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Abstract

Articular cartilage is physiologically exposed to repeated loads. The mechanical properties of cartilage are due to its
extracellular matrix, and homeostasis is maintained by the sole cell type found in cartilage, the chondrocyte. Although
mechanical forces clearly control the functions of articular chondrocytes, the biochemical pathways that mediate cellular
responses to mechanical stress have not been fully characterised. The aim of our study was to examine early molecular
events triggered by dynamic compression in chondrocytes. We used an experimental system consisting of primary mouse
chondrocytes embedded within an agarose hydrogel; embedded cells were pre-cultured for one week and subjected to
short-term compression experiments. Using Western blots, we demonstrated that chondrocytes maintain a differentiated
phenotype in this model system and reproduce typical chondrocyte-cartilage matrix interactions. We investigated the
impact of dynamic compression on the phosphorylation state of signalling molecules and genome-wide gene expression.
After 15 min of dynamic compression, we observed transient activation of ERK1/2 and p38 (members of the mitogen-
activated protein kinase (MAPK) pathways) and Smad2/3 (members of the canonical transforming growth factor (TGF)-b
pathways). A microarray analysis performed on chondrocytes compressed for 30 min revealed that only 20 transcripts were
modulated more than 2-fold. A less conservative list of 325 modulated genes included genes related to the MAPK and TGF-b
pathways and/or known to be mechanosensitive in other biological contexts. Of these candidate mechanosensitive genes,
85% were down-regulated. Down-regulation may therefore represent a general control mechanism for a rapid response to
dynamic compression. Furthermore, modulation of transcripts corresponding to different aspects of cellular physiology was
observed, such as non-coding RNAs or primary cilium. This study provides new insight into how chondrocytes respond to
mechanical forces.
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Introduction

Articular cartilage is a highly specialised connective tissue in

joints. Its main function is to provide a smooth, lubricated surface

for articulation and to take up and distribute high loads. Its

remarkable dimensional stability and mechanical properties are

due to the composition of its extracellular matrix. The load-

bearing function is based on the high osmotic pressure created by

negatively charged glycosaminoglycans, which are predominantly

aggrecan molecules. In addition, the fibrillar collagen network,

mainly composed of type II collagen, provides the tissue with its

tensile resistance. As the only cell type in articular cartilage,

chondrocytes are entirely responsible for maintaining the meta-

bolic balance of matrix proteins. Accordingly, it has been shown

that mechanical forces affect chondrocyte metabolic activity (for a

review, see [1]). More precisely, ex vivo and in vitro models of

chondrocyte mechanobiology have generally shown that static

compression inhibits the expression of cartilage matrix proteins

whereas dynamic compression regimens enhance them [2–7].

In this context, mechanotransduction is the molecular process

by which cells convert mechanical force into biochemical

signalling. Little is currently known regarding the sequence of

biochemical events that are involved in mechanotransduction and

that eventually result in the modulation of the chondrocyte

phenotype. It is therefore necessary to assess the signalling and

regulatory pathways activated during mechanical signal transduc-

tion in chondrocytes. In this study, we employed microarray

analysis to investigate the overall changes in chondrocyte gene

expression in response to dynamic compression. We used a cell

model system consisting of isolated mouse chondrocytes embedded

within an agarose hydrogel. We have previously used these

constructs to develop experimental procedures to analyse the

effects of compression at the mRNA level (using reverse

transcription-polymerase chain reaction experiments) and to
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determine the phosphorylation state of signalling molecules (using

Western blotting) [8,9]. Here, our study was designed to identify

candidate genes involved in the early response of chondrocytes to

compression.

Taken together, the results presented here indicate that the

mitogen-activated protein kinase (MAPK) and the transforming

growth factor (TGF)- b pathways are involved in the early

response of chondrocytes to dynamic compression. The micro-

array analysis revealed that only 20 transcripts were modulated

more than 2-fold. At a fold modulation threshold of 1.4, an

extended list of candidate genes included 325 candidate mechan-

osensitive genes, of which 85% were down-regulated. This global

down-regulation may indicate a general control mechanism for a

rapid response to dynamic compression. Many of the observed

modulated genes are known to be mechanosensitive in other

biological contexts. In addition, modulation of genes or transcripts

involved in various aspects of cellular physiology was observed.

Our integrated analysis provides new molecular insight into how

chondrocytes respond to mechanical forces.

Results

Maintenance of the chondrocyte phenotype and
cartilage-characteristic matrix deposition in an agarose
hydrogel

