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Abstract.—Understanding the patterns and processes underlying the uneven distribution of biodiversity across space
constitutes a major scientific challenge in systematic biology and biogeography, which largely relies on effectively mapping
and making sense of rapidly increasing species occurrence data. There is thus an urgent need for making the process of
coding species into spatial units faster, automated, transparent, and reproducible. Here we present SpeciesGeoCoder, an
open-source software package written in Python and R, that allows for easy coding of species into user-defined operational
units. These units may be of any size and be purely spatial (i.e., polygons) such as countries and states, conservation areas,
biomes, islands, biodiversity hotspots, and areas of endemism, but may also include elevation ranges. This flexibility allows
scoring species into complex categories, such as those encountered in topographically and ecologically heterogeneous
landscapes. In addition, SpeciesGeoCoder can be used to facilitate sorting and cleaning of occurrence data obtained from
online databases, and for testing the impact of incorrect identification of specimens on the spatial coding of species. The
various outputs of SpeciesGeoCoder include quantitative biodiversity statistics, global and local distribution maps, and files
that can be used directly in many phylogeny-based applications for ancestral range reconstruction, investigations of biome
evolution, and other comparative methods. Our simulations indicate that even datasets containing hundreds of millions of
records can be analyzed in relatively short time using a standard computer. We exemplify the use of SpeciesGeoCoder by
inferring the historical dispersal of birds across the Isthmus of Panama, showing that lowland species crossed the Isthmus
about twice as frequently as montane species with a marked increase in the number of dispersals during the last 10 million
years. [ancestral area reconstruction; biodiversity patterns; ecology; evolution; point in polygon; species distribution data.]

Species distributions provide the basic knowledge for
biodiversity research (Hortal et al. 2015), including our
understanding of species’ environmental requirements,
biogeographic history, and expected resilience to climate
change. However, analyzing the distribution of the
world’s estimated 8.7 million species (Mora et al. 2011)
remains a major scientific challenge.

There are now approximately 644 million species
occurrences available through the Global Biodiversity
Information Facility (GBIF; http://www.gbif.org;
accessed on April 21, 2016) and other biodiversity
information networks, of which about 567 million are
geo-referenced (provided with latitude and longitude
data). These numbers include not only living species
but also fossil taxa, allowing for biogeographic analyses
based on both sources of data (e.g., Antonelli et al. 2015;
Silvestro et al. 2016). Species occurrence data are steadily
increasing thanks to new agreements on data sharing,
on-going digitalization programs, and tools that enable
automated geo-referencing of older museum specimens
(Guralnick et al. 2006; Garcia-Milagros and Funk 2010).

Publicly available species occurrences represent an
enormous data source for biodiversity research, but are
as yet poorly exploited due to two main factors: (i)
general skepticism concerning the quality of records

available, in terms of species identification and precise
coordinates (Robertson et al. 2016; Antonelli in press);
and (ii) demonstrated taxonomic, geographic, and
temporal biases (Boakes et al. 2010; Meyer et al. 2015).
Improving quality relies on data curation—practiced
by some country-level projects such as Flora Hellenica
(Strid 2000)—as well as tools for automated data
cleaning, for example through workflows such as the
Biodiversity Virtual e-Laboratory (Vicario et al. 2011)
and packages such as “biogeo” (Robertson et al. 2016).
Finally, taxonomic misidentifications may be common
(Goodwin et al. 2015), which may lead to erroneous
inferences on the total distribution of a species. While an
empirical assessment of the accuracy of each observation
cannot be easily automated, it should be possible to
assess the influence of random identification errors on
the geographic ranges of species.

To make sense of biological distributions, raw species
occurrences often need to be classified into discrete
categories. These can then be used in connection
with a phylogeny for historical biogeographic analyses
including ancestral range reconstructions (Ree and
Smith 2008; Landis et al. 2013; Matzke 2013) and area-
dependent inferences of diversification rates (Silvestro
et al. 2011; FitzJohn 2012). Species categorization into
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commonly recognized areas such as eco-regions and
realms (Olson et al. 2001; Abell et al. 2008; Holt et al.
2013) and biogeographic regions or bioregions (Vilhena
and Antonelli 2015; Edler et al. this issue) may reveal
patterns of biodiversity and distribution at a large scale,
facilitating the identification of regions with outstanding
levels of species richness and endemism that is central to
the concept of biodiversity hotspots (Myers et al. 2000).
Rapidly increasing species occurrence data and the need
to classify species into discrete areas in an automated,
reproducible, and transparent way has led us to develop
SpeciesGeoCoder.

