
Vol. 29 no. 5 2013, pages 551–560
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btt022

Sequence analysis Advance Access publication January 25, 2013

Bellman’s GAP—a language and compiler for dynamic

programming in sequence analysis
Georg Sauthoff1, Mathias Möhl2,3, Stefan Janssen1 and Robert Giegerich1,*
1Center of Biotechnology and Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany and 2Department of
Computer Science and 3Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-Universität 97110 Freiburg,
Germany

Associate Editor: Ivo Hofacker

ABSTRACT

Motivation: Dynamic programming is ubiquitous in bioinformatics.

Developing and implementing non-trivial dynamic programming

algorithms is often error prone and tedious. Bellman’s GAP is a new

programming system, designed to ease the development of bioinfor-

matics tools based on the dynamic programming technique.

Results: In Bellman’s GAP, dynamic programming algorithms are

described in a declarative style by tree grammars, evaluation algebras

and products formed thereof. This bypasses the design of explicit

dynamic programming recurrences and yields programs that are

free of subscript errors, modular and easy to modify. The declarative

modules are compiled into Cþþ code that is competitive to carefully

hand-crafted implementations.

This article introduces the Bellman’s GAP system and its language,

GAP-L. It then demonstrates the ease of development and the degree

of re-use by creating variants of two common bioinformatics

algorithms. Finally, it evaluates Bellman’s GAP as an implementation

platform of ‘real-world’ bioinformatics tools.

Availability: Bellman’s GAP is available under GPL license from http://

bibiserv.cebitec.uni-bielefeld.de/bellmansgap. This Web site includes

a repository of re-usable modules for RNA folding based on

thermodynamics.

Contact: robert@techfak.uni-bielefeld.de

Supplementary information: Supplementary data are available at

Bioinformatics online

Received on April 19, 2012; revised on January 9, 2013; accepted on

January 10, 2013

1 MOTIVATION AND BACKGROUND

We review the difficulties experienced in the development of

dynamic programming algorithms, and outline how Bellman’s

GAP alleviates them.

1.1 Implementing dynamic programming algorithms

Bellman’s GAP is a programming system, which supports the

development of dynamic programming (DP) algorithms over

sequence data. In bioinformatics, such algorithms are ubiqui-

tous, ranging from sequence alignments and RNA structure

prediction to the predictions of RNA interactions or stochastic

modeling based on hidden Markov models and stochastic

context-free grammars (Durbin et al., 1998).
The development of a DP algorithm traditionally consists of

two stages. In the first, creative stage, the recursions of the algo-

rithm are developed, and a scoring scheme is defined. In the

second stage, the algorithm is implemented in an imperative

programming language such as C, Cþþ or Java. This stage re-

quires to intermingle recursions and scoring scheme for the sake

of runtime efficiency, to decide about space-efficient allocation of

tables for intermediate results, to dedicate a substantial amount

of work to implement simple, full or even stochastic backtracing

and may be to provide an efficient sliding-window version to

search through large sequence data. All this requires algorithmic

techniques that are known in principle, but must be recreated

and adjusted with each application, and which are error-prone to

implement and tedious to debug. Later modifications or exten-

sions of the original design tend to affect many lines of code,

creating new chances of error in already trusted code.

Bellman’s GAP supports both stages of DP algorithm devel-

opment. It consists of the language GAP-L and the compiler

GAP-C. GAP-L allows to compactly describe the design of DP

algorithms in an abstract way. It enforces modularity of compo-

nents, and thus fosters re-use and extension. GAP-C automatic-

ally generates a reasonably efficient Cþþ implementation of any

algorithm specified in GAP-L, contributing the aforementioned

implementation techniques.

Automating the implementation stage has a profound back-

ward influence on the design stage. Models can be developed

gradually, with their compiled implementations allowing us to

test our ideas in many variants as they evolve. For each variant,

alternative implementations can be tested by changing some

compiler options. The recursions can, for example, either be

evaluated bottom-up or top-down, the choice of DP tables can

be varied, and both single thread and multi-threaded parallel

code under the OpenMP standard can be generated where the

scoring scheme allows for this.

1.2 Related work

Bellman’s GAP supports a specific programming method—DP

over sequence data—but not a particular application domain. In

this sense, it is similar to a compiler for linear algebra problems

described in Fabregat-Traver and Bientinesi (2012), which reads

equations and properties of the operators involved (such as sym-

metry, positive definiteness) and then transforms the equations*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://bibiserv.cebitec.uni-bielefeld.de/bellmansgap
http://bibiserv.cebitec.uni-bielefeld.de/bellmansgap
http://bioinformatics.oxfordjournals.org/cgi/content/full/btt022/DC1


to choose an efficient and numerically stable implementation

from a large reservoir of numerical algorithms. This has appli-

cations, for example, in genome-wide association studies

(GWAS), but it is not a GWAS tool. Similarly, Bellman’s

GAP helps to implement flowgram denoising or RNA folding

algorithms, but by itself, it is not a tool for next-generation read

analysis or an RNA-specific tool. Domain-specific knowledge is

brought in by the user. Depending how central the DP is in an

application scenario, and depending on re-usable modules al-

ready available from earlier work in that domain, Bellman’s

GAP may decrease overall work more or less.
In the recent Tornado software (Rivas et al., 2012), a

(context-free) grammar is at the heart of a declarative specifica-

tion, whose implementation is automated.