To investigate the early effects of dynamic compression on gene

expression of fully differentiated chondrocytes, we used a

previously described cell model system [8,9]. Briefly, mouse

chondrocytes were embedded in agarose just after their isolation

from cartilage and these chondrocyte-agarose constructs were

cultured for 6 days to allow extracellular matrix deposition. Under

these conditions, chondrocytes are viable and their proliferation

was confirmed by an increase in DNA content (about 1.5 fold,

data not shown). Furthermore, they maintain their round

Figure 1. Chondrocytes embedded in agarose gel maintain a well-differentiated phenotype. Expression of extracellular matrix proteins,
integrins and the Sox9 transcription factor were analysed on Western blots of chondrocytes cultured in 3D for 3 days (d3) or 6 days (d6). The presence
or absence patterns of proteins at day 6 are representative of 3 independent experiments. A: Type II (Col II) and type IX (Col IX) collagens accumulate
and become cross-linked by day 6. Procollagen II forms (pro) and mature collagen II chains [a1(II)] are present. Beta (b) indicates cross-linked a1(II)
dimers. Collagen IX chains [a1(IX)] are present. Asterisks (*) indicate cross-linked collagens. B: Type I collagen (Col I) and a11 integrin (Itga11) are not
or only faintly detected, whereas the chondrocyte-specific a10 integrin (Itga10) is present at day 6. Passaged chondrocytes cultured in monolayer
were used as positive controls (Ctrl) for Col I and a11 integrin immunorevelations. Procollagen I (pro) and mature collagen I chains a1(I) and a2(I) are
indicated. C: Sox9 chondrogenic transcription factor increases with the duration of culture.
doi:10.1371/journal.pone.0036964.g001
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morphology and type II collagen and aggrecan accumulate at the

cell periphery [8,9]. Western blotting was used to obtain more

detailed information on the matrix proteins and integrin receptors

present in the chondrocyte-agarose constructs just before applica-

tion of dynamic compression (Figure 1).

As expected, after 3 days of culture, chondrocytes synthesised

type II collagen, but mainly in the procollagen form (Figure 1

Panel A). Fibrillar collagens such as type II collagen are

synthesised as precursor forms that must be cleaved to produce

the mature triple helical collagens capable of packing into fibrils

(for a review, see [10]). After 6 days of culture, mature-form type

II collagen was the predominant form and showed interchain

covalent cross-links (Figure 1 Panel A). All the enzymes necessary

for the post-translational maturation of collagen were therefore

active in the 3D scaffolds. In addition, we investigated type IX

collagen, which is a minor non-fibrillar collagen present in

hyaline cartilage. Western blot analysis confirmed the presence of

covalent cross-links between collagen molecules in the chondro-

cyte-agarose constructs after 6 days of culture (Figure 1 Panel A).

To demonstrate the absence of critical proteins that could cause

the chondrocytes to transduce mechanical signals in a non-

characteristic way, we looked for type I collagen, the classical

marker of fibroblasts and dedifferentiated chondrocytes. No type

I collagen was detected in Western blots on the chondrocyte-

agarose constructs, but it was detected in the positive controls,

i.e. extracts of mouse chondrocytes cultured in monolayer

(Figure 1 Panel B). Therefore, before the compression experi-

ments, chondrocytes synthesise mature and cross-linked extracel-

lular matrix components that are part of the typical collagen

network in cartilage.

Integrin transmembrane receptors connect the extracellular

matrix to the intracellular cytoskeletal network and are expected to

play an important role in cellular responses to mechanical forces.

The main collagen-binding integrin on chondrocytes in cartilage is

a10b1 integrin, whereas a11b1 integrin is more characteristic of

mesenchymal tissues. Thus, a10 and a11 are good markers for

evaluating the status of the chondrocyte phenotype [11]. Integrins,

probably along with other surface proteins, were removed from

the cell surface after enzymatic isolation of chondrocytes from

cartilage (Figure 1 Panel B). a10 was re-expressed at the end of the

culture period in agarose, whereas a11 could only be faintly

detected. We also monitored another differentiation marker: Sox9,

a transcription factor required for cartilage formation (Figure 1

Panel C). In mouse chondrocytes, high levels of Sox9 protein

correlate with type II collagen synthesis and a well-differentiated

phenotype, whereas dedifferentiated as well as hypertrophic

Figure 2. Experimental design and dynamic compression
profile. Chondrocytes cultured in agarose for 6 days underwent
dynamic compression using the FX-4000C Flexercell Compression Plus
System (Flexcell International). Chondrocyte-agarose constructs under-
went cyclical compression ranging from 20 kPa to 40 kPa at a
frequency of 0.5 Hz for 5, 15 or 30 min. Signalling proteins were
analysed by Western blot at each of the three time points. DNA
microarray analysis was performed to compare 30 min-compression
constructs to uncompressed constructs.
doi:10.1371/journal.pone.0036964.g002

Figure 3. Smad2, but not Smad1/5/8 or FAK, is activated by
compression in chondrocyte-agarose constructs. Chondrocytes
cultured in agarose for 6 days underwent dynamic compression (+) or
were not compressed (2) for the indicated times and the phosphor-
ylation levels of FAK, Smad2 and Smad1/5/8 were analysed on Western
blots. (A) Representative blots. (B) For FAK phosphorylation, densito-
metric analysis was performed on three (5 and 15 min) or two (30 min)
independent experiments. For SMAD phosphorylation, densitometric
analysis was performed on four (5 and 15 min) or three (30 min)
independent experiments. For each protein, the ratio of the phospho-
protein to the total protein was calculated and the value obtained for
mechanically-induced phosphorylation was normalised to uncom-
pressed controls. Bars represent the compression-induced phosphory-
lation modulation (mean +/2 SD), with up-regulation in red and down-
regulation in green (** p,0.01).
doi:10.1371/journal.pone.0036964.g003
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chondrocytes lack Sox9 [12]. Thus, after a 6 day culture period,

robust Sox9 expression together with a10 integrin expression

further confirmed that chondrocytes were highly differentiated.

In conclusion, the chondrocytes in our agarose model system

were well-differentiated and did synthesise mature, cross-linked

extracellular matrix components as well as integrins, before we

applied dynamic compression.

