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Paeoniflorin (PF), as one of the important valid natural compounds of the total glucosides of peony, has displayed a potential effect in
cancer prevention and treatment. Aggressive migration and invasion, as an important process, can contribute to tumor progression
through infiltrating the surround normal tissue. Actin cytoskeleton rearrangement plays a key role in cells migration and invasion,
involving multiple signal pathways. HGF/c-Met signal, as an important couple of oncoprotein, has been demonstrated to regulate
actin cytoskeleton rearrangement. In our study, we aim to explorewhether paeoniflorin can inhibitmigration and invasion and actin
cytoskeleton rearrangement via regulation of HGF/c-Met/RhoA/ROCK signal. Various approaches were applied to demonstrate
themechanism of paeoniflorin-mediated anticancer effect, including cell wound healing assay, invasion assay, immunofluorescence
staining and transfection, and western blotting. We observed that paeoniflorin inhibited HGF-induced migration and invasion
and actin cytoskeleton rearrangement in glioblastoma cells. Furthermore, the inhibition of HGF-induced migration and invasion
and actin cytoskeleton rearrangement involved c-Met-mediated RhoA/ROCK signaling in glioblastoma. Thus, our study proved
that paeoniflorin could inhibit migration and invasion and actin cytoskeleton rearrangement through inhibition of HGF/c-
Met/RhoA/ROCK signaling in glioblastoma, suggesting that paeoniflorin might be a candidate compound to treat glioblastoma.

1. Introduction

Glioblastoma (GMB), as the most common brain cancer
in central nervous system, has the most malignant degree.
Though we have taken multiple measures, such as radiother-
apy, chemotherapy, surgery, or these combined, the median
survival time of those who diagnosed with glioblastoma is
still not more than 18 months [1–3]. Thus, it is impending
to find a new approach to treat GMB. Up to now, more and
more natural compounds showed the anticancer activity [4–
6]. Therefore, natural products could be thought as potential
new antitumor agents to cure GMB.

Paeoniflorin, a polyphenolic natural product, has dis-
played anticancer activity in a variety of cancer, includ-
ing breast cancer, pancreatic cancer, gastric cancer, and
hepatocellular carcinoma, through inhibiting proliferation,
inducing apoptosis, and arresting cell cycle [7–10]. It has been
reported that paeoniflorin could induce human pancreatic
cancer cell apoptosis [11]. Similarly, Wang et al. showed that
paeoniflorin suppresses cell growth and induces apoptosis
in multiple myeloma cells [12]. Also, Li et al. reported that
paeoniflorin restrains cell growth and promotes apoptosis in
human glioma cells [13].Though, some research has reported
that paeoniflorin could inhibit migration and invasion in
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multiple kinds of cancer cells. For instance, paeoniflorin
could induce suppression of invasion in breast cancer cells
via inhibition of Notch-1 signaling [14]. Additionally, paeoni-
florin could prevent metastasis in hepatocellular carcinoma
cells [15]. However, whether paeoniflorin can inhibit migra-
tion and invasion in GBM as well as the underlying mecha-
nism is not clear.

Migration and invasion contribute to cancer progres-
sion, though the distant metastasis of glioblastoma hardly
occurs; it also infiltrates into adjacent normal brain tissue
to cause a series of serious consequences [16]. Moreover,
the infiltrative growth because of migration and invasion
leads to the blurring boundary, which makes it difficult to
remove the glioblastoma completely. Meanwhile, migration
and invasion involve multiple processes; among them, the
actin cytoskeleton dynamic equilibrium is an important one.
The actin microfilament system has been considered the
engine of cellular migration and invasion [17, 18]. Destroying
the steady state of actin cytoskeleton could be an effective
approach to inhibit migration and invasion. Up to now,
it has not been reported that paeoniflorin can affect actin
cytoskeleton arrangement.