Citing from Rivas et al. (2012), the TORNADO language is

designed to provide compact grammar descriptions for a wide

range of RNA structural features such as nearest-neighbor

dependencies (e.g. stacking rules or mismatches), including

higher-than-first-order dependencies, and parameterization of

arbitrary loop length distributions.
In contrast, Bellman’s GAP seeks abstractness and modularity

rather than compactness, and does not per se support a particular

application domain. Input could be a biosequence as well as a

sequence of matrix dimensions (matrix chain optimization), an

arithmetic formula (El Mamun’s caravan) or a logical clause

(3SAT-problem). Using explicit names for evaluation functions

turns the grammar into a tree grammar, allowing to encapsulate

domain-specific knowledge in evaluation algebras. For example,

for RNA structure analysis, several grammars are available to-

gether with algebras for energy scoring, partition function, base

pair counting, shape abstractions and structure output. To add in

stochastic grammars, one needs to provide a stochastic evaluation

algebra, together with support for parameter training. All alge-

bras, as well as mechanisms for backtracing, sampling etc., can

work with different grammars over the same signature, and owing

to algebra products (see below), they can be used in combination.
Finally, let us remark that aside from Bellman’s GAP, two

further implementation of the algebraic DP framework are

currently under way in other groups.

1.3 Background: algebraic DP

We review, in an informal mode, the concepts of the algebraic

discipline ofDP (ADP), which circumscribe the scope of problems

supported by Bellman’s GAP. See Giegerich et al. (2004) for the

original definitions and Sauthoff et al. (2011) for their recent ex-

tensions, including the formal semantics of the GAP-L language.

DP algorithms evaluate a search space of solution candidates.

A particular problem instance is given by an input sequence, or

several thereof. A scoring scheme evaluates candidates in the

search space and chooses from them the eventual solution(s),

according to some objective function. Most often, this objective

is score minimization or maximization, but counting candidates,

enumeration and sampling from the search space are also

common. Scoring scheme and objective function together consti-

tute an evaluation algebra. The search space arising from concrete

input is defined via a problem decomposition scheme, recursively

splitting the input problem into smaller sub-problems. Tabulation

is used to store and retrieve solutions from sub-problems, to

avoid that they are evaluated multiple times. Finally, Bellman’s

principle of optimality must hold. It ensures that the objective

function distributes over scoring, and hence it suffices to consider

only optimal solutions to sub-problems in search of the overall

optimum. Other than this condition, there is no restriction on the

objective functions that can be provided in an evaluation algebra.
In many applications, especially in biosequence analysis, the

recursive problem decomposition naturally follows the sub-word

structure of the input sequence(s). In this situation, any candi-

date can be described as a tree, composed of scoring functions,

and bearing the input sequence at its leaves. Evaluating this tree,

we get the candidate’s score.

Figure 1 shows two such candidate trees, one representing an

alignment of two short amino acid sequences and one represent-

ing a secondary structure of an RNA molecule. Substituting

concrete functions for the tree symbols rep, del, ins, nil, say by

the unit scoring scheme, the alignment candidate evaluates to a

score of 3. Substituting base pair counting functions for split,

pair, open, nil, the RNA structure candidate evaluates to its

number of base pairs, which is 2 in our example.
Which candidate trees need to be considered for a given input?

This is conveniently described by a tree grammar, which encodes

the logic of problem decomposition in a natural top-down

manner.
Sequence alignment by the Needleman–Wunsch algorithm

(Needleman and Wunsch, 1970) is described by the grammar

Alignment:

Ali → nil| rep

< a, b > Ali

| del

< a, ε > Ali

| ins

< ε, a > Ali

where Ali is the axiom of the grammar and the only non-terminal symbol,

and a, b denote arbitrary characters from the underlying sequence

alphabet.

RNA folding can be described by the grammar RNAStruct

that reflects the algorithm of Nussinov et al. (1978):

N → nil | open

a N

| split

pair

a N â

N

with the three cases for empty structures, structures where the first base a

is unpaired and those where the first base a is paired with a complemen-

tary base â.

Whatever our grammar is, for given input x, all the trees

generated by the grammar, which spell out x at their leaves,

constitute the search space. Grammar RNAStruct accepts a

single input string, while grammar Alignment is a two-track

grammar and expects two strings, indicated by the use of 5,4.
A grammar and an evaluation algebra together precisely

define the problem class to be solved. Expressed in GAP-L, all

the technical ingredients of a DP algorithm—concrete recur-

rences, tabulation decisions, backtracing and more—can be gen-

erated automatically.
Having designed a tree grammar G and an evaluation algebra E,

we simply compile. This turns the grammar into an evaluator of

the search space defined by it, which by convention is also named

G. On input x, we call GðE, xÞ to obtain the desired solution.

552

G.Sauthoff et al.



Having conceptually separated candidate evaluation from

search space construction allows us to create high-level oper-

ations on evaluation algebras, called products. These build new
types of analysis from given components with a single keystroke,

and no changes to tried-and-trusted code. Products as imple-
mented in Bellman’s GAP are explained in Section 2.2. The

name of Bellman’s GAP is derived from its key concepts:

Bellman’s principle, Grammars, Algebras and Products.

1.4 Innovations in Bellman’s GAP

Bellman’s GAP is a third-generation system supporting algebraic
DP. This discipline was originally implemented as a domain-spe-

cific language (Giegerich et al., 2004), embedded in the lazy

functional programming language Haskell. In the second imple-
mentation, ADP code was directly compiled into more efficient

C code (Giegerich and Steffen, 2006), while the language itself
was still a Haskell dialect. Its more widespread use was impeded

by the relics of the Haskell embedding, such as a combinator

syntax based on higher-order functions, which many potential
users found obscure.
Bellman’s GAP brings about three major innovations

compared with second-generation ADP:

� It completely breaks with its functional programming past

by providing a C- or Java-style language, which nevertheless

remains declarative.