DESCRIPTION

The source code consists of a set of python
modules, centered on a point-in-polygon algorithm that
determines if a species locality record is found inside
or outside of a particular polygon. The analysis of
geoTIFF files is done using the GDAL python bindings
(http://www.gdal.org/) for fast execution. The basic
workflow is illustrated in Figure 1 and described below:

1. The user provides two files. The first should
contain species occurrence data, including

species names, latitude, and longitude in either
(i) tab-separated format, (ii) the CSV format
provided by www.gbif.org, or (iii) in shapefile
format. The second file defines the areas of
interest in tab-separated format (i.e., a list of
named polygons, and—optionally—an elevation
or sea depth range such as between 1000 and
2000 m a.s.l., or between 0 and −30 m) or as a
shapefile. Polygon files can be generated easily
with various GIS tools, and a tutorial is available at
https://github.com/mtop/speciesgeocoder/wiki
for the freely available program QGIS
(http://qgis.osgeo.org). If an elevation range
is provided for the polygons, then elevation data
in the form of geotiff files is also required, and
these can be downloaded from various online
resources (see the wiki for tutorials, links, and
example files);

2. SpeciesGeoCoder loops through the input file and
counts the number of occurrences of each species
in each polygon, and optionally takes the elevation
constraints into account;

3. The default output format is a Nexus file
containing a data matrix with all analyzed

FIGURE 1. Simplified workflow of the SpeciesGeoCoder package. See text for details.

http://www.gdal.org/
http://www.gbif.org
http://qgis.osgeo.org


2017 TÖPEL ET AL.—SPECIESGEOCODER 147

species and their presence (1) or absence (0)
in each area. “Presence” requires by default
at least one occurrence in an area, but user-
defined thresholds may be set instead. This
means that outlier localities incorrectly assigned
to a polygon (e.g., due to an erroneous shift
between latitude and longitude) can be easily
identified. Alternatively, the user may request
a more complex output including the number
of occurrences in each polygon, which could
further aid the identification of outliers. The Nexus
file can then be analyzed in programs such as
Mesquite (Maddison and Maddison 2009) and
most phylogenetic packages written in R, such as
APE (Paradis et al. 2004), geiger (Harmon et al.
2008), Diversitree (FitzJohn 2012), BayArea (Landis
et al. 2013), and BioGeoBEARS (Matzke 2014), as
well as others written in Python, such as BayesRate
(Silvestro et al. 2011), and Biopython (Cock et al.
2009). SpeciesGeoCoder can also export the result
of an analysis in tab-separated text format for
easy parsing and additional analyses. Localities
identified inside any of the polygons analyzed can
also be exported in shapefile format, which gives a
convenient way of extracting a subset of localities
from a larger data set;

4. The second (optional) type of output is a series of
summary statistics and distribution maps. These
include multiple pdf documents with bar charts as
graphical representations of the number of species
per area, the number of occurrences per species per
area, and the relative occurrence per area for each
species. The summary tables used for the graphical
output are also made available as tab-separated
text files. The distribution maps plot all occurrence
points and the areas included in the analyses. In
addition, for small data sets comprising less than
40 species, a coexistence matrix for each area is
calculated and visualized as a heat map. These files
help not only with biological interpretations, but
also to identify problematic occurrence points that
need further verification;

5. The third (optional) output is a series of plots
summarizing the historical dispersal of lineages
between all pairs of user-defined areas, based on
one or a sample of dated phylogenies. These plots
are generated with R scripts, using by default
stochastic mapping to infer shifts in transitions
along branches, and the computation of absolute
as well as relative (i.e., corrected by the number
of lineages) number of dispersals through time
(Silvestro 2012; Fernández-Mendoza and Printzen
2013; Antonelli et al. 2015);