HGF/c-Met signal, as a couple of ligand and receptor,
plays amajor role in progression amongmultiple cancer types
[19–21]. Moreover, the HGF/c-Met has been demonstrated
that it highly expressed in glioblastoma and can facilitated
glioblastomamalignant phenotype, such as promoting prolif-
eration, antiapoptosis, strengtheningmigration, and invasion
[22–24]. Therefore, some efforts targeting HGF/c-Met have
been took to cure the glioblastoma. And that HGF/c-Met has
proved that it could affect actin cytoskeleton rearrangement
involving the regulation RhoA signal [22–24]. RhoA, as a
member of small GTPase protein of Rho family, is primarily
associatedwith actin cytoskeleton regulation. In our study,we
explored the effects of paeoniflorin on actin cytoskeleton and
deeply investigated whether the process involves the HGF/c-
met-mediated RhoA regulation.

The present study was to explore the potential effects
of paeoniflorin on HGF-mediated migration, invasion, and
actin cytoskeleton rearrangement as well as the under-
lying mechanism in glioblastoma. In this study, paeoni-
florin represses HGF-induced migration, invasion, and actin
cytoskeleton rearrangement and this effect involved the
suppression of the c-Met-mediated RhoA/ROCK signaling.

2. Materials and Methods

2.1. Chemicals, Reagents and Antibodies. Paeoniflorin was
purchased from Abcam (Beverly, MA) and was dissolved
in saline; then it is kept at 4∘C. Dulbecco’s modified
Eagle’s medium (DMEM) and fetal bovine serum (FBS)
were obtained from Gibco (Grand Island, USA). c-Met
inhibitor (SU11274) was purchased from Selleck Chemicals
(Houston, TX). Antibodies against c-Met, phospho-c-Met
(Y1230/34/35), ROCK1, phospho-limk1(T508), and limk1
were purchased from Abcam (Beverly, MA). Antibodies
against GAPDH were purchased from Zhongshangjinqiao
Science and Technology Ltd. (Beijing, China). Recombinant
human HGF protein was purchased from R&D Systems

(Minneapolis, USA). The Upstate� Rho Activation Assay
Kit was obtained from EMD Millipore (Lake Placid, USA).
Phalloidin was purchased from Abcam (Beverly, MA).

2.2. Cell Culture. The cell lines T98G, U251, HA1800, and
HEB were obtained from Chinese Academy of Medical
Sciences (Beijing, China). These cell lines were cultivated in
DMEM contained with 10% FBS in a humidified incubator
containing 5% CO2 at 37∘C.

2.3. Cell Viability Assay. 5000 cells/well were planted in the
96-well plate and incubated with different dose of paeoni-
florin for 24 hours. Then, 10 𝜇l CCK-8 solution was added
to each well and treated for one hour at 37∘C. The solution
was detected by the microplate reader.

2.4. Wound Healing Assay. A wound-healing assay was used
to compare the migratory ability of glioblastoma cells in
control and experiment groups. The assay was performed
with T98G and U251 as described previously [25].

2.5. Cell Invasion Assay. The transwell system for assay of
cell invasion was obtained from Corning (Corning, USA).
The assay was performed with T98G and U251 as described
previously [25].

2.6. Immunofluorescence. For immunofluorescence, cells
were grown on glass coverslips in 12-well plate. After
treatment with indicated concentration paeoniflorin for 24h,
the cells were fixed with 4% formaldehyde for 15 minutes
at room temperature and washed in PBS for 3×5 minutes.
Then 1× Phalloidin-iFluor 488 was added and incubated 90
minutes at RT. After being washed in PBS for 3×5 minutes,
coverslips were mounted on glass slides using mounting
medium (DAPI Fluoromount-G, Thermo Fisher Scientific,
USA). At last, the images were obtained with the Laser
Scanning Confocal Microscope (Leica, Germany).

2.7. Transfection. GBM cell lines were transfected with plas-
mid carrying c-Met or empty plasmid vector (GeneCopoeia,
Maryland Rockville, USA) using lipofectamine 3000 follow-
ing the instruction’s protocol. Then the cells were used in the
following experiments.