� It extends the algebraic approach in significant ways
(multi-track input, new algebra products).

� It generates faster and more space-efficient code than

second-generation ADP.

2 THE BELLMAN’S GAP LANGUAGE AND
COMPILER

2.1 GAP-L language features

The signature construct in GAP-L is similar to an interface

declaration in Java. For the alignment example, we use

signature Align(alphabet, answer) {
answer rep(5alphabet, alphabet4, answer);
answer del(5alphabet, void4, answer);
answer ins(5void, alphabet4, answer);
answer nil(5void, void4);
choice [answer] h([answer]);

}

With the name of the signature, generic names for the input

alphabet and the results of candidate evaluation are specified. The

declarations of the function symbols follow. The use of void

indicates that del reads a character form the first track only,

and ins only from the second; [and] indicates list types. The

objective function, marked by choice, always computes on lists.
An algebra definition assigns concrete data types to the generic

names and provides implementations for the function symbols.

Algebra score uses distance minimization, and scores mis-

matches with 3 and gaps with 4:

algebra score implements
Align(alphabet ¼ char, answer ¼ int) {
int rep(5char a, char b4, int m)
{if (a ¼¼ b) return m; else return m þ 3;}
int del(5char g, void4, int m) {return

m þ 4;}
int ins(5void, char g4, int m) {return

m þ 4;}
int nil(5void, void4) {return 0;}
choice [int] h([int] l) {return

list(minimum(l));}
}

In the tree grammar, terminal symbols are, by convention,

written in uppercase, and tree patterns are written like function

applications:

grammar alignment uses Align(axiom ¼ ali) {
ali ¼ rep(5CHAR, CHAR4, ali) j
del(5gap, EMPTY4, ali) j
ins(5EMPTY, gap4, ali) j
nil(5EMPTY, EMPTY4) # h;
gap ¼ CHAR;

}

The operator # explicitly specifies that the objective function h

is used to choose from alternative candidates.
Let print be another algebra that computes a visualization

of a candidate as an alignment, i.e. the two input sequences

padded with gaps. Used in a product such as

instance main ¼ alignment(score * print);

we obtain the optimal score together with the candidates that

achieve it. Each instance declaration implements a separate

Fig. 1. Left: tree representing an alignment of the amino acid sequences

‘DARLING’ and ‘AIRLINE’. rep(lace), ins(ert) and del(ete) denote the

typical edit operations, and nil denotes an empty alignment. Right: tree

representing a secondary structure assigned to an RNA sequence. pair

indicates a base pair enclosing a sub-structure, split a branching structure,

open an unpaired base next to a sub-structure, and nil the empty

sub-structure

553

Bellman’s GAP for DP



algorithm, for which GAP-C produces specialized code, depend-

ing on the algebras involved.
The signature for the RNA folding example is:

signature Nuss(alphabet, answer) {
answer split(answer, answer);
answer pair(alphabet, answer, alphabet);
answer open(alphabet, answer);
answer nil(void);
choice [answer] h([answer]);

}

A simple algebra for base pair maximization is

algebra bpmax implements
Nuss (alphabet ¼ char, answer ¼ int)
int split (int x, int y) {return xþy;}
int pair (char a, int x, char b) {return xþ1;}
int open (char a, int x) {return x;}
int nil(void) {return 0;}
choice [int] h ([int l]) {return
list(maximum(l));

}

The RNAStruct grammar, which models the search space of

all structures for the inut sequence, is a little bit more interesting

than grammar alignment, as not all trees built from split,
pair, open, nil are allowed:

grammar RNAStruct uses Nuss (axiom¼N) {
N ¼ nil(EMPTY) j
open(CHAR, N) j
split(pair(CHAR, N, CHAR) with basep, N) # h;

}

This expresses that a candidate of the form

split(pair(CHAR, x, CHAR), pair(CHAR, y, CHAR))

is not welcome as part of the search space, as this structure

already has a (unique) representation as

split(pair(CHAR, x, CHAR),
split(pair(CHAR, y, CHAR), nil(EMPTY)))

In addition, the grammar further restricts the search space

with the syntactic filter basep. This predicate guards the appli-

cation of the tree pattern pair(CHAR, N, CHAR). It is only

evaluated if the first and last characters are complementary to

each other.

algebra cnt auto count

asks the compiler to generate an algebra cnt, which counts the

number of candidates, and we leave it to the reader to write an

algebra print that converts a candidate into a dot-bracket string

(see also supplement). We declare two instances

instance cooptnum ¼ RNAStruct(bpmax * cnt)
instance cooptimals¼ RNAStruct(bpmax * print)

where cooptnum determines the maximum number of base pairs,

and the number of different structures that achieve it, and

cooptimals computes and outputs all the co-optimal structures.

2.2 Products in GAP-L

Evaluation algebras have certain (non-exclusive) properties

that are relevant when it comes to their use in combination.

Algebra A is

� unitary, if it returns a single result (e.g. simple minimization,

counting),

� set valued, if the computed multi-sets do not contain

multiple entries (e.g. k-best minimization),

� selective, if the choice function always returns a sub-(multi-

)set of a given multi-set (e.g. min(k) or enumeration),

� enumerative, if its choice function is hðXÞ ¼ X,

� synoptic, if h computes new values from candidate values,

which are not associated with a particular candidate

(e.g. counting, summation, average).

