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Abstract

Objective

To assess whether machine learning algorithms (MLA) can predict eyes that will undergo

rapid glaucoma progression based on an initial visual field (VF) test.

Design

Retrospective analysis of longitudinal data.

Subjects

175,786 VFs (22,925 initial VFs) from 14,217 patients who completed�5 reliable VFs at

academic glaucoma centers were included.

Methods

Summary measures and reliability metrics from the initial VF and age were used to train

MLA designed to predict the likelihood of rapid progression. Additionally, the neural network

model was trained with point-wise threshold data in addition to summary measures, reliabil-

ity metrics and age. 80% of eyes were used for a training set and 20% were used as a test

set. MLA test set performance was assessed using the area under the receiver operating

curve (AUC). Performance of models trained on initial VF data alone was compared to per-

formance of models trained on data from the first two VFs.

Main outcome measures

Accuracy in predicting future rapid progression defined as MD worsening more than 1 dB/

year.
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Results

1,968 eyes (8.6%) underwent rapid progression. The support vector machine model (AUC

0.72 [95% CI 0.70–0.75]) most accurately predicted rapid progression when trained on initial

VF data. Artificial neural network, random forest, logistic regression and naïve Bayes classi-

fiers produced AUC of 0.72, 0.70, 0.69, 0.68 respectively. Models trained on data from the

first two VFs performed no better than top models trained on the initial VF alone. Based on

the odds ratio (OR) from logistic regression and variable importance plots from the random

forest model, older age (OR: 1.41 per 10 year increment [95% CI: 1.34 to 1.08]) and higher

pattern standard deviation (OR: 1.31 per 5-dB increment [95% CI: 1.18 to 1.46]) were the

variables in the initial VF most strongly associated with rapid progression.

Conclusions

MLA can be used to predict eyes at risk for rapid progression with modest accuracy based

on an initial VF test. Incorporating additional clinical data to the current model may offer

opportunities to predict patients most likely to rapidly progress with even greater accuracy.

Introduction

Automated visual field (VF) testing is the clinical standard for diagnosing glaucoma and moni-

toring progression [1–3] and glaucoma patients vary widely in their rates of progression [4, 5].

It has been estimated that approximately 5–10% of patients with glaucoma will progress rap-

idly, with rapid progression defined by a VF Mean Deviation (MD) worsening more than1 dB/

year [6]. A decrease in the rate of visual field progression by as little as 30% can lead to an

improvement in patient quality of life, particularly in patients undergoing rapid progression

[7]. Therefore, compared to non-rapid or non-progressors, rapid progressors may have the

most to gain from more frequent follow-up and aggressive treatment [8]. Approaches to iden-

tify patients who are rapid progressors earlier and with greater accuracy is critical to more

individualized treatment to prevent serious visual disability and improve patient outcomes.

However, for clinicians relying on individual patient examination, early diagnosis and identifi-

cation of glaucoma patients at risk for rapid progression is a major challenge.

From a health economics perspective, it has been suggested that while population screening

for glaucoma is not cost-effective, targeted screening of high-risk groups may be [9]. Impor-

tantly, early identification of patients within these populations who are at high-risk for rapid

progression would allow for better allocation of resources, allowing for more cost-effective

ways to manage these patients, while avoiding unnecessary testing and intervention in low-

risk patients. This is of particular importance in the near term, given the rapid projected

growth of glaucoma patients in an aging population that will not be matched by an increase in

trained specialists to care for them [10].

Prior work on this topic has focused mostly on more accurate detection of on-going glau-

coma progression. Models to detect ongoing progression have been developed using data from

the Advanced Glaucoma Intervention Study (AGIS), Early Manifest Glaucoma Trial (EMGT),

and Collaborative Initial Glaucoma Treatment Study (CIGTS) [8, 11–15]. However such mod-

els detect progression once VF worsening has already occurred and function has already been

lost [7, 16].
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A smaller number of prior studies have attempted to predict future VF loss based on the

trend of prior VF performance. In these studies, linear models of past MD have been shown to

achieve greater rates of prediction accuracy for future VF change compared to other measures,

such as intraocular pressure, and have been shown to outperform other more complex nonlin-

ear models using past VF data as inputs to predict future VF change [17, 18]. However, these

models are frequently plagued by the requirement for a relatively large number of serially

obtained VFs as inputs. As patients are frequently lost to follow-up and treatment decisions

are often dictated by one or few office visits, early and accurate identification of patients at risk

for rapid progression with serial testing may be difficult in real-world clinical settings.