2.8. Measurement of RhoA Activity. RhoA activity was mea-
sured using a pull-down assay (Upstate� Rho Activation
Assay Kit) according to the manufacturer instructions.

2.9. Western Blotting. Western blots were used with glioblas-
toma cell lysates and performed as described previously [25].

2.10. Statistical Analysis. Thedata are displayed as themean±
standard error from at least three independent experiments.
The similar methods were used for statistical analysis of in
vitro and in vivo data described previously [25].

3. Results

3.1. Paeoniflorin Inhibited Glioblastoma Cells Growth. To
examine whether paeoniflorin treatment inhibits cell growth
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Figure 1: Effects of paeoniflorin on proliferation, migration and invasion, and actin cytoskeleton arrangement in T98 and U251 cells. (a-b) cells
were incubated with the indicated concentrations of paeoniflorin for 24 hours before CCK-8 assay. (c, d) cells were incubated with 0𝜇M, 5𝜇M
or 10𝜇M proliferation after the wounds were scratched.Then representative images of wound healing were acquired after 0 or 24 hours. (e, f)
The transwell invasion assay. Cells were treated with the indicated dose of paeoniflorin for 24 hours. Then representative picture was taken.
The stained cells were counted. Each represents at least three independent experiments. (g, h) Confocal sections of T98 and U251 cells stained
with FITC-phalloidin after indicated concentration paeoniflorin treatment and the quantitative analysis of the number of actin filaments. All
tests were performed in triplicate and presented as mean ± standard error. ∗∗P<0.01, ∗ ∗ ∗P<0.001, compared with control (0 𝜇M).

in glioblastoma cells, CCK-8 assay was applied to detect
the growth viability in U251, T98G, HA1800, and HEB cells
incubated with different dose of paeoniflorin for 24h. It
showed that paeoniflorin significantly inhibited cell growth in
a concentration-dependent manner in U251 and T98G cells,
but not in HA1800 or HEB (the two normal astrocytes) (Fig-
ures 1(a) and 1(b)). Moreover, when treated with paeoniflorin

in concentrations of 5𝜇M and 10𝜇M, it displayed the little
inhibited ability. Therefore, we selected 5𝜇M and 10𝜇M of
paeoniflorin in the subsequent experiments.

3.2. Paeoniflorin Suppressed Glioblastoma Cells Migration,
Invasion, and Induced Actin Rearrangement. Wound healing
assay and transwell assay were conducted to detect the effects
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Figure 2: Paeoniflorin suppressed RhoA/ROCK signaling. (a-d) the GTP-RhoA activity after different dose of paeoniflorin incubation for 24
hours in T98G and U251 cells. (e-h) the protein expression of ROCK1 and p-Limk1 after different concentration of paeoniflorin treatment
for 24 hours in T98G and U251 cells. All tests were performed in triplicate and presented as mean ± standard error. ∗∗P<0.01, ∗ ∗ ∗P<0.001,
compared with control (0 𝜇M).

of paeoniflorin on migration and invasion in glioblastoma
cells. Compared with control group (0 𝜇M), the wound heal-
ing assay displayed that paeoniflorin significantly inhibited
themigration ofU251 andT98G cells after 24 hours treatment
paeoniflorin (Figures 1(c) and 1(d)). And transwell assay
further validated that paeoniflorin treatment suppressed the
invasion of glioblastoma cells transit from the matrigel-
coatedmembrane (Figures 1(e) and 1(f)).Moreover, we found
that paeoniflorin suppressed cell migration and invasion of
U251 and T98G cells in a dose-dependent manner (Figures
1(c)-1(f)). Therefore, these results suggest that paeoniflorin
has an antimigration and invasion activation in glioblastoma
cells.