6. The fourth (optional) output includes a sensitivity
test aimed at quantifying the potential effects
of incorrectly identified specimens in the input
data on the coded geographic ranges. In this test,
we assume that each geo-referenced occurrence

has a probability r to be misidentified. An
occurrence mistakenly assigned to a species should
be removed from the data when coding the species
distribution. However, its removal may or may
not change the geographic distribution of the
species coded within discrete areas depending on
whether other (correctly identified) occurrences
of the species are found in the same geographic
unit. In our sensitivity test, occurrences that are
randomly selected as misidentified are removed
from the data and the geographic distribution of
the species is re-coded based on the sub-sampled
occurrences. This procedure is repeated for all
occurrences 10,000 times under error probabilities
equal to 0.05, 0.10, 0.25, and 0.50. The results of
these tests are summarized in terms of average
number of species in a data set that change in
their coded range under different scenarios of
errors, compared to their ranges estimated from
all occurrence data. Additionally, we compute the
probability that a random error affects the coded
distribution of each species and provide these
probabilities for each species in a data set (thereby
identifying which species are most sensitive to
error given the number of occurrences and their
distribution under different error probabilities).
These results are saved in tab-separated tables.

The overall design of SpeciesGeoCoder is done with
extensibility in mind. The package is composed of a set of
python classes for storing and manipulating locality and
polygon data in different input formats, so users with
experience in object-oriented programing should be able
to extend the package with additional features or contact
the authors for proposing novel implementations.

BENCHMARK

We tested the performance and scalability of our
package through a series of simulations on a five-
year-old computer with four 12-core 1.9 MHz AMD
Opteron 6168 processors. All benchmarks, except the
ones examining multiprocessor performance, were ran
on one CPU and we focused on how computing
time was determined by three key variables: (i)the
number of geo-referenced occurrences, (ii) the number
of polygons, and (iii) the complexity of the polygons,
measured by their number of corners (i.e., vertices or
nodes). An occurrence dataset (i) was simulated as a
set of globally distributed localities (see example in
Supplementary Fig. S1 in Supplementary Material). The
polygon dataset (ii) was generated in a similar way, by
creating a grid of square polygons sharing two corners
with each of its neighboring polygons (Supplementary
Fig. S2 in Supplementary Material). The polygon
complexity dataset (iii) was generated by creating one
square polygon, and successively adding nodes equally
distributed over its perimeter (Supplementary Fig. S3 in
Supplementary Material). This approach of generating
polygons with an increasing number of coordinate pairs
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(i.e., nodes) is suitable for benchmarking purposes since
the computation time for the point-in-polygon algorithm
implemented in SpeciesGeoCoder is not affected by the
actual shape of the polygon, but only by the number of
coordinates that make up the polygon. The simulations
were then performed with a logarithmical increase in the
number of occurrences, polygons, and polygon nodes,
ranging between 101 and 108.

Our results (Fig. 2) show that there is a nearly linear
relationship between the computation time required and
(i) the number of localities, (ii) the number of polygons,
and (iii) the complexity of the polygons analyzed.
Doubling the amount of input data will also double the
analysis time. In addition, we examined how well the
parallelization of the code worked by running analyses

on 10 million localities and 100 polygons using 1, 2, 4, 8,
16 and 32 CPUs. We found a negative linear correlation
between the computation time and the number of CPUs
utilized, and that doubling the number of CPUs will
decrease the computation time with nearly 50%. These
results lead us to the conclusion that SpeciesGeoCoder
can handle vast amounts of data—millions of polygons
and occurrences—within feasible time using standard
computers.

BIOLOGICAL EXAMPLE

We inferred the historical dispersal of montane and
lowland bird lineages through time across the Central
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FIGURE 2. Computational time in relation to the increase in A) number of polygons and B) polygon complexity (number of polygon corners)
and number of species occurrences. As a comparison to empirical data, the square labeled “Birds” corresponds to the coding of approximately
200,000,000 bird occurrences available from ebird.org. The analyses were performed on a standard computer with a 1.9 MHz processor.
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American Seaway, which separated North and South
America for millions of years until the emergence of the
Isthmus of Panama (Bacon et al. 2015a, 2015b; Montes
et al. 2015). First, we downloaded the full occurrence data
set for all birds including approximately 10,000 species
and 200,000,000 records from http://www.ebird.org
(eBird 2013). We then used SpeciesGeoCoder to exclude
all records found outside the South American continent,
as well as all those found north of the Tropic of Cancer,
and coded the remaining species into Central America
and South America. We defined the border between
South and Central America following the Uramita fault
(Montes et al. 2012) that separates the South American
and the Panamanian geological plates (Fig. 3). We
created two operational units from each polygon, one
including occurrences below 1000 m a.s.l. (lowlands) and
the second including occurrences above 1000 m a.s.l.
(highlands) following the same categorization as Weir
(2006). We then reconstructed ancestral areas onto the
species-level dated phylogeny of birds provided by Jetz
et al. (2012), using stochastic mapping to reconstruct
the historical dispersal of lineages through time among
these four operational units. We calculated both the total
(absolute) as well as the relative (in proportion to the
number of lineages) number of dispersals between each
pair of areas, using bins of 10 million years. Since not all
bird species could be matched between the phylogeny
and the occurrence data set, the final analyses included
4350 species.