Figure 4. Identification of major candidate mechanosensitive genes. Gene expression levels of compressed samples were compared to
uncompressed controls. (A) DNA microarray analysis was performed on four independent pairs of uncompressed/compressed experiments.
Expression level differences were sorted to identify highly responsive genes (fold change .2), resulting in a list of 20 transcripts. Bars represent the
fold change in gene expression upon compression, i.e. up-regulation (red) or down-regulation (green) (p,0.01). Exact modulation factors and
associated p-values are detailed in Table 1. (B) Real-time PCR analysis on three independent experiments confirmed DNA microarray results for eight
selected genes. Bars represent the compression-induced gene expression modulation (mean +/2 SD), either up-regulation (red) or down-regulation
(green) (* p,0.05, ** p,0.01).
doi:10.1371/journal.pone.0036964.g004
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Detection of MAPK pathway and Smad2 activation due
to dynamic compression

The mitogen-activated protein kinase (MAPK) pathways

involving ERK1/2 and p38 are implicated in chondrocyte

mechanotransduction [13–15]. We therefore investigated MAPK

activation in the chondrocyte-agarose constructs to select the

appropriate duration of dynamic compression for the character-

isation of mechanotransduction events. Chondrocyte-agarose

constructs underwent dynamic compression for 5, 15 or 30 min

(Figure 2) and Western blots were used to examine phosphory-

lation levels of ERK1/2 and p38. ERK1/2 phosphorylation was

observed primarily after 15 min of compression (average 2-fold

increase when compared to uncompressed samples) but high

variability in the phosphorylation rates impaired the statistical

significance of the results (Data S1). Following 5 min of

compression, p38 phosphorylation stimulation was low but highly

reproducible (p,0.05). After 15 min, this activation seemed

stronger (3-fold induction), but again, the response was highly

variable (Data S1).

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase

whose phosphorylation is generally detected within minutes after

application of mechanical strain in a variety of cell types, including

chondrocytes [16]. However, in our chondrocyte-agarose model

system, we found no compression-induced increase in FAK

phosphorylation (Figure 3).

Since TGF-b pathways activation was once reported as part of

the cartilage response to mechanical strain [17], we analysed

Smad phosphorylation with or without compression of the

chondrocytes in agarose. Mechanical stimulation promoted

Smad2 phosphorylation, mainly after 5 and 15 min of dynamic

compression, whereas there were no differences in the phosphor-

ylation levels of Smad1/5/8 between compressed and uncom-

pressed samples (Figure 3). Results from four independent

experiments revealed the relatively high intensity (2.5-fold

induction) and the great reproducibility (p,0.01) of this early

event of Smad2 activation (Figure 3).

Finally, the time-dependent activation of the MAPK and

canonical TGF-b/Smad pathways demonstrated that the com-

pression regimen we applied to our chondrocyte-agarose model

system was sufficient to trigger a cellular response at the molecular

level. These pathways, independently or in synergy, may induce

changes in the expression of genes that are important in the early

responses of chondrocytes to mechanical signals.

Confirmation of the mechanosensitive character of
members of the AP-1 transcription factor family and Egr1

Next, we undertook a microarray analysis to detect gene

expression modulation in response to 30 min of dynamic

compression. Observed gene expression regulation was thus

putatively downstream the activation of the MAPK and TGF-b/

Smad pathways observed after only 15 min of compression. An

Table 1. Results from DNA microarray analysis: gene expression levels in compressed samples were compared to uncompressed
control samples (fold change .2 and p-value .0.01).

RNA ID PROTEIN ID GENE NAME FOLD CHANGE ADJUSTED P-VALUE

UP-REGULATED GENES

NM_010234 Q6PCX9 Proto-oncogene protein c-fos;Fos 9.27 2E-04

NM_007913 Q9WVQ1 Early growth response protein 1;Egr1 3.90 1E-04

NM_010444 Q9DBG7 Nuclear receptor subfamily 4 group A member 1;Nr4a1 2.84 4E-04

NM_010499 P17950 Immediate early response gene 2 protein;Ier2 2.63 2E-05

NM_010118 Q9JLB2 Early growth response protein 2;Egr2 2.60 6E-03

NM_007570 Q04211 Protein BTG2;Btg2 2.28 5E-04

NM_010591 Q6SJQ0 Transcription factor AP-1;Jun 2.27 1E-02

NM_008036 P46935 Protein fosB;Fosb 2.16 4E-03

NM_008416 Q61136 Transcription factor jun-B;Junb 2.00 8E-04

DOWN-REGULATED GENES

NM_175284 Q149J3 Frizzled homolog 10;Fzd10 0.28 7E-07

NM_030696 Q8BL66 Monocarboxylate transporter 4;Slc16a3 0.31 2E-05

NM_027864 Q61468 Polypeptide N-acetylgalactosaminyltransferase 14;Galnt14 0.36 3E-05

NM_026358 Q8VI64 Ovary-specific acidic protein;Osap 0.38 8E-06

NM_138741 Q9D994 Serum deprivation-response protein;Sdpr 0.40 2E-03

AJ293625 Q9D8T7* SRA stem-loop-interacting RNA-binding protein
(mitochondrial);Slirp

0.41 4E-06

AK020134 Metastasis associated lung adenocarcinoma transcript 1
(non-coding RNA);Malat1