Cell migration and invasion implies changes in F-actin
cytoskeleton. Therefore, the CytoPainter Phalloidin-iFluor
488 (Abcam, USA) was used to examine the cytoskeletal F-
actin pattern. In normal, the F-actin arranges orderly and
continuously in cells. Compared with the control group, after
treatment with paeoniflorin 5𝜇M for 24 hours in U251 and
T98G, the normal actin filaments structure began to become
disordered and sparse. Moreover, when the concentration
is up to 10𝜇M, the normal actin filaments structure almost
disappeared and the number actin filaments was reduced, at
the same time, the morphology of U251 and T98G began
to change that turned from spindle-shape to round-shape
(Figures 1(g) and 1(h)).These results suggest that paeoniflorin
induces the actin rearrangement in U251 and T98G.

3.3. Paeoniflorin Downregulated RhoA Activation in Glioblas-
toma Cells. Rho-GTPase plays an important role in the
actin cytoskeleton rearrangements. To determine whether

paeoniflorin may regulate the Rho-GTPase in glioblastoma
cells, we examined the RhoA activity. As shown in Fig-
ures 2(a)-2(d), active form of RhoA, the GTP-RhoA, was
significantly decreased after paeoniflorin treatment in U251
and T98G cells. Furthermore, to confirm the effect of
paeoniflorin onRhoA signaling, the downstreamRhoA/Rho-
associated kinase (ROCK) and the phosphorylation-LIM
kinase-1(Limk1), a target of ROCK1, were examined. The
results showed that paeoniflorin significantly downregulated
ROCK1 and Limk1 inU251 andU87 cells in a dose-dependent
way (Figures 2(e)-2(h)). These results suggest paeoniflorin
downregulated RhoA activation in glioblastoma cells.

3.4. Paeoniflorin Inhibited HGF-Mediated Glioblastoma Cells
Migration and Invasion and Leaded to Actin Rearrange-
ment. To investigate whether paeoniflorin could suppress
HGF-mediated migration and invasion, U251 and T98G
cells were treated with HGF in the presence or absence
of paeoniflorin. In Figures 3(a)-3(h), similarly, paeoniflorin
significantly inhibited migration and invasion of U251 and
T98G cells. Meanwhile, treatment with HGF significantly
increased the ability of migration and invasion in U251 and
T98G.Moreover, treatment with paeoniflorin combined with
HGF decreased HGF-induced increasing of migration and
invasion in both U251 and T98G.

Also, it has been reported that HGF could regulate
actin cytoskeleton arrangement. To demonstrate this and
investigate whether paeoniflorin could affect HGF-induced
actin cytoskeleton arrangement, we detected F-actin pattern
of U251 and T98G cells incubation with HGFwith or without
of paeoniflorin. In Figures 3(i)-3(j), paeoniflorin significantly
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Figure 3: Paeoniflorin inhibited HGF-mediated cell migration, invasion, and actin cytoskeleton arrangement in T98G and U251. (a-d)
Paeoniflorin inhibited HGF-induced cell migration. (e-h) Paeoniflorin inhibited HGF-induced cell invasion. (i, j) Paeoniflorin inhibited
HGF-induced cell actin cytoskeleton arrangement. Control: no treatment; PF: 10𝜇M paeoniflorin treatment for 24h. HGF: 20ng/ml HGF
treatment for 24h; PF+HGF: 20ng/ml HGF combined with 10𝜇M paeoniflorin incubation for 24h. All tests were performed in triplicate and
presented as mean ± standard error. ∗P < 0.05, compared with control group. #P < 0.05, compared with HGF group.
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Figure 4: Paeoniflorin inhibited HGF-induced RhoA/ROCK signaling activity. T98G and U251 cells were pretreated with or without 10𝜇M
paeoniflorin and after that the cells were stimulated with 20ng/ml HGF for 6 hours; then activity of GTP-RhoA (a-d) and the protein
expression of ROCK1, Limk1, and p-Limk1 (e-h) were detected. Control: no treatment; PF: 10𝜇M paeoniflorin treatment for 24h. HGF:
20ng/ml HGF treatment for 24h; PF+HGF: 20ng/ml HGF combined with 10𝜇M paeoniflorin incubation for 24h. All tests were performed in
triplicate and presented as mean ± standard error. ∗P < 0.05, compared with control group. #P < 0.05, compared with HGF group.