These properties are used by the compiler for certain optimiza-

tions, but more importantly, they govern the use of products.

Generally, a product in ADP is an operation that takes two

algebras A and B over the same signature and creates combined

algebra, say A � B. To achieve such an effect in traditional DP

recurrences, almost every line of the code would have to be

modified. Product operators allow to achieve this combination

by a single keystroke.
Bellman’s GAP offers five product operators (see Table 1).

Products can be combined with a user-defined semantic filter,

using a suchthat clause. The use of these algebra products will

be demonstrated in the examples below.

2.3 Compiler features

The main task of the compiler GAP-C is to analyze the grammar

and the algebra products used in instance declarations. From

these, it derives recurrences (akin to a traditional formulation

of a DP algorithm) for which imperative Cþþ code is generated.
As with the design of the language GAP-L, a goal of the

compiler is to make ADP convenient to use. For this, the

front-end of the compiler pedantically keeps track of source

code locations to report parse errors to the column. In the

middle-end, GAP-C includes semantic analyses for better diag-

nostics. For example, a type-checker pinpoints missing argu-

ments or wrong types when using function symbols in algebras

or the grammar. A product analysis checks whether a product is

known to violate Bellman’s principle, and a runtime analysis

phase computes the asymptotically optimal runtime and verifies

whether the designer’s choice of table allocation (when explicitly

given) actually achieves such a runtime.

We look at two of the optimizations that contribute to gen-

erating Cþþ target code that is competitive with handwritten

one. For a deeper treatment, see Sauthoff et al. (2011).
GAP-C can generate code for different backtracing schemes.

Backtracing is normally used to compute the structure of an

optimal candidate (e.g. a string representation of an alignment

or a secondary structure) after the optimal score is computed.

Using backtracing is a performance optimization, as the candi-

date reconstruction is only done for those sub-solutions that are

part of the optimal solutions. In the case of an alignment algo-

rithm, this saves constant runtime factors and space; for RNA

554

G.Sauthoff et al.



secondary structure prediction, the forward computation finding

the maximum number of base pairs is in Oðn3Þ, while the back-

tracing for the optimal candidate(s) is in Oðn2Þ.
For our first GAP-L code example, the product score*print

computes the optimal alignment score and the alignment itself.With a

compiler switch, GAP-C automatically generates backtracing code

for the algebra print. Thus, only the algebra score is computed in

the forward computation. By default, the backtracing code automat-

ically outputs all co-optimal candidates. For the flowgram alignment

variant below (Section 3.1), this is not necessary, and we can specify

this via another compiler switch.
Further supported backtracing schemes are sub-optimal back-

tracing, backtracing over (k-best) classes during classification

and stochastic backtracing (sampling) under an algebra that

computes a probability distribution.

Another performance-critical optimization of GAP-C is table

design. The table design phase automatically decides which inter-

mediate results need to be stored in a table to achieve asymptot-

ically optimal runtime, and which recurrences are not tabulated

to save space. This problem is NP-hard in general. GAP-C uses a

greedy heuristic that is safe (the asymptotically optimal runtime

is always reached) and also takes certain constant runtime factors

into account. Note that Bellman’s GAP cannot guarantee that

your algorithm is efficient. If you specify a grammar with com-

plexity Oðn4Þ where an Oðn3Þ grammar is also possible, it is your

fault. For a grammar as given, the code generated appears to be

competent (see Section 4). Naturally, human dedication and

tuning will eventually achieve performance superior to automat-

ically generated code.

3 PROGRAM DEVELOPMENT IN GAP-L

In this section, we describe the implementation of a small, but

‘real-world’, application from scratch, and we document how

software construction proceeds when we already have a reposi-

tory of grammars and algebras. All the cited source files are

contained in the supplement.

3.1 Flowgram denoising

Denoiser (Reeder and Knight, 2010) is a pipeline for reducing

noise in reads from pyrosequencing samples. In pyrosequencing,

a raw read is called a flowgram, which is a sequence of frames,

where each frame consists of four floating point numbers. Each

number codes the measured amount of light for the (non-)inte-
gration event of one of the four nucleotides during sequencing.

Errors during pyrosequencing that lead, for example, to inserted
or deleted frames in a flowgram are called noise. Taking flow-
gram data as-is in the analysis of meta-genomic samples would

inflate the number of operational taxonomic units (Quince et al.,
2011). Denoiser clusters similar flowgrams together to reduce

the noise.
As part of the clustering step, Denoiser computes sequence

alignments of flowgrams. The authors used a custom Haskell

embedding of algebraic DP to implement the alignment algo-
rithm for rapid prototyping, easy evaluation of the scoring func-

tion and optimizations. The algorithm is sketched in Reeder and
Knight (2010), but details are not given. In the following, we
create a GAP-L version of the Reeder–Knight flowgram denoi-

ser, using the basic pairwise alignment algorithm from Section
2.1 as starting point.