0.41 1E-03

AK032986 Q8BQ86 WD repeat-containing protein 60;Wdr60 0.46 7E-03

NM_023190 Q11011 Apoptotic chromatin condensation inducer in the
nucleus;Acin1

0.47 3E-04

NM_018857 Q70KY4 Mesothelin, cleaved form;Msln 0.48 7E-05

NM_146112 Q6Y7W8 PERQ amino acid-rich with GYF domain-containing
protein 2;Gigyf2

0.50 3E-03

doi:10.1371/journal.pone.0036964.t001
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extensive microarray analysis was performed on four independent

pairs of compressed and uncompressed experiments. We focused

on highly responsive genes: a 2-fold change threshold for up- and

down-regulation was applied (p,0.01). Of the 20 transcripts with

a difference of 2-fold or more, 9 transcripts corresponded to up-

regulated genes and 11 to down-regulated genes (Table 1 and

Figure 4). Interestingly, 8 of the up-regulated genes were known

transcription factors. The most responsive gene was Fos, with a

compression-induced over-expression of about 9-fold (p,0.001)

and Egr1 showed a compression-induced up-regulation of about 4-

fold (p,0.001). Furthermore, the concomitant stimulation of Jun,

Junb and Fosb, which are all genes coding for members of the AP-1

transcription factor family, and Egr1 has also been reported to

occur as an early event in diverse models of compression for

skeletal cells [18–22].

Identification of new candidate mechanosensitive genes
In addition to those mentioned above, genes showing a

difference of 2-fold or more with a p-value of less than 0.01 are

listed in Table 1 (Figure 4, Panel A). Regarding the up-regulated

transcription factor-encoding genes, Egr2 and Btg2 are members of

the early growth response gene family and Nr4a1 encodes a

nuclear receptor. The last up-regulated gene in the list was Ier2,

another early gene inducible by growth factors. Therefore, all up-

regulated genes in this list are already known as ‘‘immediate early

genes’’.

The list of the down-regulated genes appeared more diversified.

Slc16a3, Galnt14, Osap and Slirp code for proteins involved in cell

metabolism, Acin1 and Msln are genes related to cell death, Sdpr/

Cavin-2 encodes a caveolar protein, Malat1 corresponds to a non-

coding RNA and Fzd10 and Gigyf2 encode signalling molecules.

No information is available in databanks on the predicted protein

encoded by Wdr60.

To validate the expression profiles obtained by microarray

analysis, real-time PCR was used to compare the mRNA

expression levels in compressed and control chondrocytes. We

examined eight genes and confirmed the same gene expression

modulation pattern as the microarray analysis (Figure 4, panel B).

These observations indicated that our experimental procedure

reliably identified putative mechanosensitive genes.

In addition, the microarray analysis revealed many other

candidate mechanosensitive genes when the fold change threshold

was lowered from 2 to 1.4 (p,0.01, Data S2). This extended

dataset included 325 genes, with 48 up-regulated (i.e. 15%) and

277 down-regulated genes (i.e. 85%). The early response of

chondrocytes to compression is thus generally characterised by

down-regulation of gene expression (Figure 5 Panel A).

The presence of numerous transcription factors on the short list

of highly responsive genes suggests that our cell model system was

suitable for exploring the early events of mechanotransduction.

We sought to further confirm this hypothesis by using the

extended dataset of mechanosensitive genes. Hence, we analysed

this extended list using PANTHER classification system to cluster

candidate genes into relevant categories regarding signal trans-

duction. From the extended dataset, 212 coding transcripts were

eligible for functional annotation, of which 41 were up-regulated

and 171 were down-regulated proteins (Data S3). Transcription

factors were the most over-represented class of proteins (36

proteins, p,0.001) and when pooled with DNA-, RNA- and

nucleic acid-binding proteins (63 proteins), they represented 30%

of the modulated proteins detected here (Figure 5 Panel B). In

Figure 5. Analysis of the candidate mechanosensitive gene list.
Gene expression levels of compressed samples were compared to
uncompressed controls. DNA microarray analysis was performed on
four independent pairs of compressed/uncompressed experiments. A
list of 325 candidate genes was obtained by selecting transcripts with a
fold change greater than 1.4 (p,0.01). (A) Distribution of up- and
down-regulated transcripts. (B) Functional annotation highlighting
genes involved in gene expression regulation and in signal transduc-
tion. Protein classes associated with modulated genes were pooled into
three main groups: transcription regulation, phosphorylation cascade
and receptor activity and the number of genes belonging to each
protein class is shown. Within each group, protein classes are listed
from most represented to least represented.
doi:10.1371/journal.pone.0036964.g005

Table 2. Primers used for real-time PCR analysis (reference
gene: Rpl13a).

GENE NAME PRIMER SEQUENCE

Rpl13a S atccctccaccctatgacaa

AS gccccaggtaagcaaactt

Fos S gggacagcctttcctactacc

AS gatctgcgcaaaagtcctgt

Egr1 S ccctatgagcacctgaccac

AS tcgtttggctgggataactc

Nr4a1 S ctgtccgctctggtcctc

AS aatgcgattctgcagctctt

Ier2 S ttgaatctcagggtcgaactc

AS ggtagtgaaacggccttgaa

Btg2 S gcgagcagagactcaaggtt

AS ccagtggtgtttgtaatgatcg

Jun S agggacccatggaagttttt

AS tttttctaggagttgtcagattcaaa

Fzd10 S tgctgcctgtgcataaactt

AS cccccaggaaagctctttag

Galnt14 S tactatgcagctcggccttt

AS caggttcagcctgttctcaa

doi:10.1371/journal.pone.0036964.t002
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addition, 20 proteins belonged to the protein class grouping

kinases, phosphatases and kinase regulators, and 25 proteins

belonged to the protein class grouping receptors and receptor-

binding proteins (Figure 5 Panel B and Data S4). Since these data

strongly suggest that chondrocytes are involved in signal trans-

duction mechanisms, the dataset of the 212 functionally annotated

proteins was further analysed using the PANTHER and Pathway

Express systems to identify over-represented signalling pathways.