We tested the sensitivity of the geographic
categorization of bird species to identification errors
using the procedure described above. A random
error equal to 5% would affect the coded geographic

distribution of 48 (±11) species (∼1% of the dataset),
whereas a 10% error frequency would affect 79 (±14)
species (∼2%). Only a very high error frequency of
50% (where one in two samples would be wrongly
identified to species level) would affect more than 5%
of the species in our dataset (250±25 species), thus
indicating that area categorization in this case is robust
to random identification errors. Detailed output of the
sensitivity test is provided in Supplementary Table
S1 in Supplementary Material (available at Dryad at
http://dx.doi.org/10.5061/dryad.tm32k).

Although the variation among reconstructions is
large, our results suggest that dispersals between the
lowlands of South and Central America occurred
consistently more frequently (c. 2–4 times) than
dispersals between the highlands of those landmasses
(Supplementary Figures S3 and S4 in Supplementary
Material). There were no major differences in
directionality of dispersals, except for the last time
bin considered (0–10 Ma) when northward dispersals
dominated. This supports the conclusion by Weir
et al. (2009) that birds mainly followed an opposite
route during the Great American Biotic Interchange
as compared with mammals, which migrated mostly
southwards and in more recent times (Stehli and Webb
1985; Carrillo et al. 2014; Bacon et al. 2016). The rate of
dispersals increased for all categories in the last time
bin, probably as a consequence of the emergence of the
Panama Isthmus in the last 13 Ma (Bacon et al. 2015a,
2015b; Montes et al. 2015). Dispersals in previous time
periods seem to follow a rather uniform, stochastic
rate (de Baets et al. in press) that is also reflected by
sporadic fossil findings such as a recently described
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South American primate in the early Miocene (20.9 Ma)
of Panama (Bloch et al. 2016).

CONCLUSIONS

We have shown that SpeciesGeoCoder allows for
easy and fast categorization of species distribution
data for various analyses in biogeography, ecology,
and evolution. Beyond the example provided here, the
output obtained could be readily used for calculating
measures of alpha, beta, and gamma diversity; the
identification of neglected areas for conservation; and
providing real-time detection of GPS-tagged animals
entering and leaving protected areas. Finally, the
visualization and coding of species into areas may
greatly facilitate cleaning up occurrence databases, by
enabling the identification of outliers that may require
additional examination or exclusion from subsequent
analyses (Maldonado et al. 2015).

Although several of the functions in SpeciesGeoCoder
could be performed in other software by an advanced
GIS user, our package offers a number of advantages:
it is fast, increases reproducibility of analyses, allows
exploration of alternative sets of polygons for area
coding, can handle large files, is particularly suitable
for phylogenetic and biogeographic analyses, enables
the inclusion of thresholds for coding, assesses the
effect of misidentified specimens, includes elevation or
depth, allows for batch processing, is directly integrated
with stochastic mapping, produces summary tables
and maps, among others. We therefore hope that
SpeciesGeoCoder will become an indispensible tool for
coding species into discrete units, as is required for most
currently available parametric methods in historical
biogeography and for the exploration of biodiversity
patterns.

AVAILABILITY

SpeciesGeoCoder is available for download from
https://github.com/mtop/speciesgeocoder/releases.
The current release includes installation instructions
for Mac OSX, Gnu/Linux, and Windows; example
files, tutorials, plug-in scripts, and useful links.
The program with complementary functions is also
available for the R environment (speciesgeocodeR) from
CRAN at https://cran.r-project.org/web/packages/
speciesgeocodeR/index.html, as well as via a web
interface at https://portal.bils.se/speciesgeocoder/
tool. Links to all resources are available at
https://github.com/mtop/speciesgeocoder/wiki,
https://github.com/azizka/speciesgeocodeR/wiki or
from http://antonelli-lab.net.

SUPPLEMENTARY MATERIAL

Supplementary material, including data files and
online-only appendices, can be found in the Dryad data
repository at http://dx.doi.org/10.5061/dryad.tm32k.
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