In the alignment of flowgrams, insertions or deletions refer to
a whole frame, a sub-sequence of four numbers. We add two
function symbols, ti for a terminal insertion and td for dele-

tion, such that we can score them differently. The changes to the
signature Align are:

signature FlowAlign(alphabet, answer) {
answer rep(5alphabet, alphabet4, answer);
answer del(5Subsequence, void4, answer);
answer ins(5void, Subsequence4, answer);
answer nil(5void, void4);
answer ti(5void, int4);
answer td(5int, void4);
choice [answer] h([answer]);

}

After that, we have to adjust the grammar to make use of the

modified and added function symbols. In case of an insertion or
deletion, the grammar has to parse exactly four numbers of a

sequence. We model this with syntactic filters that restrict the size
of the parsed sub-sequence:

grammar flow uses FlowAlign(axiom ¼ ali) {
gap ¼ REGION with minsize(4) with maxsize(4);
ali ¼ {rep(5CHAR, CHAR4, ali) j
del(5gap, EMPTY4, ali) j
ins(5EMPTY, gap4, ali) j
nil(5EMPTY, EMPTY4) j

Table 1. Algebra products provided in Bellman’s GAP

Operator Product name Effect Restrictions

A%B Cartesian Cartesian product A, B unitary

A � B Lexicographic Optimization under lexicographic ordering A, B selective, A set valued

classified DP A enumerative

reporting candidates B enumerative

A:B Take-one Same as �, suppressing co-optimals A enumerative or set valued

A=B Interleaved Optimization across classification A enumerative or set valued

B selective and non-empty

AjB Overlay Stochastic backtrace A synoptic, B enumerative

See Section 4.2 for products in action.

555

Bellman’s GAP for DP



ti(5EMPTY, SEQ4) j
td(5SEQ, EMPTY4)
} with banded(10, 20, 20) # h;

}

With terminal insertions or deletions, we only need their length

(and not their concrete sequence); thus, we can use the terminal

parser SEQ, which returns the length of the parsed sub-sequence.
In Denoiser, the rep case allows for frame shifting, in contrast

to indels that are restricted to the frame size. To modify this

decision from Reeder and Knight (2010), we can easily adjust

the grammar and the scoring algebra.

For performance reasons, Denoiser provides a banded version

of the alignment algorithm. Banded DP means that only the

entries in the score matrix around the diagonal in a band of

width k are computed. This is appropriate for aligning flowgrams

because scores of dissimilar flowgrams are not needed in the

clustering. In GAP-L, we can derive a banded version of the algo-

rithm with the syntactic filter banded, which guards the appli-

cation of the alternatives of the non-terminal ali. The syntactic

filter banded here considers only entries that are in the band

10 � k � 20 with k ¼ maxð10, minð20, n=20ÞÞ, where n denotes

the flowgram length.

The other existing rules of the grammar do not need to be

changed because the terminal parser CHAR is independent of

the used alphabet, i.e. with the alphabet of floating point num-

bers, the CHAR terminal parser returns a valid floating pointer

from the input.

In Denoiser, the scoring scheme for flowgram alignment

uses four components. We optimize with one scheme and

compute two relative scores.Wemodel such scoring with four alge-

bras: score, length, mismatch and seqlen. The scoring

algebra score does minimization and looks up mismatch scores

in a table.

algebra score implements
FlowAlign(alphabet¼ float, answer¼ float) {
float rep(5float a, float b4, float m)
{return m þ score_table(a, b);}
float del(5Subsequence g, void4, float m)
{return m þ 15.0 * 4.0;}
float ins(5void, Subsequence g4, float m)
{return m þ 15.0 * 4.0;}
float nil(5void, void4{return 0.0;}
float ti(5void, int b4) {return 0.0;}
float td(5int a, void4) {return 0.0;}
choice [float] h([float] l){return

list(minimum(l));}
}

The length algebra length computes the length of the align-

ment without counting a terminal insertion or deletion. We leave

the definition of the algebra as an ‘exercise’ to the reader (the

algebra is included in the supplement). Thus, we can use the

result of the product

score * length

to compute a relative flowgram alignment score. However,

the optimization is based on algebra score alone, and algebra

length computes additional information for each optimal

candidate.
The mismatch algebra directly scores distances between

(mis)matching characters (i.e. numbers) and sums up the values

of inserted or deleted characters:

algebra mismatch implements
FlowAlign(alphabet ¼ float,
answer ¼ int) {
int rep(5float a, float b4, int m)
{return m þ abs(round(a) - round(b));}
int del(5Subsequence g, void4, int m)
{return m þ round(g[0]) þ round(g[1])
þ round(g[2]) þ round(g[3]);}
int ins(5void, Subsequence g4, int m)
{return m þ round(g[0]) þ round(g[1])
þ round(g[2]) þ round(g[3]);}

}
choice [int] h([int] l)
{return list(minimum(l));}

For computing a relative mismatch score, we use the algebra

seqlen that scores like mismatch except for the replace case.

In GAP-L, we can directly communicate this via modifying the

existing algebra:

algebra seqlen extends mismatch {
int rep(5float a, float b4, int m)
{return m þ max(round(a), round(b));}

}

In Denoiser, the flowgram alignment component provides a

mode to compute both relative scores simultaneously, which can

be achieved with the following product:

instance RKdenoiser ¼
flow(score * (length % mismatch % seqlen))

This specifies that for the candidate with the minimal score,

also the alignment length, the mismatch score and mismatch

length are computed. In all four algebras, insertions and dele-

tions at the terminal end are scored zero, as flowgrams may differ

in size, but only an insertion or deletion at the 50 end is plausible

with this input data. In this way, we compute a variant of a local

alignment algorithm.

3.2 Programming with modular components

Working in a specific application area, one builds up a library of

modules—signatures, grammars and algebras—from which a

variety of tasks can be compiled using algebra product. Each

novel algebra product gives rise to a program instance (cf.

