Rg in �A.
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same as that of the wild type. This demonstrate that these mutations

alter the internal dynamics, consequently altering the hydrogen

bonding network and causes resistance to the drug. The hydrogen

bonding graphs of all of the complexes are shown in Figures 7A–C.

3.7 Binding free energy calculation

Binding free energy calculation determines the accurate

binding strength and conformation of the small molecule. It

is an essential estimation to re-evaluate the docking

predictions by considering the highest accuracy and

reliability than the conventional docking and alchemical

methods. It is a widely used approach to explore the

interaction strength and reveal the key binding feature,

which steers the overall binding. Considering the

applicability of the MM/GBSA approach, we also

estimated the total binding energy for the wild-type and

mutant complex. As shown in Table 3, the vdW for the wild

type was estimated to be −40.78 ± 0.045 kcal/mol, while for

the mutant it was −35.13 ± 0.054 kcal/mol reported by G15E

mutations, −38.07 ± 0.053 kcal/mol reported by W92G,

and −36.46 ± 0.06 kcal/mol calculated for the I333S

mutant. This shows the loss of important interacting

contacts that remained conserved in the wild type. On the

other hand, the electrostatic energy determined an inverted

trend. In the case of wild type, the electrostatic energy was

calculated to be 3.55 ± 0.034 kcal/mol, while for the

mutations −1.23 ± 0.057 kcal/mol (G15E) and −2.53 ±

0.052 kcal/mol (W92G), and −0.99 ± 0.06 kcal/mol for

I333S mutant was calculated. This shows that due to these

mutations the electrostatic contacts are increased, which

may consequently alter the binding. Moreover, ΔG total

was reported to be −34.77 ± 0.036 kcal/mol for the wild

type and −34.07 ± 0.051 kcal/mol for W92G. The total

binding energy of the wild type and G15E is comparable.

The two mutants, that is, G15E and I333S, demonstrated a

significant decrease in the ΔG total. The ΔG total for the

G15E mutant was calculated to be −30.90 ± 0.041 kcal/mol,

while for I333S, the ΔG total was estimated to be −31.91 ±

0.04 kcal/mol. This consequently shows the impact of these

deleterious substitutions on the binding of the small

molecule. The other parameters of the total binding free

energy are given in Table 3.

3.8 Clustering of protein’s motion

We used the principal component analysis (PCA) to

cluster the protein motions in the simulation trajectories.

FIGURE 6
Residues’ flexibility analysis of the wild-type and mutant complexes. The x-axis represents time in total number of residues while the y-axis
represent RMSF in �A.

FIGURE 7
Hydrogen bonding analysis of the wild-type and mutant
complexes. (A) Representation of H-bonds of the wild type and
G15E. (B) Representation of H-bonds of the wild type and W92G.
(C) Representation of H-bonds of the wild type and I333S.
The x-axis represents time in nanoseconds, while the y-axis
represents H-bond population.
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The two PCs, that is, PC1 and PC2, reflected these motions in

two dimensions. The distributed principal components for

each complex are given in Figures 8A–D. The first three

eigenvectors contributed 54% of the total motion, while the

rest was contributed by the other eigenvectors. In contrast, the

three mutants, that is, G15E the first three eigenvectors

contributed 49%, W92G reported 48%, and I333S reported

44% of the total motion by the first three eigenvectors. The rest

TABLE 3 Total binding free energy for the wild-type, G15E, W92G, and I333S complexes. All of the values are calculated in kcal/mol.

Parameters Wild type G15E W92G I333S

VDWAALS −40.78 ± 0.045 −35.13 ± 0.054 −38.07 ± 0.053 −36.46 ± 0.06

EEL 3.55 ± 0.034 −1.23 ± 0.057 −2.53 ± 0.052 −0.99 ± 0.06

EGB 7.22 ± 0.023 9.64 ± 0.040 10.55 ± 0.056 9.73 ± 0.04

ESURF −4.77 ± 0.003 −4.18 ± 0.007 −4.02 ± 0.005 −4.19 ± 0.008

Delta G Gas −37.23 ± 0.037 −36.36 ± 0.046 −40.61 ± 0.071 −37.45 ± 0.005

Delta G Solv 2.45 ± 0.023 5.46 ± 0.043 6.53 ± 0.056 5.53 ± 0.005

Delta Total −34.77 ± 0.036 −30.90 ± 0.041 −34.07 ± 0.051 −31.91 ± 0.04

FIGURE 8
Principal component analysis of the wild-type and mutant complexes. (A) Representation of PCA of the wild type. (B) Representation of PCA of
G15E. (C) Representation of PCA of W92G. (D) Representation of PCA of I333S. The red to sky blue represent the different conformation states,
whereas the transition states are represented by dark purple.
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demonstrated localized motion by these complexes. The

conformational transition can be easily separated from each

other by sky blue and red colors. This shows that these

mutations had caused different arrangements to bind small

molecules compared to the wild type, where the total internal

motion is decreased, thus consequently producing minimal

binding effects.

3.9 Free energy landscape analysis

The two PCs were then mapped to identify the stable and

metastable states for each complex. As shown in Figures

9A–D, the wild type attained one lowest-energy

conformation, while G15E and W92G attained two lowest-

energy conformations. I333S also attained a single lowest-

energy state. The conformational transition in each complex is

separated by a subspace. This shows that the mutations had

caused a different arrangement to bind small molecules

compared to the wild type, thus consequently producing

minimal binding effects.

4 Conclusion

The current study used genomic mutation screening and

molecular simulation methods to identify the most detrimental

mutations in the IDH1 gene. The investigation of a large number

of mutations revealed that three mutations, G15E,W92G, and I333S,

are themost deleterious and highly destabilizing, which can affect the

binding of a drug. Thesemutations primarily affect the binding of the

drugwith IDH, thus consequently reducing the efficacy of the already

approved drug. Further validations such as molecular docking and

dynamics simulation demonstrated that these mutations do not only

affect the stability but also alter the bonding network. In addition, the

BFE was also observed to have been reduced due to conformational

changes mediated by these mutations. In sum, the current mutations

contribute to drug resistance in glioma, and the atomic features

FIGURE 9
Free energy landscape analysis of the wild-type andmutant complexes. (A) Representation of DEL of the wild type. (B) Representation of FEL of
G15E. (C) Representation of the FEL ofW92G. (D) Representation of the FEL of I333S. The dark regions in each show the lowest-energy conformation
where the conformational states are separated by subspace in each complex.
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explored in this study could be used for structure-based drug

designing against resistant glioma.
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