Several signalling pathways, such as Wnt, TGF-b, or MAPK

pathways, were prominent, although statistical support was modest

(data not shown). Altogether, our results demonstrate the

relevance of the extended list of modulated genes for identifying

new actors or targets involved in chondrocyte mechanotransduc-

tion.

Discussion

Validation of the chondrocyte-agarose construct as a
model for identifying the mechanosensitive response
typical of chondrocytes

The aim of this study was to explore the molecular-level

response of chondrocytes to dynamic compression using a model

system we previously developed [8,9]. Because sensing and

response to external mechanical stimuli by cells is controlled by

cell-matrix interactions, we carefully examined — before per-

forming the compression experiments — the extracellular matrix

proteins and cellular receptors synthesised by chondrocytes in

agarose. Western blot analysis extended our previous immunohis-

tochemistry studies [8,9] and confirmed that chondrocytes

produced a cartilage-characteristic matrix during the pre-culture

period. Regarding type II and type IX collagen production, the

presence of cross-links in the newly formed matrix indicated that

these chondrocytes were able to synthesise enzymes necessary for

proper maturation and stabilisation of collagen molecules and

their packing into collagen fibrils. In addition, in our model

system, chondrocytes expressed the collagen-binding integrin a10

[23]. Therefore, the chondrocyte-agarose model system used in

this study made it possible to examine the molecular events

underlying mechanotransduction, which probably occur during

typical chondrocyte-cartilage matrix interactions.

Since chondrocyte response to mechanical stimulation is

affected if chondrocytes dedifferentiate prior to compression

[24,25], we also carefully examined the chondrocyte phenotype

in our model system. Western blot analysis of type I, II and IX

collagens, a10 and a11 integrins and Sox9 extends our previous

studies [8,9] and confirmed that chondrocytes maintain a well-

differentiated phenotype in our model system. Agarose hydrogel

cultures have already been used to enhance chondrocytes in other

models [26,27]; the challenge here was to use freshly isolated

mouse cells and to obtain a complete differentiated phenotype

after one week of culture.

Suitability of our model system for studying the early
events of mechanotransduction

In the chondrocyte-agarose constructs, the levels of phospho-

FAK were not significantly different in compressed compared to

uncompressed cells, contradicting numerous published results

showing a rapid activation of FAK following various mechanical

stimuli. One possible explanation is that, in contrast to our

chondrocyte-agarose constructs, cells where not embedded in a 3D

environment. It is well known that cells in 3D systems form matrix

adhesions that are not the same as their 2D counterparts [28].

We detected transient activation of ERK1/2 and p38 in

response to mechanical stress, as expected from previous studies

[13–15]. We also found that Fos and Jun family members and Egr-

1 gene expressions were activated after 30 min of compression,

shortly after the primary activation of the MAPK pathway. These

results are very consistent since Fos, Jun and Egr-1 are downstream

targets of the MAPK pathway activated by compression in

chondrocytes [20,29]. In addition to Fos, Fosb, Jun and Junb, the

Atf3 gene was also stimulated 1.47-fold by compression (Data S2).

This modulation is in good agreement with the modulation

observed for AP-1 genes since Atf3, a transcription factor known

to be induced in stress responses, forms heteromers with Jun

members for its transcriptional activities [30].

Overall, the microarray analysis revealed that very few gene

expression levels were modulated more than 2-fold, suggesting

that dynamic compression triggered modest regulatory events. All

the up-regulated genes in this list are already known as

‘‘immediate early genes’’. Examination of the very early events

of dynamic compression reduces the risk of interpreting the result

of feedback signalling. The presence of numerous transcription

factors among the 20 most responsive genes was consistent with a

high frequency of genes with a .1.4-fold change in expression

that code for proteins linked to signal transduction and gene

expression regulation. These results further demonstrate that our

model system is useful for studying mechanotransduction early

events.

Characteristic TGF-b signalling is activated by dynamic
compression

Only a few studies have reported activation of TGF-b/Smad

signalling as an early event in cellular mechanotransduction.

Osteoblasts and the Saos-2 osteoblastic cell line respond to

mechanical stimulation by increasing the activation of bone

morphogenetic protein (BMP) receptor substrates, Smad1/5 [31–

33]. Likewise, Smad2/3 phosphorylation increases when umbilical

cord progenitor cells are stretched [34]. Regarding chondrocytes,

only one immunohistochemistry study has shown Smad2/3

activation in specific regions of bovine articular cartilage subjected

to 5 min of shear stress [17]. In our study, a Western blot analysis

showed that Smad2, but not Smad1/5/8, was activated by

dynamic compression, thus confirming that activation of TGF-b/

Smad signalling represents an early response of chondrocytes to

mechanical loading.