As a field dependent on objective measurement and imaging which generates very large

amounts of data, ophthalmology is uniquely primed to benefit from machine learning algo-

rithms (MLAs). Such MLAs have previously been used to diagnose glaucoma and identify pro-

gression. As early as 1994, MLAs have been utilized to classify VFs as normal or glaucomatous

[19]. Recently, MLAs to distinguish normal VFs from VFs with preperimetric glaucoma [20],

defined as all VFs from before a diagnosis of manifest glaucoma (presence of glaucoma on VF

defined by Anderson-Patella criteria), have achieved area under the receiver operator charac-

teristic (AUC) as high as 0.93 utilizing a deep feed-forward neural network [21]. Additionally,

MLAs have been used to classify and detect patterns of VF defects corresponding to retinal

nerve fiber layer anatomy [22]. With regard to detecting progression, prior efforts have pro-

duced MLAs that have outperformed standardized global indices such as MD and, in some

cases, human experts in identifying glaucoma progression [6, 20, 22–31].

However, for MLAs to be useful clinically, they must not only be able to identify progres-

sion in serial VF studies, but also predict future progression from baseline or early VF studies.

Lee et al. developed a deep learning algorithm capable of predicting future pointwise VFs up to

5.5 years from a single VF measurement, accomplishing a correlation of 0.92 between the MD

of predicted and actual future VFs and an average difference of 0.41 dB [32]. However, as most

eyes do not undergo VF progression over subsequent measurements [6], the task of accurately

predicting future VF data such as MD in the vast majority of patients is less difficult when

compared to that of identifying patients most likely to undergo disease progression. Although

a step in the right direction, previous efforts have failed to address the task of quickly and accu-

rately identifying patients at risk of rapid VF progression, which is vital for patient care and

stratification of healthcare resources. To this end, we sought to compare MLAs to predict risk

of rapid glaucoma progression based on the results of a single initial VF test, as well as to eluci-

date specific factors that may increase risk of rapid progression.

Methods

Institutional review board approval was obtained at the Johns Hopkins University School of

Medicine to use the de-identified dataset and the study adhered to the tenets of the declaration

of Helsinki. The institutional review boards of Johns Hopkins University, Columbia Univer-

sity, Harvard University, Mount Sinai School of Medicine, Thomas Jefferson University and

University of Miami approved this retrospective study and waived the need for informed con-

sent for the use of these deidentified patient data.

Data acquisition

A total of 979,203 24–2 VFs were extracted from the Glaucoma Research Network Visual Field

Dataset, which included all patients who underwent VF testing with the Humphrey Field Ana-

lyzer (HFA; Carl Zeiss Meditec, Dublin, CA) at 6 academic glaucoma centers across the US. Of

these, 175,786 VFs from 22,295 eyes met inclusion criteria of having at least five reliable [33]
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24–2 VF measurements over the course of follow-up. All VF data, as well as age, was de-identi-

fied and extracted.

Labeling of rapid progressors

For each eye, linear regression was performed to estimate the slope of MD over time using all

VF data. Linear regression of MD, which quantifies the overall or generalized sensitivity loss

(adjusted for age) averaged across the VF, has been shown to be superior to other global indi-

ces in detecting deterioration, particularly among patients undergoing more rapid progression

[34]. Rapid progression was defined as worsening of MD by 1 dB/year or more in a given eye

[6].

Statistical analyses

Only data from the initial VF test was used to train MLAs designed to predict the likelihood of

future rapid progression. Data were randomly split into a training (80%, 18340 initial VFs/

eyes) and held out test (20%, 4585 initial VFs/Eyes). The training and test set were noted to be

balanced equally based on percentage of rapid progressors as well as all baseline age and visual

field global characteristics (p>0.1 for all comparisons between training and test sets).

Various machine learning algorithms (i.e. support vector machine [35], random forest [36],

naïve Bayes [37], and logistic regression [38]) used global visual field indices (MD, PSD, foveal

threshold), reliability metrics (false positives, false negatives, fixation losses and test duration)

and age as input to predict likelihood of rapid progression. A fully connected neural network

[39] was also designed which utilized global indices and age but also included point-wise VF

threshold data. Hyper-parameters for each model were optimized to maximize classification

accuracy in the validation set. A sensitivity analysis was performed in which a convolutional

neural network was developed to take the pointwise data as a spatially oriented grid as

described by Lee et. al. [32]. This did not improve model performance over a fully connected

neural network. A hybrid model was also created which estimated the likelihood of rapid pro-

gression by calculating the mean likelihood of rapid progression of the five models described

above. Description of the optimized hyperparameters can be found in Table 1.