induced actin cytoskeleton rearrangement that the normal
actin filaments structure began to become disordered and
sparse in U251 and T98G cells. At the same time, treatment
with HGF make F-actin arrangement becomes denser and
has more bundles compared with the control group in
U251 and T98G. Moreover, incubation with paeoniflorin
in combination with HGF reduced HGF-induced F-actin
arrangement in both U251 and T98G.

To further verify the effects of paeoniflorin on HGF-
mediated migration, invasion, and actin rearrangement, we
detected RhoA activity and expression of ROCK1 and p-
Limk1; we found that HGF strengthen RhoA activity and
expression of ROCK1 and p-Limk1 and paeoniflorin reversed
the HGF-induced changes of RhoA activity and expression
of ROCK1 and p-Limk1 in U251 and T98G (Figure 4). These
consist with the results we obtained in migration, invasion,
and actin rearrangement.

Taken together, paeoniflorin repressed HGF-mediated
glioblastoma cells migration and invasion and caused actin
rearrangement.

3.5. Paeoniflorin Suppressed HGF-Mediated Glioblastoma
Cells Migration and Invasion and Induced Actin Rearrange-
ment via Modulation of c-Met. To test whether paeoniflorin
inhibited HGF-mediated migration and invasion via the
suppression of c-Met activation, U251 and T98G cells were
treated with c-Met inhibitor SU11274. As shown in Figures
5(a)-5(h), U251 and T98G cells stimulated by HGF displayed
more strong ability of migration and invasion compared
with the control group. However, when these cells were
treated with SU11274, the ability of migration and invasion
induced byHGFwas decreased. Similarly, theHGF-mediated

intension of actin rearrangement can be abolished by SU11274
treatment (Figures 5(i)-5(j)). In parallel, the HGF-induced c-
Met phosphorylation, changes of RhoA activity, and expres-
sion of ROCK1 and p-Limk1 expression were significantly
upregulated, whereas SU11274 reversed HGF-induced upreg-
ulation of c-Met phosphorylation, RhoA activity, and expres-
sion of ROCK1 and p-Limk1 expression (Figure 6).

To further determine whether paeoniflorin suppressed
glioblastoma cells migration, invasion, and actin rearrange-
ment via c-Met, we transiently transfected U251 and T98G
cells with c-Met overexpression plasmid (ex-Met). Compared
to the control group, the ex-c-Met group showed more
forceful migration and invasion ability as well as the more
reinforced F-actin arrangement. Nevertheless, when treat-
mentwith paeoniflorin combinedwith c-Met overexpression,
the expressed c-Met-induced intension of migration and
invasion and F-actin arrangement were attenuated (Fig-
ure 7). Meanwhile, paeoniflorin significantly downregulated
c-Met expression in U251 and T98G cells. In addition,
overexpression ex-Met promoted RhoA activation and sig-
nificantly upregulated expression of ROCK1 and p-Limk1
expression. At last, paeoniflorin significantly downregulated
c-Met overexpression-induced RhoA activity and expression
of ROCK1 and p-Limk1 (Figure 8). Taken together, the effects
of paeoniflorin on HGF-mediated migration, invasion, and
actin rearrangement are via modulation of HGF/c-Met.