Chondrocytes cultured in agarose gel secrete TGF-b [35] and

this protein is secreted by various cells — including chondrocytes

— as part of a latent complex that associates with matrix proteins

such as fibrillin, proteoglycans, and fibronectin [36–38]. One

component of the latent complex, the latency-associated protein,

interacts directly with integrins, especially avb5. Myofibroblasts

cultured on stiff matrices can exert tension on the latent complex

through integrins, causing conformational changes and the release

of sequestered TGF-b in an active form [39]. Although we did not

measure the release of active TGF-b, it is possible that dynamic

compression on chondrocyte-agarose constructs causes the

mechanically driven release of soluble TGF-b which then binds

to its receptor and subsequently triggers signalling as exemplified

by Smad2 phosphorylation.

Regardless of the exact mechanism of TGF-b activation in our

cell model system, the microarray analysis confirmed the

involvement of TGF-b signalling in the chondrocyte response to

dynamic compression. For instance, Htra1, a gene coding for a

serine protease that inhibits TGF-b signalling [40] and Arkadia/

Rnf111, a gene coding for an ubiquitin ligase involved in Smad2/3

regulation [41], were down-regulated under dynamic compression

(1.47-fold and 1.66-fold, respectively, Data S2). Moreover, Cyr61

was up-regulated by 1.64-fold. Cyr61 is an important regulator of
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chondrogenesis and a member of the CCN family that includes

connective tissue growth factor (Ctgf) [42]. Cyr61, like Ctgf, is up-

regulated in fibroblasts cultured under mechanical stress within a

3D collagen gel [43]. Because Cyr61 expression is activated as an

early response to TGF-b [44], it is possible that the observed Cyr61

up-regulation results, at least in part, from the activation of TGF-b
signalling triggered by dynamic compression. Clearly, the inter-

play between growth factors, growth factor signalling and

mechanotransduction is highly complex.

Dynamic compression induces a general down-
regulation of gene expression in chondrocytes

The microarray analysis revealed that around 85% of the 325

mechanosensitive identified genes were down-regulated. One

possible explanation for the observed trend towards a reduction

in RNA levels is an increase in mRNA decay. Interestingly, two

genes coding for major proteins involved in RNA degradation,

Btg2 and Zfp36, were one of the relatively few genes up-regulated

following dynamic compression (2.28-fold and 1.76-fold, respec-

tively, Data S2). Btg2, a member of the Btg/Tob family of

proteins, is a general activator of mRNA decay [45], and Zfp36

binds to unstable mRNA and promotes their degradation [46].

Zfp36 has been proposed as an inducible attenuator of growth

factor signalling, by promoting degradation of rapidly induced

genes and thus restricting the cell’s responsiveness to stimulation

[47]. Btg/Tob factors are thought to facilitate the rapid switch to a

new gene expression program by speeding up the degradation of

previously made mRNAs [45]. For example, Btg2 activates BMP

signalling [48]. Down-regulation of gene expression may therefore

represent a general mechanism in the early response of

chondrocytes to mechanical stress.

Dynamic compression affects various aspects of
chondrocyte physiology

Independently of the general down-regulation observed in

gene expression, careful examination of the extended list of

modulated genes indicates that some of them have already been

identified as mechanosensitive genes involved in different aspects

of cellular physiology like in cartilage, e.g. Biglycan (Bgn), an

extracellular matrix protein [49], Mmp9, a matrix metallopro-

tease [50], Cyr61, a regulator of chondrogenesis from the CCN

family [43], Cited2, a transcription co-regulator playing a key role

in shear-induced regulation of MMPs in chondrocytes [51], or in

other tissues, e.g. Thrombomodulin (Thbd), a gene coding for an

anticoagulant factor [52], Lmo4, a fluid flow-responsive tran-

scription factor [53], Ptgs1/Cox1, a cyclooxygenase involved in

the production of prostaglandin E2 [54], or Ahnak, a protein

involved in Ca2+ signalling pathways and regulated exocytosis

[55,56]. The regulation of these genes reflects diverse cellular

responses to mechanical stimulation.

Interestingly, a subset of modulated genes, including Pcm1 [57],

Nek1 [58], Smo [59], Cdk5rap2 [60], Spop [61], Dync2h1 [62], Syne1/

Nesprin1 [63], Topors [64] and Wnt signalling molecules [65] such

as Fzd10, Sfrp1, Rspo3/Cristin1, are linked to ciliary function (Data

S2). The primary cilium has long been hypothesised to function as

an antenna for chondrocytes to sense the biomechanical environ-

ment, as in renal cells [66,67]. Using the same chondrocyte-

agarose constructs as those used here, Wann et al. have just

provided the first direct experimental evidence that the primary

cilium mediates mechanotransduction through control of calcium

signalling in compressed chondrocytes [68]. Previously, using

bovine chondrocyte-agarose constructs and confocal microscopy,

McGlashan et al. showed that the application of cyclic compression

affects cilia length in a time-dependent manner [69]. In addition,

mechanical forces have been reported to play a role in primary

cilia assembly/disassembly in vitro in other cell types [70,71]. These

observations are correlated with in vivo studies, where the presence

or absence of cilia is linked to the intensity of shear stress in blood

vessels [72]. Therefore, the mechanosensitivity observed here for

the subset of cilium-related genes may represent an early signal

triggered by chondrocytes to adapt the length and/or function of

the primary cilium in response to mechanical loading.