To assess the effect of including more than the initial VF on MLA performance to predict

likelihood of rapid progression, a second set of training was performed. During this training,

we included all of the factors mentioned above as inputs, but also included the slope of the first

two VFs in an effort to increase model performance.

MLA test set performance was assessed using the area under the receiver operating curve

(AUC) for the classification tasks of distinguishing rapid from non-rapid progressors in the

testing set only.

In order to understand how the various MLAs were classifying rapid progressors and non-

rapid progressors, summary output from MLAs that create summary output including the

odds ratio from logistic regression and Breiman-Cutler variable importance plotting from ran-

dom forest model were assessed.

All statistical analyses were performed in R version 3.5.1 (R Foundation for Statistical Com-

puting, Vienna, Austria).

Results

A total of 22,925 eyes, from 14,217 patients who underwent VF testing were included in analy-

sis (Table 2). Among these, 1,968 (8.6%) underwent rapid progression. Compared to non-

rapid progressors, subjects with rapid progression were older (68.6 vs 61.9 years; p<0.01) and

rapid progression eyes had worse baseline VF performance measures including lower MD,
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higher PSD, and lower foveal threshold (p<0.01 for all comparisons). Additionally, rapid pro-

gressors tended to have worse visual field reliability metrics than non-rapid progressors

(higher percentage of false negative, false positives, more fixation losses, and longer test dura-

tion, p<0.01 for all comparisons).

Distributions for rate of change in MD over time in patients with rapid progression and

non-rapid progressors are shown in Fig 1. Overall, patients exhibited deterioration over time,

resulting in a slightly negative mean MD slope overall (-0.18 [SD 1.2]) with some patients

Table 1. Optimized hyperparameters used in various machine learning models.

Machine Learning

Algorithm

Optimized Hyperparameters

Support Vector Machine

R-Library: e1071

• Kernel: Radial

• Class Weights: 8 for Rapid Progressors, 1 for Non-Rapid Progressors

Fully Connected Neural

Network

R-Library: keras

• Network Architecture:

� 20% dropout layer!1024 fully connected neuron layer, ReLu activation!: 20%

dropout layer!512 fully connected neuron layer, ReLu activation!: 20%

dropout layer! 256 fully connected neuron layer, ReLu activation!128 fully

connected neuron layer, ReLu activation!64 fully connected neuron layer,

ReLu activation!1 neuro output layer, sigmoid activation

• Model Compilation

� Optimizer: RMS Prop

� Loss: Binary Cross Entropy

• Model Fitting:

� Validation Split: 20%

� Number of Epochs: 23

� Batch Size: 512

� Class Weights: 8 for Rapid Progressors, 1 for Non-Rapid Progressors

Random Forest

R-Library:

randomForestSRC

• Number of Trees: 2000

• Number of variables randomly selected as candidate for splitting a node: 2

Note: No hyperparameters were needed for logistic regression (R-Library: base R) or Naïve Bayes models (R-Library:

e1071).

https://doi.org/10.1371/journal.pone.0249856.t001

Table 2. Demographic of patients with visual field data�.

Overall Non-Rapid Progressors Rapid Progressors

No. of Eyes (%) 22,925 20,957 (91.4) 1,968 (8.6)

No. of Patients 14,217 13,279 1,739

Mean Age of Patients–years, (SD) 62.4 (13.3) 61.9 (13.6) 68.6 (12.8)

Mean Number of VFs per Patient (SD) 7.7 (3.3) 7.7 (3.4) 7.0 (2.6)

Rate of MD Change all VFs dB/Year (SD) -0.18 (1.2) -0.03 (1.1) -1.86 (1.3)

Rate of MD Change First Two VFs dB/Year (SD)� +2.2 (62.5) +2.2 (63.4) +1.9 (51.8)

Mean MD of First VF–decibels, (SD) -5.2 (6.0) -5.0 (6.0) -7.1 (5.7)

Mean PSD of First VF–decibels, (SD) 4.4 (3.6) 4.3 (3.6) 5.6 (3.5)

Mean Foveal Threshold decibels, (SD) 28.2 (9.5) 28.3 (9.5) 27.4 (9.4)

Mean Test Duration minutes (SD) 5.6 (3.2) 5.6 (3.2) 5.8 (3.1)

Mean Percent FN (SD) 12.8 (20.8) 12.3 (20.4) 17.6 (24.4)

Mean Percent FP (SD) 11.8 (19.3) 11.6 (19.3) 13.2 (19.9)

Mean Number of FLs (SD) 0.79 (1.0) 0.78 (1.0) 0.86 (1.0)

�Nonsignificant (p>0.05)

Note: Rapid Progressor is defined as visual Field Mean Deviation Slope <-1dB/yr.