Section 2.1), from which the compiler produces an executable

specialized to this task.
Our repository for RNA folding is a result of the study in

Janssen et al. (2011). It holds separate collections of signatures,

grammars and algebras, and GAP-L main programs that merely

consist of instance declarations. Among others, the repository

contains the modules shown in Table 2. Counting algebras are

not in the repository, as they are constructed by the compiler on

request. Instances of the form

556

G.Sauthoff et al.



(1) nodangle (shape_i*pfunc suchthat

pfunc_filter)

for i ¼ 1, . . . , 5 were used in Janssen et al. (2011) for all four

grammars to evaluate the effect of different treatments of

dangling bases on the shape probabilities. The suchthat

clause activates a filter that weeds out shapes with accumulated

probabilities510�6, which was shown to speed up the computa-

tion without significantly distorting results. Instance

(2) nodangle(((shape5*(mfe %pfunc)) suchthat

pfunc_filter_allPP)*dotBracket)

must be compiled with option –kbacktrace, adds in the com-

putation of mfe structures for each shape and reports them via

algebra dotBracket. This is an interesting use of the Cartesian

product, where two independent results for each shape are com-

puted simultaneously, the shape’s mfe value and the accumulated

contribution of all structures with this shape to the partition

function. Instance

(3) nodangle(((pfuncjpfunc_id)*(shape2*

mfe*dotBracket)) suchthat sample_filter)

is compiled with option –sample. It computes a stochastic sample

from the partition function, where for each candidate sampled,

its level 2 shape, free energy and dot-bracket string are reported.

This allows to estimate shape probabilities by sampling and

comparing them with their exact computation via (1).

(4) Finally, the general technique of classified DP is realized

as follows. Consider an algebra A, which computes from

each candidate a classification attribute, not performing

any optimization. This splits the candidate space into dis-

joint classes. Then, a product of form (A � B) performs clas-

sified DP, where the analysis carried out by B (which can be

a simple algebra as well as an arbitrary product) applies to

each class separately.

From the viewpoint of software technology, the important

aspect here is that each algebra is designed and tested with a

single purpose in mind. Then, product operations allow to

define more sophisticated analyses in great variety—without
making changes to existing modules.

4 EVALUATION OF BELLMAN’S GAP AS AN
IMPLEMENTATION PLATFORM

In this section, we evaluate Bellman’s GAP based on our experi-
ence of using it in bioinformatics tool development.

4.1 Code quality

Our goal is not to reproduce existing tools with more efficient

code, but to ease development of novel applications. Still, the
generated code must reach efficiency comparable with

hand-coded implementations. In terms of asymptotics, the com-
piler always achieves the best possible asymptotic runtime (cf.
Sauthoff et al., 2011), but also makes considerations about space

consumption and constant factors. We compare against the
hand-crafted applications UNAfold and RNAfold. Note that
UNAfold is rather new, whereas RNAfold has been carefully

engineered over more than a decade and has the reputation of
being the fastest RNA folding program. For comparison, we use

instance microstate(mfe * dotbracket) for MFE struc-
ture prediction. This is equivalent with RNAfold, but also
reports co-optimals. Measurements show that in terms of

speed, Bellman’s GAP code lies between the hand-coded tools
(Fig. 2). Memory consumption is similar to UNAfold, with a

tendency to be more space efficient on longer sequences. Note
the outlier points above the yellow memory curve. These can be
traced back to sequences that have several different co-optimal

structures. Especially with grammar microstate, their number
can be large; the maximum observed in this data set was 384 for

a sequence of length 476. Our automatic backtrace generates a
somewhat wasteful list of all co-optimals in such a case before
producing output.

Bellman’s GAP has been extensively evaluated against the se-
cond-generation implementation of ADP. The tool RNAshapes
predicts RNA secondary structure classified by abstract shapes

(Steffen et al., 2006), and the tool pknotsRG predicts structures
including simple pseudoknots and kissing hairpin interactions

(Theis et al., 2010). Both were originally implemented in the
Haskell-embedded version of ADP. They were re-coded in
GAP-L and compiled with GAP-C, achieving constant-factor

speed-ups. pknotsRG, for example, is two to three times as
fast while using about half the space. For more details, see
Sauthoff (2011).

4.2 Assessing convenience

In the previous sections, we have described how abstractness,
modularity and automated compilation help to achieve reliable

implementations with less human effort. This cannot be quanti-
fied easily. As a crude approximation to implementation effort,
we here compare code sizes for ‘real-world’ applications.

In Janssen et al. (2011), the impact of four different implemen-
tations of the Turner energy model of RNA folding was inves-

tigated. These implementations differ for pragmatic reasons with
respect to their treatment of dangling bases. RNAfold, from the
Vienna package (Lorenz et al., 2011), provides three variants via

options -d0, -d1 and -d2, called NoDangle, Microstate and

Table 2. Modules related to RNA structure prediction based on

thermodynamics

Type Name Purpose

Signature foldrna Describes RNA folding space

Grammar nodangle Model without dangling bases

Grammar overdangle Model with overaggressive dangling

Grammar microstate Correct dangling with. . .

Grammar macrostate . . .Without candidate space extension

Grammar nodangle_lp Model allowing lonely pairs

Algebra mfe MFE computation

Algebras pfunc Boltzmann weights (partition function)

pfunc_id Individual candidate Boltzmann weight

Algebras shapes1. . .5 Classification by shape abstraction

Algebra dotBracket Printing structures

557

Bellman’s GAP for DP



OverDangle for comparison, respectively, while RNAshapes uses

a fourth model, Macrostate. We compared models by measuring
their effect on shape probabilities, which provides a more robust

measure than single minimum free energy structure prediction.
Because RNAfold does not compute shape probabilities, rather

than augmenting the source code from the Vienna package, it
was easier for us to re-implement all three versions in Bellman’s

GAP, and combine them with probabilistic shape analysis by a
product of algebras already available from RNAshapes.