4. Discussion
An increasing number of evidences have demonstrated
that HGF played a key role in a variety of cancer pro-
gressions and accelerated the tumor-promoting activity
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Figure 5: SU11274 suppressed HGF-mediated migration, invasion, and actin cytoskeleton arrangement T98G and U251 cells were incubated
with 20 ng/ml of HGF for 24 hours and c-Met inhibitors SU11274 (5 𝜇mol/l) was used 4 hours before HGF treatment. (a-d) SU11274 inhibited
HGF-induced cell migration. (e-h) SU11274 inhibitedHGF-induced cell invasion. (i-j) SU11274 inhibitedHGF-induced cell actin cytoskeleton
rearrangement. Control: no treatment; HGF: 20ng/ml HGF; SU: c-Met inhibitor SU11274 (5𝜇mol/l); HGF+SU: 20ng/ml HGF combined with
5𝜇mol/l SU11274 (5𝜇mol/l) treatment. All tests were performed in triplicate and presented as mean ± standard error. ∗P < 0.05, compared
with control group. #P < 0.05, compared with HGF group.
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Figure 6: SU11274 suppressedHGF-mediatedRhoA/ROCK signaling activity inT98GandU251. T98GandU251 cells were treatedwith 20 ng/ml
of HGF for 15 minutes in present or absent of preincubation with SU11274 (5𝜇mol/l) for 6 hours, protein level of c-Met and p-c-Met (a-d),
GTP-RhoA activity (e-h), protein expression of ROCK1, Limk1, and p-Limk1 (i-l) were detected by western blotting. Control: no treatment;
HGF: 20ng/ml HGF; SU: c-Met inhibitor SU11274 (5𝜇mol/l); HGF+SU: 20ng/ml HGF combined with 5𝜇mol/l SU11274 (5𝜇mol/l) treatment.
All tests were performed in triplicate and presented as mean ± standard error. ∗P < 0.05, compared with control group. #P < 0.05, compared
with HGF group.

including glioblastoma. Paeoniflorin, as a natural polyphe-
nolic product, showed effects of antiproliferative and anti-
invasion activity on multiple tumors. In our present study,
paeoniflorin suppressed HGF-mediated migration and inva-
sion and actin cytoskeleton rearrangement of glioblastoma
cells, and the mechanism involved c-Met/RhoA/ROCK1 sig-
naling regulation.

Migration and invasion play an important role in various
cancers progression which leads to the cancers infiltrate
into the surround normal tissue even cause the distant
metastasis. And cells migration and invasion involvemultiple
processes; among that the actin cytoskeleton rearrangement
is a pivot one.The actin cytoskeleton rearrangement provides
the engine during the process of cell motility [26]. So,
regulating the rearrangement of actin cytoskeleton may lead
to cancer cell migration and invasion suppression. In our
study, paeoniflorin effectively inhibits migration and inva-
sion in glioblastoma cells. Moreover, paeoniflorin treatment
results in actin cytoskeleton reorganization, suggesting that
paeoniflorin inhibits cell migration and invasion through
regulation of actin cytoskeleton reorganization.

HGF is a multifunctional cytokine involved in the
migration and invasion processes [27, 28]. Moreover, recent
research has reported that paeoniflorin plays an important
role in migration and invasion. For example, paeoniflorin
suppressed invasion of breast cancer cells through affecting
Notch-1 signaling pathway [14]. Paeoniflorin also repressed
invasion in human hepatocellular carcinoma cells [8]. In
our study, paeoniflorin suppressed HGF-mediated migration
and invasion in U251 and T98G cells. Thus, we testify that
paeoniflorin inhibits HGF-mediated migration and invasion
in glioblastoma cells.