SD = Standard Deviation; MD = Mean Deviation; VF = Visual Field; FN = False Negative; FP = False Positive

https://doi.org/10.1371/journal.pone.0249856.t002
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showing improvement/learning effects and others showing variable rates of deterioration. As

expected, when using all VFs (5 or more) over time, the distributions of rapid progressors and

non-rapid progressors were well separated. By contrast, calculating rate of MD change using

the first two VFs poorly differentiated rapid progressors from non-progressors as indicated by

substantially greater overlap in the distributions of the two groups.

Fig 2 demonstrates the distributions of age and global VF performance measures in rapid

progressors and non-rapid progressors. While there were modest differences in baseline age,

MD, PSD, and foveal threshold in rapid progressors and non-progressors, there was almost

complete overlap of the distributions, suggesting that these global measures were poor individ-

ual predictors of rapid progression. When comparing reliability metrics between rapid pro-

gressors and non-rapid progressors, rapid progressors had modestly greater false negatives,

false positives, fixation errors as well as longer test duration (Fig 3).

Utilizing the first VF only, the support vector machine model (AUC 0.72) was the most

accurate in predicting rapid progression, closely followed by artificial neural network, hybrid,

random forest, logistic regression, and naïve Bayes models: AUC 0.72, 0.71, 0.71, 0.70, 0.69,

Fig 1. Density plot of rate of MD change. Top panel shows MD slope for all eyes (green). Bottom two panels are subdivided into rates of change for

rapid (red) and non-rapid (blue) progressors. Dashed lines indicate mean values.

https://doi.org/10.1371/journal.pone.0249856.g001

Fig 2. Density plots of rapid (red) and non-rapid (blue) progressors by age, Mean Deviation (MD), Pattern Standard Deviation (PSD) and foveal threshold at

baseline. Dashed lines indicate mean values for the independent variables in rapid (red) and non-rapid (blue) progressors.

https://doi.org/10.1371/journal.pone.0249856.g002
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0.68 respectively (Fig 4). When compared statistically, the SVM model was found to have

higher AUC than the random-forest, logistic regression and naïve Bayes models (Bonferroni

corrected p<0.05 for all comparisons) and equivalent performance to the neural network

model (Bonferroni corrected p = 1.00) However, confidence intervals for all AUC curves over-

lapped, suggesting no real differences in model performance. Of note, utilizing data from the

first two VF did not improve accuracy of the models except for the Random forest model

(Bonferroni corrected p<0.01 when random-forest trained with one VF compared to Bonfer-

roni corrected random-forest model trained with two VFs). However, when comparing the

top performing model (SVM) trained on one VF with the random forest model trained on two

VFs, there was no difference in model performance (Bonferroni corrected p = 1). Optimal sen-

sitivity, specificity, positive predictive value and negative predictive value for all models is

demonstrated in Table 3.

A sensitivity analysis was performed using 3 different sets of training/validation and test

data and there was no change in MLA performance. Additionally, there was no difference in

model performance with 5-fold cross validation. For this method the data are divided into five

subsets, four of the subsets are used for training and one is used as a validation set. The error

estimation is averaged over five trials to estimate the performance of the model witch may sig-

nificantly reduce bias [40].

Fig 3. Density plots of rapid (red) and non-rapid (blue) progressors by VF reliability indices (false negative responses, false positive responses and fixation

losses) at baseline. Dashed lines indicate mean values for the independent variables in rapid (red) and non-rapid (blue) progressors.

https://doi.org/10.1371/journal.pone.0249856.g003
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In a multivariable logistic regression model, older age, more negative MD, higher PSD and

higher false positive and false negative VF testing response rates were significantly associated

with a higher odds of rapid progression, each with modest effect sizes (Table 4). Plots of

Fig 4. Receiver operating curves that demonstrate the ability of various machine learning methods to classify rapid and non-rapid progressors based on the

results of the first or first two visual fields. The colors represent the following machine learning methods; Green- support vector machine; Blue- artificial neural

network; Purple- random forest; Orange—logistic regression; Red—naïve Bayes. Black–Hybrid model. The solid lines represent models trained on data from the

first VF alone and the dashed line represents models trained on data from the first and second VF. The area under the curve and 95% CI are shown on the bottom

right (the top number of each color is model trained on first VF while the bottom number is models trained on first two VFs).

https://doi.org/10.1371/journal.pone.0249856.g004
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variable importance from the random forest regression identified similar predictors of rapid

progression (Fig 5).