Table 3 reports on the size of the grammars and algebras
arising for these applications. We specify sizes of grammar and

algebras, as well as the size of the generated code for certain
instances. Note the significant difference between the number

of grammar non-terminals (recurrences) and the number of

tables actually allocated to compute them. The code size reduc-
tion (size of GAP-L code/size of Cþþ code) gives an idea of how

much programming and debugging time is saved in ‘real-world’
scenarios by using Bellman’s GAP. In the table, we included,

from our ongoing research, a remake of the Rfam model
RF00553. Covariance models are specialized toward a particular

structure, leading to grammars with hundreds of non-terminal
symbols and rules. The example is included to show that

Bellman’s GAP successfully handles grammars of this size.

5 CONCLUSION

5.1 Adopting Bellman’s GAP in education

At Bielefeld and Freiburg universities, starting 2011, DP based
on Bellman’s GAP has been taught to small cohorts of bioinfor-

matics M.Sc. students. This paragraph reports from our teachers’

observations; it does not pretend to be a formal evaluation of

student success. Our students have a limited experience in DP the

‘hard’ way, and generally find it rewarding to invest in the intel-

lectual overhead of adopting the algebraic discipline of DP.

Bellman’s GAP as a language appears to be a minor problem,

owing to its small size and resemblance of C and Java. A didactic

advantage is the high-level error messages generated by the com-

piler. They lead to less frustration and debugging time among

students and reduce supervision required by the teacher. Aside

from type errors and missing arguments, the compiler detects

also infinite cyclic recursions and warns when some recursion

leads to exponential complexity. In early assignments, we rely

on automatic table design feature by GAP-C, allowing to keep

things simple at the beginning. Later, when space efficiency con-

cerns are covered in the lecture, students design their own table

allocation and compare it with the one automatically derived by

the compiler. Abstract specifications and ease of implementation

also foster a deeper understanding and encourage experimenta-

tion. How is the size of the search space affected by splitting a

sub-case in two separate cases? A counting algebra provides the

answer. Are the shape representative structures the same under

two different scoring schemes? Calling nodangle(shape *

(score1 % score2). dotbracket) generates first evidence.

In this manner, exploration of modeling alternatives

is supported.

5.2 Scope of applications

We circumscribe the scope of Bellman’s GAP by some present

and forthcoming applications.

Fig. 2. Measurement on 10 000 uniformly distributed random sequences with length between 1 and 500 bases. See text for discussion. Runtime

(userþ system) and memory consumption (max, RSS) measured by UNIX tool ‘memtime’ (by Johan Bengtsson). RNAfold version 2.0.2 -d 1

–noLP –noPS, UNAfold: hybrid-ss-min –suffix¼DAT –mfold –NA¼RNA –tmin¼ 37 –tinc¼ 1 –tmax¼ 37 –sodium¼ 1 –magnesium¼ 0 -I,

Bellman’s GAP: mfe * dotBracket –backtrace -t microstate grammar. Short sequence memory consumption seems to fit into initial stack/heap

size of an OS process

558

G.Sauthoff et al.



� The present article uses problems in sequence alignment,

flowgram denoising and thermodynamic RNA folding for

the exposition. Illustrating the use of algebra products,

several problem variants were addressed herein.

� The core algorithms of RNAshapes have been re-coded and

run in Bellman’s GAP, and were used for the study by

Janssen et al. (2011). (The full user interface is still lacking.)

� These RNA folding modules can also be used to create

thermodynamic matchers for structural RNA motifs by

writing motif-specific grammars, as recently reported from

an RNA-seq study in Sinorhizobium meliloti (Reinkensmeier

et al., 2011).

� While this manuscript was under review, two novel applica-

tions of Bellman’s GAP have appeared, one on RNA struc-

ture analysis (Huang et al., 2012) and one on minisatellite

map alignment (Löwes, 2012). The latter provides a

non-ambiguous version of the algorithm by Abouelhoda

et al. (2009), and is technically interesting because it com-

bines a two-track problem (minisatellite aligment) with a

non-trivial single-track sub-problem (reconstruction of

duplication histories).

� In our ongoing work on covariance models, we extend their

concept to support more than one—similar, but not identi-

cal—consensus structure(s). Stochastic parameters, trained

with a two-track grammar, are used in a Viterbi-like scoring

algebra, akin to pfunc_id (cf. Table 2). Inside scoring is

simply achieved by replacing choice function max with sum,
akin to pfunc.

� In ongoing work, we are adapting the Locomotif tool by

Reeder et al. (2007) to the MicroState grammar of Janssen

et al. (2011) to generate motif matchers coded in GAP-L

from user-supplied structure graphics. Future users of

Locomotif will be customers of Bellman’s GAP, possibly

without noticing it.

Bellman’s GAP is strictly limited to problems over (one or

more) sequences. While it seems possible to extend the fundamen-

tal concepts of ADP to tree-structured inputs, such as tree edit

distance or tree alignment algorithms, no automated implementa-

tion for such a more powerful framework is presently within reach.