Nevertheless, part of the RNA transcriptome corresponds to

RNAs that do not code for proteins, referred to as non-coding

RNAs (ncRNAs) [73]. Microarray screening identified two down-

regulated long ncRNAs in compressed chondrocytes: Xist and

Malat1 (1.57-fold and 1.42-fold, respectively, Data S2), which are

two of the three large non-coding transcripts present in

mammalian nuclei [74]. Furthermore, Dicer1, a gene coding for

an endoribonuclease that processes pre-miRNAs into siRNAs

[75], was down-regulated by 1.81-fold upon compression. In

particular, recent studies have shown that miRNA can control

expression of alternative splicing regulators [76] and Malat1 can

control the activity of some miRNAs [77]. This is particularly

interesting because alternative splicing events have been recorded

in bone following mechanical loading [78]. These findings suggest

that modulation of ncRNA expression is part of the molecular

response to mechanical stress. Moreover, it is possible that these

ncRNAs participate in the regulation of pre-mRNA splicing in

response to compression.

Concluding remarks
The aim of this study was to perform an integrated analysis of

mechanotransduction in chondrocytes at the gene and protein

level. The originality of our analysis was to investigate early

molecular events triggered by dynamic compression. Our study

reveals that, in addition to the well-known involvement of the

MAPK-signalling pathway in the chondrocyte mechanotransduc-

tion response, TGF-b signalling may also play a prominent role. In

addition, our microarray analysis results provide new molecular

insight into how chondrocytes sense dynamic compression. The

candidate mechanosensitive genes identified here can serve as

starting points for future investigations of mechanotransduction in

chondrocytes.

The availability of genetically modified mice offers an oppor-

tunity to study the impact of gene modification in chondrocyte

mechanotransduction using the cell model system presented here.

Ultimately, identifying candidate mechanosensitive genes can

provide important information not only for the molecular

understanding of mechanotransduction in chondrocytes, but also

for cartilage engineering. For example, agarose (or agarose-

alginate) hydrogels constitute clinically potential scaffolds for

autologous chondrocyte implantation [79] and mechanical condi-

tioning can be used to stimulate in vitro chondrocyte biosynthesis in

3D scaffolds before implantation. Therefore, mechanosensitive

targets can help optimise mechanical conditioning for cartilage

reconstruction.

Materials and Methods

Ethics statement
Mouse care and treatment were conducted in accordance with

institutional guidelines in compliance with national and interna-

tional laws and policies. This study was specifically approved by

our local ethics committee (Authorization nu69387416 given by

the French Prefecture du Department du Rhone).
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Antibodies
For type I and type II collagens, polyclonal rabbit antibodies

against mature collagens were used (Novotec; references 20151

and 20251, respectively; used at 1:2000 and 1:5000, respectively).

Monoclonal antibody (mAb) against collagen IX (23-5D1;

1:6000) was a gift from Bjorn Olsen (Boston, MA). Polyclonal

antibodies against a10 (1:2000) and a11 (1:4000) integrins were

from Cartela AB (a gift from Evy Lundgren-Akerlund, Lund,

Sweden). Antibodies against Phospho-Smad1/5/8 (#9511),

Phospho-Smad2 (#3101), Phospho-ERK1/2 (#9101), Phospho-

p38 (#9251), Smad2/3 (#3102), ERK1/2 (#9102), p38 (#9212)

and anti-rabbit IgG horseradish peroxidase (HRP)-linked anti-

bodies were purchased from Cell Signaling Technology (all

1:1000). Rabbit mAb to Smad1 (1649-1) and Smad5 (1682-1)

were from Epitomics and used both 1:1000 in mixture. Anti-

Sox9 polyclonal antibody (AB5535, 1:2000) and anti-FAK

monoclonal antibody (clone 4.47, 1:5000) were purchased from

Millipore. Polyclonal rabbit antibodies against phosphoY397-

FAK (1:1000) were obtained from Biosource-Invitrogen. Anti-

actin monoclonal antibodies (A5060, 1:800) were purchased from

Sigma-Aldrich. Anti-mouse (170-6520) or rabbit (170-6518) IgG-

alkaline phosphatase conjugates and anti-mouse IgG-HRP

conjugates (170-6516) were purchased from Bio-Rad, all used

1:5000.

Chondrocyte isolation and 3D culture
Embryonic mouse chondrocytes were isolated from the costal

cartilage of day 17.5 post-coitum mice. Like articular cartilage, rib

cartilage is a hyaline-type cartilage. Immediately after enzymatic

isolation, cells were embedded in 2% agarose gels at a density of

26106 cells/mL as described [9]. Chondrocyte-agarose gels were

punched to form cylindrical constructs of 13 mm in diameter and

3 mm in thickness. They were then cultured in the wells of

BiopressTM compression plates (Flexcell international) for 6 days in

5% CO2 at 37uC. The Dulbecco’s modified Eagle’s medium/

Ham’s F-12 culture medium was changed daily as previously

detailed [9]. Serum was progressively substituted with insulin-

transferrin-selenium and cultures were gradually supplemented

with ascorbic acid (up to 20 mg/mL). Used as positive controls of

dedifferentiation, other mouse chondrocytes were cultured in

monolayer for one week, passaged once and cultured for another

week.

DNA content
DNA quantification was performed using the Hoechst 33258

(Fluka) DNA stain. The calibration curve was obtained using a

DNA standard solution (Invitrogen).