Discussion

While previous efforts have focused on applying MLAs to identify glaucomatous damage and

detect VF progression over time, relatively few studies have endeavored to predict the risk of

future VF progression. In this study, we utilized MLAs to predict, with a single initial VF test,

eyes that subsequently underwent rapid progression. We found that the support vector

machine algorithm predicted rapid progression with an AUC of 0.72, while other MLAs per-

formed similarly. Of note, adding data from the first two VFs did not notably improve predic-

tion accuracy over MLAs utilizing only the initial VF. While the accuracy of predictions from

our MLAs are modest, they represent a step towards the development clinically relevant tools

to identify glaucoma patients at risk for rapid progression earlier, potentially allowing for

more effective intervention and better allocation of health resources towards high-risk groups.

To our knowledge, no prior work has utilized a longitudinal dataset of this magnitude to

Table 3. Model performance metrics.

Sensitivity Specificity Positive Predictive Value Negative Predictive Value

Support Vector Machine 1 VF 0.65 0.68 0.16 0.95

Support Vector Machine 2 VF 0.66 0.68 0.16 0.96

Neural Network 1 VF 0.49 0.53 0.09 0.92

Neural Network 2 VF 0.54 0.49 0.09 0.92

Random Forest 1 VF 0.72 0.59 0.14 0.96

Random Forest 2 VF 0.67 0.67 0.16 0.96

Logistic Regression 1 VF 0.66 0.65 0.15 0.95

Logistic Regression 2 VF 0.66 0.65 0.15 0.95

Naïve Bayes 1 VF 0.68 0.60 0.14 0.95

Naïve Bayes 2 VF 0.67 0.61 0.14 0.95

Hybrid 2 VF 0.69 0.63 0.15 0.96

Hybrid 2 VF 0.59 0.53 0.15 0.96

VF = Visual Field

https://doi.org/10.1371/journal.pone.0249856.t003

Table 4. Factors that influence the odds of being labeled a rapid progressor based on output from the logistic

regression model.

Factor at initial VF Odds Ratio 95% Confidence Interval P-Value

10-year higher age 1.41 1.34 to 1.48 <0.01

5-dB lower MD 1.08 1.01 to 1.15 0.02

5-dB higher PSD 1.31 1.18 to 1.46 <0.01

5-dB higher foveal threshold� 0.98 0.96 to 1.02 0.38

1-minute greater duration� 1.02 0.99 o 1.02 0.06

10-percent increase in false negative response 1.08 1.06 to 1.10 <0.01

10-percent increase in false positives response 1.04 1.01 to 1.07 0.01

1 additional fixation loss� 1.02 0.96 to 1.02 0.39

�Nonsignificant (p>0.05); dB = decibels

Note: Rapid Progressor is defined as visual Field Mean Deviation Slope <-1dB/yr.

VF = Visual Field; MD = Mean Deviation; PSD = Pattern Standard Deviation

https://doi.org/10.1371/journal.pone.0249856.t004
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demonstrate that a baseline VF can be used to predict risk for rapid progression with relative

accuracy. Prior work has utilized data other than VFs, including disc photos and optical coher-

ence tomography (OCT) images and clinical information such as IOP for the early identifica-

tion of glaucomatous eyes and risk stratification patients for their likelihood of future VF

progression [41–44]. However, our MLAs were developed utilizing initial VF data only. Lee et.

al. took a pointwise approach in developing deep learning models to predict future VFs [32].

Drawing from 1.7 million individual perimetry points from 32,443 VF tests, their models pre-

dicted future VFs in glaucomatous eyes up to 5.5 years in the future, with a correlation of 0.92

between MD of predicted and actual future VFs. While Lee’s model accurately predicts future

sensitivity, which is not surprising given that most eyes will not undergo rapid progression,

this does not solve the difficult task of identifying the outliers (i.e. those at high risk of rapid

progression requiring more aggressive treatment and monitoring).