Rho-GTPase is the most relevant to actin cytoskeleton
rearrangements and some research has validated that Rho-
GTPase could be regulated by HGF/c-Met signaling [29,
30]. De Wever O et al. reported that SF/HGF enhanced
human colon cancer cells invasion ability through RhoA and
Rac1[31]. In addition, Takaishi K et al. demonstrated that
HGF-induced cell motility involved Rho-GTPase regulation
[32]. RhoA, one of Rho GTPase family members, is an
intracellular molecular switch that transduces signals in
various cancers and promotes actin polymerization. Our
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Figure 7: Over-expression of c-Met reduced effects of paeoniflorin on cell migration, invasion,n and actin cytoskeleton rearrangement. T98G
and U251 were transfected vector plasmid or c-Met overexpression plasmid and treatment with or without 10𝜇M paeoniflorin; then the cell
migration (a-d) and invasion (e-h) and actin cytoskeleton rearrangement and number (i-j) were evaluated. Control: vector plasmid; PF: 10𝜇M
paeoniflorin +vector plasmid; ex-c-Met: c-Met overexpressed plasmid; PF+ex-c-Met: c-Met overexpressed plasmid +10𝜇M paeoniflorin. All
tests were performed in triplicate and presented as mean ± standard error. ∗P < 0.05, compared with control group. #P < 0.05, compared with
PF group.
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Figure 8: Overexpression of c-Met reduced effects of paeoniflorin on c-Met/RhoA/Limk1 signaling. T98G and U251 were transfected vector
plasmid or c-Met overexpression plasmid and then treatment was with or without 10𝜇M paeoniflorin for 24h. The activity of GTP-RhoA (a-
h) and the protein expression of ROCK1, Limk1, and p-Limk1 (i-l) were examined. Control: vector plasmid; PF: 10𝜇M paeoniflorin +vector
plasmid; ex-c-Met: c-Met overexpressed plasmid; PF+ex-c-Met: c-Met overexpressed plasmid +10𝜇M paeoniflorin. All tests were performed
in triplicate and presented as mean ± standard error. ∗P < 0.05, compared with control group. #P < 0.05, compared with PF group.

results showed that paeoniflorin suppressed HGF-induced
RhoA activity as well as the downstream ROCK1 and Limk1
signaling. Our results suggest that paeoniflorin suppresses
cell migration and invasion might be through regulating
reorganization of the actin cytoskeleton via RhoA/ROCK
signaling pathways.

The cell surface receptor tyrosine kinase c-Met is over-
expressed in various cancers, including glioblastoma. c-Met
acts as an important role in migration and invasion and
associates with the poor prognosis in glioblastoma. c-Met can
strengthen cell migration and invasion via a few pathways
like the focal adhesion kinase (FAK), phosphatidylinositol
3-kinase (PI3K), and extracellular signal-regulated kinase
(ERK) pathway [33–35]. Moreover, dysregulation of c-Met
signaling could affect actin cytoskeleton rearrangement [36].
In our present research, HGF induced phosphorylation of c-
Met and activates the RhoA/ROCK signaling in glioblastoma
cells. What is more, paeoniflorin inhibited HGF-mediated
phosphorylation of c-Met and the RhoA/ROCK activation.
Furthermore, c-Met inhibitor SU11274 showed the similar
effects to that of paeoniflorin, implying the key roles of c-
Met/RhoA/ROCK signaling in the antitumor property of
paeoniflorin.

To verify the property of paeoniflorin onmigration, inva-
sion, and actin cytoskeleton rearrangement in glioblastoma,

we expressed c-Met by transfecting c-Met plasmid in U251
cells and T98G cells and found that c-Met promoted migra-
tion and invasion. The cells with high c-Met expression dis-
played denser F-actin filaments. GTP-RhoA expression was
increased as well as its downstream signaling. Importantly,
paeoniflorin could also suppress the migration and inva-
sion and actin cytoskeleton rearrangement in overexpressed
c-Met U251 cells and T98G cells, while GTP-RhoA was
downregulated after paeoniflorin treatment. These results
suggest that paeoniflorin reverse HGF-mediated migration,
invasion, and actin cytoskeleton rearrangement by tar-
geting c-Met and RhoA/ROCK pathway in glioblastoma
cells.

In summary, our results demonstrated paeoniflorin
inhibited HGF-mediated migration, invasion, and actin
cytoskeleton rearrangement in glioblastoma cells. The mech-
anisms involved inhibition of c-Met/RhoA/ROCK signaling.
This study provides an important basis for paeoniflorin
application to treat glioblastoma.
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