Application of dynamic compression
Chondrocyte-agarose constructs were subjected to compression

using a previously characterised model system [9,8]. The FX-

4000C Flexercell Compression Plus System (Flexcell International)

was used to apply dynamic compressive strain to agarose gels.

Compressed constructs were subjected to cyclical compression

ranging from 20 kPa to 40 kPa in a square waveform at a

frequency of 0.5 Hz (Figure 2) for 5, 15 or 30 min. Control

constructs were uncompressed.

Protein extraction and analysis by Western blotting
Protein extraction from the agarose gels was performed with

special care to avoid any modification in the phosphorylation

state of proteins [9]. For Western blotting, proteins were

separated on 10% or 4–12% polyacrylamide gradient mini-gels

and transferred to PVDF membranes (Millipore). The mem-

branes were probed with the appropriate primary antibodies,

washed and incubated with HRP- or alkaline phosphatase-

conjugated anti-mouse or anti-rabbit IgG. After multiple washes,

bound antibodies were detected on x-ray films using a Bio-Rad

Immun-star or WesternC chemiluminescent substrate. The

membranes probed with antibodies to collagens or integrins

were sequentially re-probed after stripping (Re-Blot Plus Strong,

Chemicon). A final re-probing with anti-actin antibodies served

as a loading control. The membranes probed with antibodies to

phospho-proteins were stripped and re-probed with antibodies

that recognise all forms of the protein in question. Phosphory-

lation levels were quantified by densitometry using ImageQuant

software (Molecular Dynamics). For each protein, the ratio of

phospho-protein band intensity to the total protein band intensity

was calculated and mechanically-induced phosphorylation was

normalised to uncompressed controls.

DNA microarray analysis
Total RNA was extracted from chondrocyte-agarose constructs

as previously described [9]. To ensure a sufficient quantity of

RNA, extractions from six similar constructs were pooled. To

ensure quality of RNA in each sample, integrity and purity were

assessed using a capillary electrophoresis system (Agilent Bioana-

lyser, Agilent Technologies). DNA microarray analysis was

performed on four independent experiments to compare gene

expression levels between compressed (30 min compression) and

uncompressed (control) constructs.

Hybridisation was carried out following the Two-Colour

Microarray-Based Expression Analysis protocol (Agilent Technol-

ogies) and 500 ng or 1 mg of purified total RNA were used for

linear amplification. The resulting labelled cRNA from a

compressed sample was co-hybridised with the labelled cRNA of

the corresponding control sample to the Agilent Mouse Genome

CGH Microarray 44 K probe set (Agilent Technologies). Each co-

hybridization was performed several times starting from different

total RNA preparations and using a dye swap. Each microarray

contained 44,000 sequences spanning the whole mouse genome

and control probes. The microarrays were scanned using an

Innoscan 700 Microarray Scanner (Innopsys) at 532 nm (for

detection of the Cy3 dye) and 635 nm (Cy5 dye). The resulting

image was analysed using Mapix v3.1 software. The signal

intensity of each spot was acquired and non-exploitable spots were

filtered out.

The statistical analysis and normalisation steps were done

using the Limma (Linear Models for Microarray Data) package

[80] in the statistical language R [81]. The ‘‘global Loess’’

function was applied to the data to correct for bias. Normalised

data were then averaged between direct and swapped compar-

isons to calculate values of differential expression and expression

level. A classification of statistically significant modulations was

obtained using a moderated Student’s t-test with a Bayesian false-

discovery rate approach [82]. Analysis of genes associated with

cell function was carried out using the PANTHER (Protein

ANalysis THrough Evolutionary Relationships) classification

system (http://www.pantherdb.org) and Pathway-Express

(http://vortex.cs.wayne.edu/Projects.html) profiling system to

identify protein categories or biological pathways which may be

associated with modulated gene expression (with M.0.5 and

p,0.01).
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Confirmation of modulation in gene expression by real-
time PCR

Real-time PCR analysis was performed on three independent

experiments as previously described [9]. Levels of gene expression

were determined by using the comparative Ct method with

RPL13a gene as the endogenous control. Primer pairs used in this

study are described in Table 2. Dissociation curves were

conducted at the end of each run to verify the absence of DNA

contamination. Student’s t-test (paired, two-tailed) was used for

statistical analysis.

Supporting Information

Data S1 ERK1/2 and p38 transient compression-induced

activation in chondrocyte-agarose constructs. Legend: Chondro-

cytes cultured in agarose for 6 days underwent dynamic

compression (+) or were not compressed (2) for the indicated

times and phosphorylation levels of ERK1/2 and p38 were

analysed on Western blots. (A) Representative blots. (B) Densito-

metric analysis was performed on four (5 and 15 min) or three

(30 min) independent experiments. The phospho-MAPK to total

MAPK ratio was calculated and mechanically induced phosphor-

ylation was normalised to uncompressed controls. Bars represent

the compression-induced phosphorylation modulation (mean fold

change +/2 SD), either up-regulation (red) or down-regulation

(green) (* p,0.05).

(TIF)

Data S2 Results from DNA microarray analysis: gene expression

levels in compressed samples were compared to uncompressed

control samples (fold change .1.4 and p-value .0.01).

(XLS)

Data S3 Results from DNA microarray analysis: modulated

coding transcripts eligible for functional annotation (PANTHER

analysis).

(XLS)

Data S4 Results from DNA microarray analysis: modulated

coding transcripts sorted by protein class (PANTHER analysis).

(XLS)
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