Our various algorithms performed similarly in identifying patients at risk of rapid progres-

sion. For instance, simple logistic regression (AUC 0.69) was not notably less accurate than an

artificial neural network (AUC 0.72), suggesting that more complex MLAs may not be neces-

sary to achieve clinically useful accuracy. Additionally, a hybrid model that combined the like-

lihood estimates from all models did not improve predictive performance. This may be

because VFs generate low dimensional data and therefore do not need to be processed by

more complex algorithms to achieve optimal classification results.

Fig 5. Breiman-Cutler variable importance metrics of the inputs for the random forest model.

https://doi.org/10.1371/journal.pone.0249856.g005
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Of note, we found that adding MD slope from the first two VFs to initial VF data did not

improve accuracy. This is not surprising, given that MD differences in these initial tests were

highly varied and can possibly be attributed to the learning effect, i.e. patients were still becom-

ing comfortable with VF testing [45]. Also, it should be noted that the mean rate of MD decline

in our cohort was -0.18 dB/year, which indicates an overall slow progression of visual changes

over time. Conversely, some eyes showed a slightly positive MD slope, which can likely be

attributed to learning effects in stable patient (i.e. not true VF improvement).

The factors that were greatest predictors of rapid progression across algorithms were older

age, more negative MD, and higher PSD at baseline. These findings are consistent with previ-

ous work demonstrating that that risk of progression increases with age, as well as higher PSD

and more negative MD at baseline [32, 46–51]. With regard to more negative MD and higher

PSD at baseline, it likely these indices represent surrogate markers for more severe glaucoma

(i.e., patients who have already worsened), making these patients more likely to continue to

undergo progression.

While representing a modest step towards accurate and timely identification of high-risk

glaucoma patients, our study has several limitations. Despite their clinical utility, VFs are con-

sidered low dimensional data compared to other measures of glaucomatous damage such as

optic nerve photos and OCT [52]. VF accuracy is also influenced by diseases other than glau-

coma and is plagued by poor reliability due to multiple patient factors, including fatigue, arti-

facts, and poor reliability indices. In particular, false positives (FP) and false negatives (FN)

have been shown to significantly affect VF reliability in patients with established glaucoma,

with the degree of impact depending on disease severity [53]. To avoid issues with reliability,

we only included reliable VFs in our dataset, though reliability measures (within the allowable

range) still predicted rapid progression. Further, while global parameters such as MD can

determine an average glaucomatous progression overall, by nature of their averaging out pro-

cess, they lack localized information regarding disease progression. It should also be noted that

this analysis cannot differentiate the causes of rapid progression (i.e., eyes not receiving treat-

ment, eyes non-adherent to treatment or eyes not responding to treatment). However, as our

cohort was derived from tertiary ophthalmic care centers, eyes were likely undergoing treat-

ment to prevent glaucoma progression. Finally, although our study utilized a large longitudinal

cohort of glaucoma patients with relatively long follow-up from the Glaucoma Research Net-

work visual field dataset, these data may not be generalizable to all glaucoma patients. While

there is great promise for implementing MLAs into clinical practice, large longitudinal datasets

of glaucoma patients from diverse populations in a variety of clinical settings will be required

to achieve clinically useful tools in glaucoma practice.

It should be noted that this study utilized only VF data to identify high-risk patients. The

combination of other modalities of data with VF data, such as measurements of nerve fiber

layer structure, has been used to detect ongoing glaucoma progression with greater confidence

than VF data alone [54, 55]. Further, decisions for management in reality depend on a variety

of patient-specific factors in VF data as intraocular pressure, vision in the other eye and life

expectancy. Models that do not account for these factors may have somewhat restricted clinical

utility. In future work, we hope to combine structural factors such as optic nerve OCT and

clinical parameters such as intraocular pressure with visual field data to improve the accuracy

of MLAs and achieve AUCs that can be used in a clinical setting (i.e. >0.8) [56].

In summary, we have found MLAs that can, with modest accuracy, identify glaucoma

patients at high risk for progression from a single initial VF test. Thus, with further refinement

and validation, the MLA approach employed by the present study may serve as an important

step in the development of an automated methodology for detection of high-risk glaucoma

patients based on an initial encounter, when treatment decisions can be made to alter the
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course of a patient’s disease. With addition of structural (e.g. optic nerve imaging) and clinical

parameters (e.g. IOP) to train MLAs, performance may improve, and MLAs may accurately

and rapidly stratify glaucoma patients by progression risk based on a single baseline visit.
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