5.3 Future development as a community effort

In contrast to the majority of tools in bioinformatics, which serve

biologists to analyze their data, Bellman’s GAP is a tool for
bioinformaticians. We have reported our experience, by which

Bellman’s GAP helps to create more reliable and more versatile
DP algorithm in a shorter time. By the first release of the

Bellman’s GAP system, we hope to share this experience with
the bioinformatics community, and together create libraries of

re-usable specifications for a variety of applications. To this end,
we have created a repository of Bellman’s GAP modules related

to thermodynamic folding and abstract shape analysis of RNA.
The repository named fold-grammars as well as the

Bellman’s GAP system are available open source under GPL
license from http://bibiserv.cebitec.uni-bielefeld.de/bellmansgap.

ACKNOWLEDGEMENT

We thank Jens Reeder for providing the Haskell-ADP code of
the flowgram denoiser. We also appreciate the detailed discus-

sions with participants of the Benasque RNA workshop in 2012.

Funding: This work was partially supported by the German

Research Foundation (DFG GRK 635, BA 2168/3-1, MO
2402/1-1).

Conflict of Interest: none declared.

REFERENCES

Abouelhoda,M.I. et al. (2009) Alignment of minisatellite maps based on run-length

encoding scheme. J. Bioinform. Comput. Biol., 7, 287–308.

Durbin,R. et al. (1998) Biological Sequence Analysis. Cambridge University Press,

Cambridge, MA.

Fabregat-Traver,D. and Bientinesi,P. (2012) A domain-specific compiler for linear

algebra operations. In: High Performance Computing for Computational

Science—VECPAR 2012, Lecture Notes in Computer Science. Springer,

Berlin/Heidelberg.

Giegerich,R. and Steffen,P. (2006) Challenges in the compilation of a domain spe-

cific language for dynamic programming. In: Haddad,H. (ed.) Proceedings of the

2006 ACM Symposium on Applied Computing. ACM, New York.

Giegerich,R. et al. (2004) A discipline of dynamic programming over sequence data.

Sci. Comput. Program., 51, 215–263.

Huang,J. et al. (2012) Abstract folding space analysis based on helices. RNA, 18,

2135–2147.

Table 3. GAP-L program sizes and target code sizes

Tool Problem solved No. of algebra

functions

No. of

algebras used

No. of

NTs in G

No. of

distinct cases

No. of

NTs tabulated

Lines of

code GAP-L

Lines of

code Cþþ

RNAshapes Shape representative

structures of RNA

19 3 11 29 5 487 5456

RNAshapes Probabilistic shape

analysis

36 2 26 72 15 640 4796

pknotsRG Pseudoknot prediction 38 2 25 63 19 755 9581

GAP-RNAfold RNA folding

(RNAfold -d0 emulation)

15 2 11 25 5 191 3719

RF00553 Covariance model

remake

258 2 80 257 77 3348 51 646

The number of cases distinguished in the problem decomposition is defined as the number of right-hand sides over all rules of the tree grammar. Lines of code are given for a

typical instance using a product of two or three algebras, such as Gðscore � print, xÞ.

559

Bellman’s GAP for DP

http://bibiserv.cebitec.uni-bielefeld.de/bellmansgap


Janssen,S. et al. (2011) Lost in folding space? Comparing four variants of the

thermodynamic model for RNA secondary structure prediction. BMC

Bioinformatics, 12, 429.

Lorenz,R. et al. (2011) ViennaRNA package 2.0. Algorithms for Mol. Biol., 6, 26.

Löwes,B. (2012) Analysis of minisatellite sequences with Algebraic Dynamic

Programming in Bellman’s GAP. Master’s thesis, Bielefeld University,

Bielefeld, Germany.

Needleman,S.B. and Wunsch,C.D. (1970) A general method applicable to the

search for similarities in the amino acid sequence of two proteins. J. Mol.

Biol., 48, 443–453.

Nussinov,R. et al. (1978) Algorithms for loop matchings. SIAM J. Appl. Math., 35,

68–82.

Quince,C. et al. (2011) Removing noise from pyrosequenced amplicons. BMC

Bioinformatics, 12, 38.

Reeder,J. and Knight,R. (2010) Rapidly denoising pyrosequencing amplicon reads

by exploiting rank-abundance distributions. Nat. Methods, 7, 668–669.

Reeder,J. et al. (2007) Locomotif: from graphical motif description to RNA motif

search. Bioinformatics, 23, i392.

Reinkensmeier,J. et al. (2011) Conservation and occurrence of trans-encoded srnas

in the rhizobiales. Genes, 2, 925–956.

Rivas,E. et al. (2012) A range of complex probabilistic models for RNA secondary

structure prediction that includes the nearest-neighbor model and more. RNA,

18, 193–212.

Sauthoff,G. (2011) Bellman’s GAP: A 2nd Generation Language and System for

Algebraic Dynamic Programming. PhD Thesis, Bielefeld University, Bielefeld,

Germany.

Sauthoff,G. et al. (2011) Bellman’s GAP: a declarative language for dynamic

programming. In: Proceedings of the 13th International ACM SIGPLAN

Symposium on Principles and Practices of Declarative Programming, PPDP

’11, ACM, pp.29–40, New York, NY, USA.

Steffen,P. et al. (2006) RNAshapes: an integrated RNA analysis package based

on abstract shapes. Bioinformatics, 22, 500–503.

Theis,C. et al. (2010) Prediction of RNA secondary structure including

kissing hairpin motifs. In: Proceedings of the 10th Workshop on

Algorithms in Bioinformatics (WABI 2010) LNBI 6293. Springer,

Heidelberg, pp. 52–64.

560

G.Sauthoff et al.


